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Response to Reviewer #3 

 

We thank Reviewer#3 for his/her helpful comments on our AMT discussion paper. We 

carefully addressed all comments and accounted for them in our paper as stated below. 

The original comments of the reviewer are cited in italic font, our response is put below 

each comment in standard font. The changes stated below are also highlighted in the 

Revised Manuscript (RM). 

 

 

1. In my understanding, model analyses data should not be directly involved in the 

statistical optimization in principle. In this study, the model analyses are used to estimate 

the “unbiased” background bending angle and the observation error correlation matrix. 

In addition, the same model analyses data are used as references to evaluate the 

performance of proposed SO method statistically. 
 

We agree with this understanding that model analysis data should not be directly 

involved in the statistical optimization in principle. This is the very reason why we use 

co-located short-range forecast data as the primary ingredient of background profiles and 

why we are very careful to use analysis data only in an indirect way and in a form of 

certain statistical quantities. We do this in order to keep their influence on the statistical 

optimization results arguable beneficial in a statistical sense (bias-calibration step, Eq. 5 

in the paper; involving a large ensemble of analysis profiles, leaving negligible 

dependence on the co-located analysis profile) or otherwise negligible (as is the case for 

the purely technical use of analysis data for enabling subtraction of smooth/noise-free 

“zero order profiles” in order to construct correlation matrices; section 2.2 in the paper). 

For example, using forecast profiles instead of analysis profiles for subtracting a suitable 

smooth state in correlation matrix construction does not induce any relevant change to the 

resulting correlation matrix (which contains correlation functions normalized to unity in 

their diagonal). Also, the construction might include an additional step towards delta-

difference profiles (according to Eq. 8 in the paper) before these are then used for 

correlation matrix generation. This makes the difference profiles essentially independent 

from the choice of the original smooth state (analysis, forecast, or any similar profile that 

provides a reasonable smooth state for being subtracted), but again the changes in the 

resulting correlation matrix are in practice negligible. 

In the performance evaluation, the co-located analysis profiles just serve as a convenient 

joint reference in this paper, and we therefore do not “over-interpret” the results from the 

real observed data in the sense that we would claim independence from this joint 

reference; in on-going work for a next paper (including climatological use over many 

months) we additionally employ independent reference data over the stratosphere and 

mesosphere, which makes the evaluation more rigorous and we can derive even stronger 

conclusions that consolidate and complete the introduction of this new SO approach. 
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2. Obviously the proposed SO method is not applicable for the (near) real-‐time RO data 

processing. It needs to be clarified in the paper, especially when you compare your SO 

method with those methods designed for real-‐time RO data processing. 
 

It is applicable for near real time processing. But it is true that we did not mention that for 

this application we suggest to build the empirical covariance matrices from the previous 

week (i.e., using the seven-day-history data doi–1d to doi–7d instead of the centered-time-

window data doi+/–3d, where doi is the day of interest that contains the occultation events 

to be processed). Use of the seven-day-history data is justified, with very slight 

degradation in performance if any, since the dynamical change of the matrices over time 

is practically very slow (as indicated by Figs 2 and 3 in the paper and discussed in the 

related text). 

In order to point to the applicability also in near-real-time and fast-track processing 

applications we now added after the last paragraph of section 2.2: “These slow dynamics 

of the observation error covariance matrices, and of the background error covariance 

matrices as discussed in Section 2.1, enable reliable use also in near-real-time or fast-

track processing (i.e., processing within 3 hours or within follow-on day of observations). 

Instead of using seven days centered about the day being processed (including three days 

before and after the center day) seven-day-history data (from the previous day to seven 

days ago) may be used in these cases, with insignificant degradation in performance.” 

 

 

3. It would be important to understand what information comes from the pure observation, 

and what information is affected by the background in optimized RO bending angle. So 

could you please present the histograms of the median weighting height where the 

background and observation bending angle uncertainty are same for different SO 

methods. 
 

We agree that this is an important aspect and we carefully considered how to best account 

for it in this paper without unduly expanding it (also based on a comment received in the 

quick review towards the AMTD paper). We decided for a twofold improvement in the 

revised manuscript: 
 

1) we included explicit illustration of the observation-to-background weighting ratio (robw) 

for the three representative occultation events shown in Fig. 6 (left column). These cover 

typical simMetOp, CHAMP, and COSMIC robw ratios and provide the readers with a 

good impression of how the information is typically weighted between observations and 

background for settings as used in this paper. The )/(100 2

o

2

b

2

bobw uuur   [%] is a 

simply and convenient approximate variable for the purpose, since it expresses how the 

weighting of observation-to-background information would be if the covariance matrices 

in the statistical optimization equation (Eq. 2 in the paper) were diagonal. 

The related improved text of Section 3.1, describing Fig. 6, now reads as follows: 

“Figure 6 illustrates the effects of statistical optimization on individual bending angle 

profiles by a few representative RO events. The left panels show the background and 

observation uncertainties as well as the observation-to-background (Obs-to-Bgr) 

weighting ratio )/(100 2
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bobw uuur  , which expresses on a percentage scale how the 
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information is weighted between observations and background. obwr  is a convenient 

approximate variable for the purpose, which exactly applies if the covariance matrices in 

the statistical optimization equation (Eq. 2) were diagonal. Observation uncertainty is 

smallest for the simMetOp event (top), largest for the CHAMP event (middle), and in 

between for the COSMIC event (bottom). At 60 km these observation uncertainties are 

roughly 0.4 μrad, 3 μrad, and 1.5μrad for simMetOp, CHAMP, and COSMIC, 

respectively. These differences in observation uncertainty yield the largest obwr  for the 

simMetOp event and the smallest for CHAMP. Related to this, the altitude where both 

observations and background receive equal weight ( % 50obw r ), which may be 

considered the transition altitude below which the observation information dominates the 

retrieval, is highest for simMetOp (>60 km), medium for COSMIC (around 55 km), and 

smallest for CHAMP (near 45 km). Ongoing follow-on work on large RO datasets of 

many months analyzes the obwr  statistically and confirms that these few example events 

are typical for the respective data sources.” 
 

On histograms of robw, we decided not to add yet another figure to this paper (on top of 

illustrating robw profiles now in Fig. 6 as noted above) but leave this to the follow-on 

paper with bigger and longer-term ensembles of data. From the updated Fig. 6 we can see 

that the altitude where robw equals 50% (i.e., the altitude where the background and 

observation uncertainty are the same so that both background and observation receive 

equal weight) is over 60 km for the simMetOp event, near 45 km for CHAMP event, and 

around 55 km for the COSMIC event. We also have performed some internal sensitivity 

test with preliminary histograms of robw, which indicate similar typical robw=50% altitudes 

for the new SO method (around 75 km for simMetOp, around 45 km for CHAMP, around 

55 km for COSMIC, with the linear fbc = 1 to 15 as applied here); existing SO methods 

have “less well behaved” results, due to a higher degree of ad-hoc construction of the 

optimization, or the robw is unknown. 

 

2) we made further sensitivity tests for the bias coverage factor fbc—that is available to 

penalize the background bias uncertainty according to how users of the algorithm decide 

is best serving their application (Eq. 3 in the paper)—and modified its use and improved 

the related description in the paper. In the AMTD manuscript, we had introduced fbc = 5 

as a reasonable choice, applied over the whole altitude range from 30 km (28 km) to 80 

km, pointing to the option that this may be considered somewhat large for background 

uncertainty at high altitudes, and somewhat small for background uncertainties at lower 

altitudes. We now therefore cross-checked cases with linearly increasing fbc with altitude 

and decide to show the results for a case with linear variation of fbc, with fbc = 15 at 30 

km (3 times more than fbc = 5) to fbc = 1 at 80 km (no bias penalty at the top boundary of 

the altitude domain). Based on this modification, all the related description and result 

figures were updated accordingly. As a reference we also computed a case without any 

penalty (i.e., fbc = 1 at all altitudes), reflecting use of the algorithm as an optimal 

estimation between observations and background without any user intervention to down-

weight the background for the sake of avoiding potential background biases. In order to 

illustrate the difference between the three settings fbc = 1, fbc = 5, and fbc = 1 to 15 (from 

80 km to 30 km) a new Fig. 9 was included, showing the differences. Altogether these 
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improvements make the role of the bias coverage factor, as the one parameter of the 

algorithm available to the user for influencing the degree of background information 

flowing into the optimization, more clear and transparent. 

The modified text in Section 2.1, introducing fbc below Eq. 3, now reads as follows: 

“Herein the bias coverage factor bcf  is introduced as a user-defined parameter that can be 

employed to penalize the estimated bias-type uncertainty kub  relative to the estimated 

random uncertainty ks a-f . This enables to minimize the influence from potential residual 

background biases, relative to observation uncertainty, on the resulting optimized profile 
k

S . In this study the bias coverage factor was chosen to linearly decrease with altitude, 

setting 15bc f  at 30 km (strong penalty in lower stratosphere) and 1bc f  at 80 km (no 

penalty at top boundary). This choice was found to be useful for climate applications 

(more discussion of bcf , including for comparison also example cases with constant 

1bc f  and 5bc f , is given in Section 3.2).” 

Subsequently, the related new text of Section 3.2, describing Fig. 9, reads as follows: 

“In order to discuss the effects of different choices of fbc on the resulting optimized 

bending angles, we compared the choice of this study for linear altitude dependence (see 

Section 2.1; termed fbc = 1To15 here) with the choice in the algorithmic introduction by 

Li et al. (2013) (fbc = 5) and with a reference case intentionally making no use of the bias 

penalty option (fbc = 1). 

Figure 9 shows the comparative results for these three fbc choices in the same statistical 

result format as used for Fig. 8; the results shown for “Dynamic fbc = 1To15” and 

OPSv5.6 replicate the ones of Dynamic and OPSv5.6 of Fig. 8 for context. It can be seen 

that for simMetOp the fbc = 5 and fbc = 1To15 results are rather similar, both for 

systematic differences and standard deviations, whilst the fbc = 1 choice indicates how a 

strong un-penalized weight of background profiles forces the optimized solution towards 

the background at high altitudes (here visible above about 45 km). As is to be expected, 

any residual biases in the background will therefore best survive in the optimized solution 

in case of an fbc = 1 choice. This is the very reason why the background is intentionally 

penalized if the dynamic scheme is employed for climate-quality retrievals that strive to 

minimize background influence. 

For the CHAMP and COSMIC data, standard deviations are largest for the fbc = 1To15 

case, medium for the fbc = 5 case, and smallest for the fbc = 1 case. This is in line with the 

expectation of how the obwr  changes under these different choices, since the observational 

noise is more and more mitigated the more relative weight the background receives. The 

effect on the systematic differences (for CHAMP and COSMIC relative to the co-located 

ECMWF analysis profiles) is relatively small in these global-scale statistics; but also here 

the direction is that no bias penalty forces the results towards the background mean state 

at high altitudes. 

Overall Figure 9 demonstrates that the sensitivity to the detailed quantitative choice of fbc 

is fairly weak, as can be seen from the moderate differences between these three cases 

with very different fbc choices. This is favorable since it implies that not any detailed 

quantitative tuning of fbc is needed in practice; the fbc as the only free user-defined 

variable in the new dynamic algorithm is rather a clear and transparent option to 
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predefine the influence of background information according to what users deem suitable 

for their application.” 

 

 

4. As mentioned in section 2.1, the authors updated the calculation of the mean variable 

in each grid cell by averaging the variable over a longer temporal period (7 days) and a 

larger geographic region (1000 km x 3000 km) compared to the b‐dynamic scheme. The 

choice of average domain is a trade-‐ off between in capturing the mean field variations 

and in removing short-‐ term/random variations. So could the authors please say few more 

words about what kind of improvement in performance get from this update? If more RO 

data available per day in the future, would it impact the choice of the average?  
 

After applying this update, we found that the mean background and observed variables in 

each grid cell were somewhat smoother than those obtained using the previous settings, 

while the magnitudes of the variables stayed essentially the same. This means random 

variability was a bit more suppressed (ok) while the mean field variation was still 

similarly captured (ok). If more RO profiles become available per day in future this is 

favorable, since random errors are averaged out even better. Combined with improved 

residual ionosphere bias correction in future (as discussed in the response to reviewer #1) 

this enables more weight on the averaged-observed bending angle in the mean 

background profile, leading to better background-bias calibration (Eq. 5 of the paper). In 

addition, the empirical construction of the observation error covariance matrix can gain 

further robustness. 

We improved the relevant text in section 2.1 as follows: “…this update allows more data 

to be used for more reliable statistical estimates (especially important for mean observed 

bending angles) at each 10° latitude × 20° longitude grid point, while still capturing the 

slow variations of the mean field well.” 

 

 

5. As mentioned in section 3.2, the authors applied different quality checks for RO data 

retrieved with different SO schemes. 1 would like to suggest the authors to make sure the 

same dataset used for comparison. 
 

We confirm that we were careful in this respect. In the quality control, the quality of the 

input RO bending angles (ionosphere-corrected bending angles), optimized bending 

angles, refractivity, and dry temperature is checked in various ways. If for the same RO 

event, any of the quality flags of any SO scheme showed a bad quality, we rejected this 

event from the statistical inter-comparison. Therefore we can confirm that we used the 

same datasets (same ensemble of occultation events) for all SO schemes involved for the 

statistics. 

 

 

Many thanks again to Reviewer #3 for his/her valuable comments that helped us to 

further improve our manuscript. 


