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Abstract

There are many potential sources of bias in the radar rainfall estimation process. This
study classified the biases from the rainfall estimation process into the reflectivity
measurement bias and QPE model bias and also conducted the bias correction methods to
improve the accuracy of the Radar-AWS Rainrate (RAR) calculation system operated by the
Korea Meteorological Administration (KMA). For the Z-bias correction, this study utilized
the bias correction algorithm for the reflectivity. The concept of this algorithm is that the
reflectivity of target single-pol radars is corrected based on the reference dual-pol radar
corrected in the hardware and software bias. This study, and then, dealt with two post-process
methods, the Mean Field Bias Correction (MFBC) method and the Local Gauge Correction
method (LGC), to correct rainfall-bias. The Z-bias and rainfall-bias correction methods were
applied to the RAR system. The accuracy of the RAR system was improved after correcting
Z-bias. For rainfall types, although the accuracy of Changma front and local torrential cases
was slightly improved without the Z-bias correction, especially, the accuracy of typhoon cases
got worse than existing results. As a result of the rainfall-bias correction, the accuracy of the
RAR system performed Z-bias LGC was especially superior to the MFBC method because
the different rainfall biases were applied to each grid rainfall amount in the LGC method. For
rainfall types, Results of the Z-bias LGC showed that rainfall estimates for all types was
more accurate than only the Z-bias and, especially, outcomes in typhoon cases was vastly

superior to the others.
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1. INTRODUCTION

Weather radars can provide rainfall estimates over the Korean Peninsula and near seas
with high spatial (minimum 0.125 km) and temporal resolutions (2.5 minutes), especially, and
play an important role in predicting and monitoring severe weather conditions. However,
several sources of bias are involved in the process of calculating quantitative radar-based
rainfall estimates. It is well acknowledged that radar data are affected by both systematic bias
(due to reflectivity measurements (included in hardware errors, signal processing, and quality
controls), parameter estimation of the Z-R relationship, and quantitative precipitation
estimation model structures) and random error (Huff, 1970; Woodely et al., 1957, Wilson and
Brandes, 1979; Austin, 1987; Campos and Zawadzki, 2000; Krajewski and Smith, 2002)
because one of major reasons is that weather radars indirectly measure rainfall amounts using
the relations between measured radar variables and rainfall such as Z-R, Zpr-R, and Kpp-R.
Related to systematic bias, a considerable number of studies have been conducted to correct
the reflectivity measurement bias which includes temporal and spatial sampling bias, ground
and sea clutter, beam-blockage and attenuation, electrical calibration, and quantification of
reflectivity bias (Chumchean et al., 2006). Jordan et al. (2000) evaluated the errors which
arise in radar estimates of rainfall as a result of temporal sampling, spatial averaging,
measuring the field at some distance above the ground, and recording the reflectivity data
with a limited radiometric resolution. Germann et al. (2006) modified the ground clutter
algorithm and reduced the amount of residual non-meteorological signals in a mountainous
region, the Alps, to improve the precipitation estimation. Villarini and Krajewski (2008)

investigated the spatial sampling errors in radar observations which affect the sensitivity of
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the models and determined that these errors were related to the approximation of an areal
estimate by a using a point measurement. Similarly, converting a measured reflectivity to
rainfall amount using artificial relationships or models is one of the major sources of bias. To
overcome these limitations, gauge adjustment methods were applied to correct misestimated
precipitation in numerous existing studies. Sinclair and Pegram (2005) described a merging
technique and presented an application of it to a simulated rainfall field. The proposed
merging technique based on Conditional Merging (CM) (Ehret, 2002) made use of a Kriging
method to reduce the bias while retaining spatial detail from the radar but keeping the spatial
variability observed by the radar. Morin and Gagella (2007) compared three radar-gauge
adjustment methods, a one-coefficient bulk adjustment, a Weighted Regression (WR), and a
Weighted Multiple Regression (WMR), for the radar-based quantitative precipitation
estimation over Mediterranean and dry climate regimes. They concluded the WR and WMR
adjustment methods were useful for calculating rain depth estimates, with some limitations.
Goudenhoofdt and Delobbe (2009) dealt with several radar-gauge merging methods
considering the gauge network densities and compared their precipitation estimates accuracy.
The analysis revealed that the simple methods reduced relatively the bias of radar estimation
and the geostatistical merging methods resulted in the better performance reflecting the gauge

network densities.

In a series of procedures which estimate the quantitative rainfalls derived from radar
information, the present paper focuses on correcting the measurement bias and bias in the
QPE model. The measurement bias is defined as the only reflectivity measurement bias

(hereafter Z-bias) which occurred while using weather radar hardware systems to detect
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precipitation. The bias in the QPE model (hereafter QPE mode bias) is defined as the
estimated rainfall-bias which included the bias due to the parameters of the Z-R relationship,
the parameters of the QPE model, and the QPE model structure. Section 2 describes the
correction methods of the Z-bias and rainfall-bias and the QPE model used in this paper.
Section 3 gives results for rainfall estimations using the correction methods and describes the
effect of the Z-bias and rainfall-bias correction methods. Finally, Section 4 summarizes the

results and provides some concluding remarks.

2. DATA AND METHODOLOGY

2.1 Radar Dataset and Rainfall Cases

In this study, the performance of the bias correction methods has been evaluated by
comparing the observed rainfall data from rain gauges operated by the KMA (Korea
Meteorological Administration). Observed rainfall data were collected from 642 ground rain
gauges (called AWS, Automatic Weather Station) (321 rain gauges for the calibration and 321
rain gauges for the validation, respectively) located in the Korean Peninsula. The Bislsan S-
band dual-polarimetric radar which was installed and operated by the Ministry of Land,
Infrastructure and Transport (MLIT) beginning in 2009 was selected for the absolute
reference radar to estimate Z-bias (described in Section 2.2). Horizontal and vertical
reflectivity (Zy and Zy), differential reflectivity (Zpg), differential phase (@pp), specific
differential phase (Kpp), correlation coefficient (pyy), and spectrum width (SW) are estimated

with a gate size of 0.125 km. The scan strategy has 6 elevation angles with a 2.5 minute
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update cycle. The Accuracy of reference radar shows more than 80 % on average in
quantitative and qualitative test (You et al., 2014; Jeong et al., 2014; Kim et al., 2015). The
target radars which required Z-bias correction were 11 single-polarimeric radars
(Baegnyeondo, Kwanaksan, Oseonsan, Jindo, Gosan, Seongsan, Gudeoksan, Myeonbongsan,
Gangneung, Gwnagdeoksan, Incheon) with a scan range of the maximum 200 km (C-band)
and 240 km (S-band) and a gate size of 0.250 km operated by the KMA in Figure 1. Table
1(a) shows the radars and rain-gauges used for estimating Z-bias and data period and Table
1(b) shows 18 rainfall cases in the summer season used for the verification of the Z- and

rainfall-bias correction methods.

[Figure 1. Location of 11 single-polarization radars and the Bislsan S-band dual-polarization

radar and their observation ranges]|

[Table 1. Summary of the Radars and Rainfall Cases]

2.2 Quantitative Precipitation Estimation Model

This paper has utilized the Radar-AWS Rainrate (RAR) calculation system (Hereafter
called the RAR system) for the QPE model. The RAR system which was developed by KMA
in 2006 is operated on site, based on 11 single-polarimetric radars. The RAR system produces
the merged rainfall field for the Korean Peninsula through a series of steps (production of the

radar reflectivity field, calculation of AWS rainfalls, derivation of the Z-R relationship, etc.)
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(refer to Figure 2).

The RAR system estimates parameters of the Z-R relationship in real-time for real-time
rainfall estimates (Weather Radar Center, 2011). The RAR system utilizes 10-minute
reflectivity and AWS rainfall in the Window Probability Matching Method (WPMM)
(Rosenfeld et al., 1993) to estimate rainfalls in each radar site and merged rainfalls of radar
sites for producing composite rainfall fields. Used reflectivity which are quality controlled

(removal of non-meteorological echoes) are averaged on 3 x 3 pixels with a certain AWS as

the center are used. The WPMM method reproduces the probability density functions (pdfs)
of ground rainfall from AWSs and radar reflectivity and determines the Z-R relationship

using these pdfs (refer to Equation (1) and (2)) (Rosenfeld et al., 1993).

[ 1@)P.(2)dz, =] RP.(R)IR (1)

P.(R)=P(RR>R,)., P.(Z,)=P(Z,

Z,>7Z.) ()

Where Z, is radar reflectivity (dBZ), P.() is the conditional probability function, R is rainfall
(mm/hr), and T is threshold. The conditional probability functions in Equation (1) are derived
from Equation (2) and thresholds of rainfall and radar reflectivity are 0.1 mm hr' and 10 dBZ.
Parameters of the Z-R relationship have been estimated using radar reflectivity and AWS
rainfalls from 1 hour ago with the least square fit of power law. The number of radar
reflectivity and AWS rainfalls over a certain threshold are required to estimate parameters

accurately. If there is not enough data, estimated rainfalls from that Z-R relationship are
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inaccurate. To overcome this limitation, if the number of available AWSs is more than 30%
of those available in each radar site, the parameters of the Z-R relationship can be estimated.
If less than 30%, Z=200R"® (Marshall and Palmer, 1948) is applied for rainfall estimates
(Korea Meteorological Administration, 2012b).

Secondly, the composite rainfall field for the whole country may be produced using each
radar rainfall estimate. However, appropriate merging methods (the maximum value, average
value, minimum value, distance weighting methods) must be conducted because the scan
ranges of the radar sites overlap. Because the maximum value method is applied to merge
radar rainfalls by the KMA (Korea Meteorological Administration, 2012b), the identical

method is also utilized in this paper.

[Figure 2. Flowchart of the Radar-AWS Rainrate calculation system]|

2.3 Bias Correction Methods
2.3.1 Reflectivity Measurement Bias Correction Method

Weather radars continuously carry out measurement cycles which include sending signals
into the atmosphere and receiving and analyzing return signals for meteorological observation.
The measurement of reflectivity itself suffers from hardware malfunctions (e.g. electronic
miscalibration, signal misprocessing) and radar characteristics (e.g. attenuation). When

converting radar reflectivity into rainrates (Z-R relationship) leads to additional bias which
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can lower the accuracy of rainfall estimation. To estimate the Z-bias of target weather radars,
a reference weather radar which has been absolutely corrected is required. The Z-bias is
defined as the difference between the measured reflectivity of reference radar and the target
radar under the same spatial and temporal conditions (Weather Radar Center, 2012). The

procedure of estimating Z-bias is described as follows.

(a) Calibration of the reference weather radar

This paper selected a Bislsan S-band dual-polarimeric radar (hereafter Bislsan dual-pol
radar) which can be self-calibrated and is more accurate than the reference weather radar. To
calibrate the Bislsan dual-pol radar, a self-consistency constraint method using the
relationship between the reflectivity (£) depended by the radar beam power and the specific
differential phase (Kpp) affected by only particle size or concentration, not the radar beam
power was utilized. The procedure of the self-consistency constraint method is as follows

(Weather Radar Center, 2012):

(1)  Derive the Zy-Kpp relationship theoretically from the Drop Size Distributions (DSDs)

(i1)) Calculate Kpp for each radar pixel from observed Zy using the derived Zy-Kpp

relationship and ®pp as integrating calculated Kpp along each radial

(ii1) Calculate the difference angle () using a scatter plot between the calculated @pp from

(i1) and observed from the Bislsan dual-pol radar and calculate Z-bias (¢) by inputting

10
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the difference angle (¢) into Equation (3) and (4) (Lee, et al., 2006) (refer to Figure

3)

Z(CDDPical _(DDPiobs)
tan @ = = (3)

n
d 2
DP _obs
i=l

£(dB) =10blog(tan ) 4)

Where, @Ppp .. 1s theoretical @pp from DSDs, @Ppp .. is observed @pp from the dual-pol radar,

@ is the difference angle, b is the empirical constant, and ¢ is the estimated Z-bias.

[Figure 3. Example for the procedure of the self-consistency constraint: Calculation of tan 6

using Equation (3)]

(b) Calculation of Z-bias for the target weather radars

After completed to calibrate the Bislsan dual-pol radar for Z-bias, target single-pol radars

which are located adjacent to the reference radar were calibrated according to the reflectivity

11
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of the reference radar. The procedure for calculating the Z-bias of the target radars is as

follows (Korea Meteorological Administration, 2011):

@

(i)

(iii)

(iv)

)

(vi)

Remove the beam-blockage area using beam-blockage information (penetration ratio

more than 90%)

Reflect the accumulated attenuation effects due to rainfall in the observed reflectivity

(attenuation ratio less than 10%)

Generate the 3-dimensional CAPPI for the reflectivity

Set up equidistant pairs between the reference and target radars within 200 km from
the center of the reference radar (However, when a Bislsan dual-pol radar was a

reference radar, the distance was within 100 km)

Compare the reflectivity of the reference and target radars within a +5 km reflectivity

overlap area

Calculate the reflectivity differences at intervals of 0.5 km from 1.5~3.5 km altitude in
consideration of the ground clutter and bright band and average the reflectivity

differences for the Z-bias of the target radar

12
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Figure 4 shows the concept of Z-bias for target radar which has been calculated from
reflectivity differences in the overlap area between the reference and target radars. After
completed to calibrate the target radar#1 for the Z-bias, the target radar#1 is the reference
radar for the target radar#2 adjacent to the target radar#1. The procedure mentioned above is

equally applied for the target radar#1 and #2 to calculate the Z-bias of target radar#2.

[Figure 4. The concept of calculating Z-bias for the target radar according to the reference

radar reflectivity (Korea Meteorological Administration, 2011)]

2.3.2 Rainfall Bias Correction Methods

Estimated rainfall based on radars has the QPE model bias (parameters of Z-R relationship,
parameters of QPE model, QPE model structures, etc.) even if calibrated reflectivity is input
into the QPE model. In this paper, the Mean Field Bias Correction (MFBC) method and Local
Gauge Correction (LGC) method have been applied to outcomes from the QPE model for

correcting the rainfall-bias.

(a) Mean Field Bias Correction method

The fundamental concept of the MFBC method is that the bias correct factor (G/R ratio

factor) is calculated using the ratio of the spatial average (mean) between rainfalls estimated

13
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from radars and observed rainfall at a corresponding field (or point, pixel ). Then corrected
rainfall is calculated by multiplying the G/R ratio factor and radar rainfall estimates. The

equation of the MFBC method is as follows:

G/R ratio factor= ZG[ / ZRI. (5)

i=1 i=1

Where, G; is rainfall of i”" rain gauge, R; is radar rainfall estimates of i"" point (or pixel), n is
the total number of the ground rain gauge. In the case of utilizing the MFBC method in a
certain area (or for a certain period), the identical G/R ratio factor is uniformly applied to

radar rainfall estimates all over the area.

(b) Local Gauge Correction method

This study dealt with the Local Gauge Correction (LGC) method which has been
employed in the NMQ (National Mosaic and QPE) of the NOAA (National Oceanic and
Atmospheric Administration) NSSL (National Severe Storms Laboratory) (Zhang et al.,
2011). The LGC method which assigns the weights to bias between ground rainfall detected
by AWSs and radar rainfall estimates is the modified version of the Inverse Distance
Weighting (IDW) method. The LGC method is able to correct the rainfall cases which occur
locally by modifying rainfall estimates in each pixel. The procedure of the LGC method is as

follows (refer to Figure 5):

14
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This paper defined that 7 gc; is the corrected rainfall estimates in a certain point i, 7; is
radar rainfall estimates in a certain radar pixel i, R,; is expected error estimates. This

relationship is expressed as following equation:
STEP 1: rLGC,i: Vi — Re’,‘: rLGC,i(b; D) (6)

Where D is effective radius for calculating the radar rainfall bias, b is the weight of variable d,
d is the distance between AWSs and pixels in radars. Estimated weights by Equation (7) are

applied to Equation (6) (Zhang et al., 2011).
R, =2 e;w /2w, (7)

If general, w, :l/dj.’ (ifd,<D)or0(f d,>D)

If the number of AWS in region are sparse, & = Y exp[—d; /(D/2)*] (8)

j=1

s w,=axl/d’ (if d,<D)or0(if d,>D)

Where ¢; is error between rainfalls observed from AWSs (g;) and radar rainfall estimates (r;),

w is the weight of error (=r; — gj), j 1s jth AWS, m is the number of AWSs within the effective

radius, @ is the impact factor. If the @ is more than one, the number of AWSs is enough for

the rainfall-bias correction. Otherwise, less than one, if the number of AWSs is sparse (the &

15
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is less than one), revised weights have been calculated by multiplying @ and original weights
(w; :axl/df).

E; is defined as the difference between r gc from STEP 1 and ground rainfall, g; and

depends on b and D.
STEP 2: E= rige — g= Ei(b, D) 9)

Mean Square Error (MSE) for E; is expressed as Equation (10) and also depends on
parameter b and D. Parameters of the LGC method (b and D) have been determined using the
stepwise method for minimizing the MSE value and applied to Equation (8) to calculate radar

rainfall estimates, 7 gc.

STEP 3: MSE= Y E}/n=MSE(b, D) (10)

i=1

This paper has assumed that the scan range of radars (D) is the maximum range 240 km
used by all AWSs on the Korean Peninsula. Although it takes a long time to carry out the
LGC algorithm under this assumption, it is considered appropriate to verify the improvement
of radar rainfall estimates using the LGC method.

In sequence, because the LGC method is highly dependent on the number of AWSs which
are available and accurate, the quality control algorithm for AWSs has been conducted to

remove lower-quality AWSs which have larger expected errors than others. The conditions of

16
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quality control are as follows: (i) In a certain AWS, if the number of pixels which have Dg g
less than 5 mm are less than 25% of the whole pixels, a certain AWS is designated as an
‘abnormal AWS’ and removed. Dr g are the differences between R,; and E; within 10-km
radius from the center of a certain AWS. (ii) The LGC method has been conducted until the
number of available AWSs was more than 90% of all the filtered AWSs. If this procedure is
stopped, calculated r ¢ at the present stage is used for corrected rainfall estimates. (ii1) The
procedure of the LGC method is finally finished after repeating the routine above
approximately four times. Furthermore, if the ratio of abnormal AWSs is more than 7%, the
procedure of the LGC method is also finished (Korea Meteorological Administration, 2012).
Thresholds were decided using the stepwise method and are appropriate for the LGC method
applied to the RAR calculation system. However the thresholds are somewhat subjective, it is

considered that future studies should deal with this limitation.

[Figure 5. Flowchart of the Local Gauge Correction method]

3. APPLICATION AND RESULTS

3.1 Application of the Reflectivity Measurement Bias Correction method

In section 2.2.1, the Reflectivity measurement bias (Z-bias) for the Bislsan dual-pol radar
have been estimated using the self-consistency constraint method using the relationship

between reflectivity (Z) and specific differential phase (Kpp) during the calibration period.
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The Z-bias of the Bislsan dual-pol radar was estimated as -2.61 dB with the result that the
calculated tand which was 0.58 degree from Equation (1) was inputted into Equation (4). The
Bislsan dual-pol radar was self-calibrated using its Z-bias. For estimating the Z-bias of target
radars, first of all, pairs between the reference radar and target radar were set up (refer to
Table 2). Then averaged Z-biases of the 11 single-pol radars operated by the KMA as target
radars were estimated sequentially from the beginning, using the Bislsan dual-pol radar as the
reference radar (refer to Figure 6 and Table 3). The Z-biases of the BRI and JNI sites were -
7.87 dB (the largest) and -1.16 dB (the smallest) and Z-bias on average was -4.52 dB.
Especially, radar rainfall estimates were underestimated due to the fact that all of the Z-biases

had negative values.

To verify the improvement of radar rainfall estimates, the RAR system which reflected the
Z-biases of all the radar sites were conducted to calculate rainfall estimates of 18 cases in the
summer season. In Figure 7, after applying Z-biases to the RAR system, the accuracy of
rainfall estimates improved in the Root Mean Square Error (RMSE) and correlation
coefficient, which ranged from 7.37 mm hr' and 0.83 and 7.21 mm hr”' and 0.84 on average,
respectively. As a result of each rainfall type, in RMSE, the accuracy of rainfall estimates in
Changma front cases was improved from 7.43 to 7.36 mm hr' and the accuracy of local
torrential rainfall cases (7.43 mm hr’') was similar to results without the application of Z-bias
(7.36 mm hr™"). Especially, the accuracy of typhoon cases deteriorated compared to existing
results (from 9.08 to 11.04 mm hr"). This was due to the application of Z-biases to each radar
site in the RAR system, which has increased the rainfall estimates in whole country. The

accuracy of Changma front cases which occur nationwide was improved. However, because
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cases of local torrential rainfalls and typhoons occurred locally, the accuracy of these cases
was negatively impacted. In Figure 8 in Case 12 at 1500 LST on 10 August in 2012, Figure
8(a) shows the image before the application of Z-bias and Figure 8(b) shows the image after
the Z-bias correction. Rainfall estimates in black dash circles on the partial magnification
image in Figure 8(b) are stronger than Figure 8(a), relatively since the rainfall estimates were
increased by the Z-bias correction. It is proved that the Z-bias correction proposed by this

paper has improved the accuracy of rainfall amounts in the RAR system.

[Table 2.Radar pairs for estimating the Z-bias of each radar site]

[Figure 6. Sequence of the reflectivity bias estimation for each radar site]

[Table 3. Reflectivity bias for each radar site]

[Figure 7. Comparison of the accuracy of rainfall estimates for each rainfall case before and

after the Z-bias correction: (a) RMSE; (b) correlation coefficient]

[Figure 8. Comparison of rainfall estimate images in the RAR system before and after the Z-
bias correction in Case 12 (at 1500 LST on 10 August in 2012): (a) Before the Z-bias

correction; (b) After the Z-bias correction]

3.2 Application of the QPE Model Bias Correction methods

19
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Since the rainfall estimates in the RAR system were improved by the Z-bias correction in
Section 3.1, the QPE model bias (rainfall-bias) correction was conducted after the Z-bias
correction. To verify the improvement of the radar rainfall amounts estimated by the QPE
model bias correction, the RAR system with rainfall-bias correction was conducted for 18
summer season cases over the verification period. This paper defined that results with only
the Z-bias correction were identified as ‘Z-bias’, results with the Z-bias correction and MFBC
method were identified as ‘Z-bias. MFBC’, and results with the Z-bias correction and LGC

method were identified as ‘Z-bias LGC’.

As a result of the rainfall-bias correction methods, Table 4 shows the accuracy of rainfall
estimates for each rainfall-bias method and for each rainfall type. In Table 4(a), Mean
Absolute Error (MAE) of the Z-bias, Z-bias MFBC, and Z-bias LGC were 3.65, 3.37, and
2.19 mm hr’', respectively. Among them, the accuracy of the Z-bias LGC was superior to the
others. In RMSE, the accuracy of rainfall amounts of the RAR system was improved by about
7.4% (from 7.21 to 6.68 mm hr™") in the Z-bias MFBC and 63.7% (from 7.21 to 2.62 mm hr
" in the Z-bias LGC. In correlation coefficient, the accuracy of the RAR system was also
improved by about 10.7% (from 0.84 to 0.93) in Z-bias. MFBC and 11.7% (from 084 to 0.94)
in Z-bias LGC. It is proved that the accuracy of rainfall estimates in the RAR system was
improved by the Z-bias with rainfall-bias correction methods more than only the Z-bias.
Especially, among the rainfall-bias correction methods, the Z-bias LGC is superior to others.
The reason is that although the same rainfall-bias was applied to the overall application region
in the MFBC method, the different rainfall biases were applied to each rainfall amount by

radar pixel in the LGC method. In Table 4(b), although correlation coefficients in the Z-bias
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correction were similar to all rainfall types, typhoon cases had the lowest accuracy in RMSE.
As a result of the Z-bias. MFBC, correlation coefficients in all types were improved when
compared with Z-bias. While the accuracy of the Z-bias. MFBC in RMSE improved over the
Z-bias except for in Changma front cases, results of typhoon cases were inferior to others as
always. Results of the Z-bias LGC showed that the accuracy of rainfall estimates for all types
in RMSE and correlation coefficients was superior to the Z-bias and, especially, outcomes in
typhoon cases were vastly superior to the others. Figure 9 has explained that the RMSEs of
the Z-bias LGC of all cases were outstanding in Figure 9(a) and while correlation coefficients
of the Z-bias MFBC were not much different to the Z-bias LGC on average, only the Z-bias

correction results were generally lower in Figure 9(b).

Figure 10 shows rainfall estimate images of AWS, Z-bias, Z-bias MFBC, and Z-
bias LGC in Case 12 (at 1500 LST on 10 August in 2012) and Case 18 (at 1100 LST on 30
August in 2012). In Figure 10(a) in Case 12, the maximum rainfall amount in AWSs was 48.0
mm/hr and the black arrows indicate the strongest rainfall fields. Figure 10(b) shows that
since the displayed rainfall regions were similar to AWSs, rainfall amounts were
underestimated in the whole area. As an image of the Z-bias MFBC in Figure 10(c), rainfall
amounts in a black circle were closer to AWSs than Figure 10(b). Especially, the image of the
Z-bias LGC is similar to AWSs and rainfall estimates which ranged from 40 to 50 mm/hr in
the regions, indicated by black arrows in a black circle were similar to AWSs. In Figure 11(a)
in Case 18, the maximum rainfall amount in AWSs was 54.0 mm hr! and the rainfall fields
indicated by black arrows were stronger than the others. Particularly, the rainfall zones (the

black dash line) from the southwest to the northeast occurred due to the direct effects of the
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typhoon Tembin along its track (the purple line). Figure 11(b) shows rainfall amounts in only
the Z-bias were much underestimated in whole area. By contrast, in Figure 11(c) for the Z-

bias MFBC, the maximum rainfall estimates in a region @ which was located in the
southeast of the Tembin and in rainfall zones from the southwest to the northeast (region ()
were much improved. However, rainfall estimates in region @) were a little underestimated
and the region (b had slightly strong rainfall amounts. In Figure 11(d), since rainfall estimates
in region (©) were stronger than for region @ and the region (d had lighter rainfall amounts
than the region (b), an image of rainfall estimates in the Z-bias LGC was coterminous with

AWSs. It is proved that the accuracy of the rainfall estimates in the RAR system with the
rainfall-bias correction is improved compare to using only the Z-bias correction. Especially,

the Z-bias LGC is superior to the others.

[Table 4. Application results of the QPE Model Bias Correction methods]

[Figure 9. Comparison of the rainfall estimation accuracy for each rainfall in the Z-bias, Z-

bias. MFBC, and Z-bias LGC methods: (a) RMSE; (b) correlation coefficient]

[Figure 10. Comparison of the rainfall images between the AWS and Model Bias Correction
method results in Case 12 (at 1500 LST on 10 August in 2012): (a) the AWS; (b) the OBC

method; (c) the OBC_MFBC method; (d) the OBC LGC method]
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[Figure 11. Comparison of the rainfall images between the AWS and Model Bias Correction
method results in Case 18 (at 1100 LST on 30 August in 2012): (a) the AWS; (b) the OBC

method; (c) the OBC_MFBC method; (d) the OBC_LGC method]

4. CONCLUSIONS

This paper focuses on correcting the reflectivity measurement bias (Z-bias) which includes
temporal and spatial sampling bias, ground and sea clutter, beam-blockage and attenuation,
electrical calibration, and quantification of reflectivity bias and the QPE model bias (rainfall-
bias) which includes bias due to the parameters of Z-R relationship, parameters of the QPE
model, and the QPE model structure to improve radar rainfall estimates. The reference radar,
Bislsan S-band dual-polarimetric radar, which was self-calibrated with the self-consistency
constraint method using the relationship between Z and Kpp was utilized to calculate the Z-
biases of all target radar sites and Z-biases were applied to the QPE model, RAR system. The
MFBC and LGC methods which correct rainfall-biases have also been applied to the RAR

system to improve the accuracy of radar rainfall estimates.

As a result of the Z-bias correction in 18 summer season cases, the accuracy of rainfall
estimates improved in the RMSE and correlation coefficient which ranged from 7.37 mm hr’
'and 0.83 and 7.21 mm hr' and 0.84 on average, respectively and, for rainfall types, the
accuracy of rainfall estimates in Changma front and local torrential cases was slightly
improved or similar to results without the application of Z-bias. Especially, the accuracy of

typhoon cases was worse than existing results (from 9.08 to 11.04 mm hr™"). The reason is that
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the application of Z-biases to each radar site in the RAR system has increased the rainfall
estimates for the whole country. The accuracy of Changma front cases, which occur
nationwide, was improved. However, because cases of torrential rainfalls and typhoon have
occurred locally, the accuracy of these cases was worsened. In comparison with rainfall
images, rainfall estimates with the Z-bias correction have been established to be stronger to

existing image.

Since the rainfall estimates in the RAR system has been improved by the Z-bias correction,
the QPE model bias (rainfall-bias) correction was conducted after the Z-bias correction. For
results of the rainfall-bias correction methods, the accuracy of rainfall estimates with the Z-
bias. MFBC was improved by about 7.4% in RMSE and 10.7% in correlation coefficient in
comparison with only the Z-bias, respectively, and the accuracy of the Z-bias LGC was
especially superior to the others (63.7% in RMSE and 11.7% in correlation coefficient). The
reason is that although the same rainfall-bias was applied to the all over area in the MFBC
method, the different rainfall biases were applied to each rainfall amount by radar pixel in the
LGC method. For rainfall types, results of the Z-bias LGC showed that the accuracy of
rainfall estimates for all types in RMSE and correlation coefficient was much improved over
only the Z-bias and, especially, outcomes in typhoon cases were vastly superior to the others.
In comparison of rainfall images, rainfall estimates with the Z-bias LGC were determined to

closer to AWSs in the cases of Changma fronts and the typhoon, Tembin.

Therefore, in this paper, it is proved that the accuracy of the rainfall estimates in the RAR

system, to which the Z-bias correction and rainfall-bias correction method (MFBC and LGC)
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were applied, has been improved. These bias correction methods proposed by this paper are
able to contribute to the real-time QPE model, the RAR system, in work-site operation and
to fundamental bias correction research. However, this paper has dealt with the bias
corrections in a few parts in a series of a procedure. Since radar rainfall estimates are still
based on a series of assumptions, more research on numerous systematic biases, also
including natural biases, should be undertaken the performance of the calculation of radar-

based rainfall estimates.
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Fig. 10. Comparison of the rainfall images between the AWS and Model Bias Correction
method results in Case 12 (at 1500 LST on 10 August in 2012): (a) the AWS; (b) the
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Table 1. Summary of the Radars and Rainfall Cases

(a) Summary of the radars and rainfall data used for calculating observational biases

Items

Details

Reference radar

Bislsan S-band dual-polarization radar

(Maximum observation range: 150 km; Gate size: 0.125 km; Elevation: 6

angles; Update: every 2.5 minute interval)

Target radar

11 single-polarization radars operated by the Korea Meteorological

Administration:

Baegnyeondo (BRI, S-band), Kwanaksan (KWK, S-band), Oseonsan

(KSN, S-band), Jindo (JNI, S-band), Gosan (GSN, S-band), Seongsan
(SSP, S-band), Gudeoksan (PSN, S-band), Myeonbongsan (MYN, C-
band), Gangneung (GNG, S-band), Gwnagdeoksan (GDK, S-band),

Incheon (ITA, C-band)

Calibration data

Rainfall cases from 1 June to 31 Augustin 2012
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(b) Rainfall cases used for verification of the observational and model bias correction

Items Period (LST) Sources

Case 1 20120608 0600 - 20120608 1900 Local torrential rainfalls
Case 2 20120615 0500 - 20120616 0400 Changma front
Case 3 20120618 0000 - 20120619 1300 Changma front
Case 4 20120623 1300 - 20120624 1900 Local torrential rainfalls
Case 5 20120629 0800 - 20120701 0100 Changma front
Case 6 20120705 0400 - 20120707 0200 Changma front
Case 7 20120710 1000 - 20120711 1900 Changma front
Case 8 20120712 2330 - 20120713 0730 Changma front
Case 9 20120714 0800 - 20120715 1500 Changma front
Case 10 20120716 2300 - 20120717 2200 Changma front
Case 11 20120718 1400 - 20120719 1300 Typhoon
Case 12 20120810 0300 - 20120810 2200 Local torrential rainfalls
Case 13 20120812 0500 - 20120813 1500 Local torrential rainfalls
Case 14 20120814 1700 - 20120816 2300 Local torrential rainfalls
Case 15 20120819 1600 - 20120822 2100 Local torrential rainfalls
Case 16 20120822 2200 - 20120825 1100 Local torrential rainfalls
Case 17 20120827 1300 - 20120828 1800 Chan%ryr;fhggﬁt and
Case 18 20120829 1500 - 20120830 2300 Typhoon
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1  Table 2. Radar pairs for estimating the Z-bias of each radar site

Reference radar

Target radar

Reference radar

Target radar

BSL

KSN

JNI

KWK

KSN, PSN, MYN

JNI

GSN, SSP

A

ITA

KSN

KWK

GDK

BRI

KWK

GDK

GNG

10

11
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1  Table 3. Reflectivity bias for each radar site

Radar site Reflectivity bias (dB) Radar site Reflectivity bias (dB)

BRI -7.87* INI -1.16

GDK -4.29 KSN -4.87

GSN -3.99 KWK -5.15

GNG -4.77 MYN -5.63

A -5.19 PSN -2.28

SSp -4.50
2 * Average reflectivity bias during the calibration period

3
4
5
6
7
8
9
10
11
12
13
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1  Table 4. Application results of the QPE Model Bias Correction methods

2 (a) Total average
Method MAE (mm hr'") RMSE (mm hr'") Correlation coefficient
Z-bias 3.65 7.21 0.84
Z-bias MFBC 3.37 6.68 (7.4%) 0.93 (10.7%)
Z-bias LGC 2.19 2.62 (63.7%) 0.94 (11.7%)
3 *represents the change ratio related to the OBC method in RMSE and correlation coefficient
4
5 (b) Average for each rainfall type
Method Types Averaged ; Ayeraged .
RMSE (mm hr™) correlation coefficient
Changma front 5.64 0.87
Z-bias Local torrential rainfall 7.36 0.81
Typhoon 11.04 0.83
Changma front 5.75 0.93
Z-bias MFBC Local torrential rainfall 6.74 0.95
Typhoon 9.00 0.86
Changma front 2.49 0.95
Z-bias LGC Local torrential rainfall 2.69 0.94
Typhoon 2.81 0.93
6
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Fig. 3. Example for the procedure of the self-consistency constraint: Calculation of tan 6
using equation (3)

40



w N

10

11

Reflectivity

FEriap area

\ 3 | the target radars2
; A
] o
Skm =
A~

2| the target radar#1l

b
Absolute corrected

Reflectivity overlap area
between the reference radar

reference radar and target radar

Fig. 4. The concept of calculating Z-bias for the target radar according to the reference radar
reflectivity (Korea Meteorological Administration, 2011)

41



N

| QPE model output

v

| Field of 2-dimentional radar rainrate

W

Local Gauge Correction method

Generation of error using IDW

w[.=af><ib; ifd <D
i —

R;ngfwfwaf 0 ; ifd >D
i=1

= i
a =" exp —d} (D /2)*]

ii’l :ﬂ.::j':)sn

Quality Control

number Y number of N
of AWS=000%% » wrong AWS ratio
=7%
N Y

Statistical verification of LGC radar rainrate

v

‘ END ‘

Fig. 5. Flowchart of the Local Gauge Correction method

42



Fig. 6. Sequence of the reflectivity bias estimation for each radar site
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