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Abstract 1 

          Using NOAA's Gridpoint Statistical Interpolation (GSI) data assimilation system and 2 

NCAR’s Advanced Research WRF (ARW-WRF) regional model, six experiments are designed 3 

by (1) control experiment (CTRL) and five data assimilation (DA) experiments with different 4 

data sets including (2) conventional data only (CON), (3) microwave data (AMSU-A + MHS) 5 

only (MW), (4) infrared data (IASI) only (IR), (5) a combination of microwave and infrared data 6 

(MWIR), and (6) a combination of conventional, microwave and infrared observation data 7 

(ALL). One month experiments in July 2012 and the impacts of data assimilation on temperature 8 

and moisture forecasts at the surface and four vertical layers, over the western United States have 9 

been investigated.  The four layers include lower troposphere (LT) from 800 to 1000 hPa, middle 10 

troposphere (MT) from 400 to 800 hPa, upper troposphere (UT) from 200 to 400 hPa and lower 11 

stratosphere (LS) from 50 to 200 hPa. The results show that the regional GSI/WRF system is 12 

underestimating the observed temperature in the LT and overestimating in the UT and LS. The 13 

MW DA reduced the forecast bias from the MT to the LS within 30-hour forecasts, and the CON 14 

DA kept a smaller forecast bias in the LT for 2-day forecasts. The largest RMS error is observed 15 

in the LT and at the surface (SFC). Compared to the CTRL, the MW DA made the most positive 16 

contribution in the UT and LS, and the CON DA mainly improved the temperature forecasts at 17 

the SFC. However, the IR DA made a negative contribution in the LT.  18 

   Most of the observed humidity in the different vertical layers is overestimated in the 19 

humidity forecasts except in the UT. The smallest bias in the humidity forecast occurred at the 20 

SFC and UT. The DA experiments apparently reduced the bias from the LT to UT, especially for 21 

the IR DA experiment, but the RMS errors are not reduced in the humidity forecasts. Compared 22 

to the CTRL, the IR DA experiment has a larger RMS error in the moisture forecast although the 23 



 3 

smallest bias is found in the LT and MT. 1 
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1. Introduction 1 

         Instead of the random distribution and heterogeneous spatial density in the traditional 2 

conventional radiosondes, satellite observations provide a large amount of data covering 3 

worldwide areas for improving the initialization of the weather forecasts models through a data 4 

assimilation system. Many studies demonstrated that the assimilation of satellite data 5 

significantly improved weather forecasts (Eyre 1992; Andersson et al. 1991; Derber and Wu 6 

1998; Zhou et al. 2011), especially over some areas with sparse conventional observations 7 

(McNally et al. 2000; Zapotocny et al. 2008; Liu et al., 2012) 8 

The Meteorological Operational satellite program (MetOp) launched its first polar orbiting 9 

satellite (MetOp-A) on October 19, 2006. MetOp-A is in a sun-synchronous orbit, carrying a 10 

payload of 10 scientific instruments including the Advanced Microwave Sounding Unit-A 11 

(AMSU-A), Microwave Humidity Sounder (MHS) and the new generation Infrared Atmospheric 12 

Sounding Interferometer (IASI) to make atmospheric soundings at various altitudes. IASI 13 

(Collard 2007; Clerbaux, et al. 2009) measures the radiance emitted from the Earth in 8461 14 

channels covering the spectral interval 645-2760 cm-1 at a resolution of 0.5 cm-1 (apodized) and 15 

with a spatial sampling of 18 km at nadir. Limited spectral data is currently transmitted, stored 16 

and assimilated. Rabier et al. (2002) compared a number of techniques for channel selection 17 

from high-spectral-resolution infrared sounders, and concluded that the channel-selection method 18 

of Rodgers (1996, 2000) is the optimal method.  19 

This study focuses on assessing the effects of AMSU-A, MHS and IASI data assimilation 20 

on numerical weather forecasts over the western United States. The model, data and 21 

methodology are presented in the section 2 and section 3, respectively. Section 4 describes the 22 

results of experiments. The results are summarized and discussed in section 5.  23 
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2.  Model  1 

2.1 The GSI system for ARW-WRF Regional Model 2 

        The assimilation system used here is the Gridpoint Statistical Interpolation (GSI) analysis 3 

system, which is developed by United States National Centers for Environmental Prediction 4 

(NCEP). The current GSI regional analysis system accepts NCEP’s Nonhydrostatic Mesoscale 5 

Model (NMM) WRF and NCAR’s Advanced Research WRF (ARW) WRF mass core (Liu and 6 

Weng, 2006; Xu and Powell, 2011; Wan and Xu, 2011). The interfaces are specialized separately 7 

for the WRF NMM core and the WRF ARW core. The analysis system produces an analysis 8 

through the minimization of an objective function given by  9 
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2
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where x  is the analysis state, B  is the background error covariance matrix, bx  is the first guess 11 

that comes from GFS 6-h forecast field in this study, H is the transformation operator from the 12 

analysis variable to the form of the observations, oy  is the observation such as AMSU-A, MHS, 13 

IASI, etc. 14 

   The minimization algorithm is composed of two outer iterations to account for weak 15 

nonlinearities in the cost function. In the first external iteration the first guess is a 6-h forecast, 16 

while in the second one it is the solution from the previous outer iteration. In the cost function 17 

based on the NMC method (Parrish and Derber, 1992),  B  has been estimated from scaled 18 

differences between 24-h and 48-h forecasts valid at the same time. The observation error 19 

covariance matrix ( R ) contains information on the observational error and errors in 20 

representativeness, which has been calculated before running the GSI.  21 

2.2 Radiative Transfer Model 22 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCAQFjAA&url=http%3A%2F%2Fwww.ncep.noaa.gov%2F&ei=jK7LVLSTEJfIsASVhoKYCQ&usg=AFQjCNEDqGCbtztoM7oJ92217DcF8bz9pw
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         The radiative transfer model incorporated into the GSI data assimilation system at the 1 

NCEP is the Community Radiative Transfer Model (CRTM). The CRTM was developed by the 2 

United States Joint Center for Satellite Data Assimilation (JCSDA) for rapid calculations of 3 

satellite radiances based on radiative transfer (RT) theory (Han, et al. 2006). The forward model, 4 

tangent-linear, adjoint and K-matrix models were also developed for the data assimilation of 5 

satellite data: CRTM is always updated for new satellite data. It supports a large number of 6 

sensors onboard geostationary and polar-orbiting satellites, covering the microwave, infrared and 7 

visible frequency regions.  8 

 The CRTM comprises four major modules: (1) RT solution module, (2) atmospheric 9 

transmittance module, (3) surface emissivity/reflectivity module, (4) particle scattering module. 10 

Six RT solution schemes were tested in the CRTM (Weng et al., 2007). According to several 11 

performance factors, the advance doubling and adding scheme (ADA; Liu and Weng, 2006) was 12 

selected for the CRTM implementation. In CRTM, a fast and optimal spectral sampling (OSS) 13 

absorption model (Moncet et al. 2004) is used to calculate atmospheric transmittance.  14 

2.3 Experiment Design  15 

         The objective of this study is to explore the effect of satellite data assimilation on the main 16 

atmospheric state forecast by comparing the results from microwave (AMSU-A and MHS), 17 

hyperspectral infrared radiance (IASI) and conventional data assimilation. Over the main 18 

continent of United States of America (USA), there are many conventional observation stations 19 

which can be used to validate the forecast results. Therefore, the western coast region of the USA 20 

is selected as the experimental region. There were more satellite data coverage of the 21 

experimental region around 18 UTC than other time, such as  00, 06, 12 and 18 UTC. The 22 

covered region at 18 UTC is 20º - 55ºN and 85º - 155ºW, which includes the western USA and 23 
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sea area near the west coast (Figure 1). 1 

         The experiment design includes six simulations (Table 1). The control (CTRL) experiment 2 

is first made with an initial time at 18:00 UTC from 30 June to 30 July and makes 6-h forecasts. 3 

The five data assimilation (DA) experiments and the continued control experiment are made with 4 

initial time at 00:00 UTC from July 1 to 31, 2012 and make a 72-h forecast for each day. The 5 

initial condition in all six experiments is obtained from the 6-h forecasts of the first control 6 

experiment. The five DA experiments are made with different data sets including conventional 7 

data (CON), microwave data (AMSU-A + MHS) (MW), infrared data (IASI) (IR), a combination 8 

of microwave and infrared data (MWIR), a combination of conventional, microwave and 9 

infrared observation data (ALL). The initial conditions and lateral boundary conditions came 10 

from the operational GFS forecast at 6-h intervals and 0.5 x 0.5 degree resolution, which were 11 

downloaded from NCEP data inventory (ftp://ftp.ncep.noaa.gov/pub/data/ nccf/com/gfs/prod/).  12 

  In the ARW model, the physics of the model includes the Goddard Cumulus Ensemble 13 

(GCE) microphysics scheme, Yonsei University planetary boundary layer (PBL) scheme, Noah 14 

land surface model, Rapid Radiative Transfer Model (RRTM) longwave radiation, and the 15 

Goddard shortwave radiation scheme (Xu et al., 2009). The 15-km WRF model forecast with a 16 

mesh size domain of 718 X 373 (Fig.1) was used. Forty-three (43) vertical layers were selected 17 

for use with a model top of 10 hPa. 18 

3. Data and Methodology 19 

3.1  Conventional and Satellite data 20 

         In this study, the conventional observation data includes atmospheric temperature (T), 21 

moisture (Q) and wind speed (WSP) at various pressure levels and pressure data at the surface 22 

that were downloaded from NCEP data inventory (ftp://ftp.ncep.noaa.gov/pub/data/ 23 

ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/
ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/
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nccf/com/gfs/prod/). Figure 1a shows the distribution of the conventional data on July 1, 2012 1 

where the atmospheric temperature, moisture and surface pressure observations are rare. Most of 2 

atmospheric temperature and moisture observations are conducted at the surface level in the 3 

pressure range of 1000-1200 hPa.  Most of the WSP data are found over the sea close to the 4 

western coast of the United States.  5 

        The satellite data includes the Advanced Microwave Sounding Unit-A (AMSU-A), 6 

Microwave Humidity Sounder (MHS) and the new generation Infrared Atmospheric Sounding 7 

Interferometer (IASI). Figure 1b shows the distribution of the AMSU-A, MHS and IASI datasets 8 

acquired about at 18:00 UTC on July 1, 2012. AMSU-A is a 15-channel cross-track, stepped-line 9 

scanning, total power microwave radiometer. In this study the channels from 4 to 14 are 10 

assimilated, which were designed to detect atmospheric temperature at 11 layers from the surface 11 

to around 45 km. Their weighting function is illustrated in Figure 2a. MHS on the other hand 12 

probes at millimetric frequencies between 89 and 183 GHz, the channels from 2 to 5 are 13 

assimilated, which were designed to detect atmospheric moisture at 2 layers from surface to 14 

around 400 hPa. Their weighting function is illustrated in Figure 2b. Channel 4 of AMSU-A and 15 

channel 2 of MHS can detect the atmospheric temperature and humidity at the lowest layer of the 16 

troposphere. Channels 5 and 6 of AMSU-A and channels 3, 4 and 5 of MHS can represent the 17 

atmospheric temperature and humidity in the middle atmospheric layer of the troposphere. 18 

Channel 7 of AMSU-A can indicate the atmospheric temperature in the  highest layer of 19 

troposphere. Channels 9 and 10 of AMSU-A can detect the atmospheric temperature in  lower 20 

layer of the stratosphere  21 

          The IASI instrument covers the spectral range from the thermal infrared at 3.62 µm (2760 22 

cm-¹) to 15.5 µm (645 cm-¹) covering the peak of the thermal infrared and particularly the CO2 23 
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band with the humidity (Q) branch around 666 cm-¹. Within these bands, the selected 279 bands 1 

(Table 2) correspond to atmospheric temperature and humidity. A band number smaller than 515 2 

represents atmospheric temperature and a band number larger than 2701 represents atmospheric 3 

humidity. Their weighting function is illustrated in Figure 2c. 4 

3.2 Radiance data quality control and bias correction 5 

        The radiance data have been preprocessed by NOAA's Satellite and Information Service 6 

(NESDIS) before becoming available for usage. The data have been statistically limb corrected 7 

(adjusted to nadir) and surface emissivity corrected in the microwave channels and cloud cleared 8 

in the tropospheric channels. Although the satellite data have undergone preprocessing, they 9 

need further bias correction before being ingested into data assimilation system. The source of 10 

the biases can be related to instrument calibration problems, and predictor and zenith angle bias. 11 

It was demonstrated that a successful bias correction scheme must take into account the spatially 12 

varying and air-mass dependent nature of radiance biases (Kelly and Flobert, 1988; McMillin et 13 

al., 1989; Uddstrom, 1991). Eyre (1992) and Harris and Kelly (2001) categorized the bias into 14 

two types: scan bias and air-mass bias, and presented a bias correction scheme. GSI uses this bias 15 

correction scheme to correct radiance bias. The radiance bias correction coefficients maybe 16 

downloaded from Global Data Assimilation System (GDAS) data 17 

directory(ftp://ftp.ncep.noaa.gov/pub/data/ nccf/com/gfs/prod/), and it can be used to correct the 18 

radiance bias in GSI. To that purpose,  monthly regional meaninnovations, e.g. observation 19 

minus background (OMB) and observation minus analysis (OMA), are calculated with or 20 

without bias corrections in this study. For example, Fig. 3 shows the scattering plots of surface 21 

pressure (Fig. 3a), atmospheric temperature at the height of 2m (Fig. 3b) and wind speed at the 22 

height of 10m (Fig. 3c) between OMB and OMA in the ALL data experiment. The result shows 23 

ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/
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that the slope of the simulated line is less than 1, which indicates the analysis fields are closer to 1 

observation than background fields.   2 

3.3 Methodology  3 

          In order to evaluate the effects of radiance data assimilation on temperature and moisture 4 

at the different vertical layers, the surface (SFC) and four atmospheric layers are examined. The 5 

four layers include lower troposphere (LT) from 800 to 1000 hPa, middle troposphere (MT) from 6 

400 to 800 hPa, upper troposphere (UT) from 200 to 400 hPa and lower stratosphere (LS) from 7 

50 to 200 hPa. Similar to a previous study (Xu, et al., 2009), two statistical variables - bias  and 8 

root mean square (RMS) errors  are investigated.  9 

        If X represents any of the parameters under consideration for a given time and vertical level, 10 

then the forecast error is defined as X´ = Xf –Xo where the subscripts f and o denote forecast and 11 

observed quantities, respectively. Given N valid pairs of forecasts and observations, the bias is 12 

computed as  13 

∑
=

==
N

i
iX

N
Xbias

1

'' 1                                                     (1) 14 

the root mean-square (RMS) error is computed as  15 

∑
=

=
N

i
iX

N
RMS

1

2' )(1                                                     (2)             16 

The bias and RMS error at 00:00 and 12:00 UTC are calculated because more than enough 17 

observational data and approximately 3000 sounding stations can be used at the two times.  18 

4. Results  19 

4.1 Impact of DA on temperature  20 

At the SFC, the CON (conventional data only) DA experiment shows (Fig.4a) the smallest 21 

bias value in all six experiments. The three involving infrared satellite DA experiments (IR, 22 
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IR+MW, IR+MW+CON) show a larger bias than the CTRL experiment. For the first 24 hours, it 1 

seems that satellite radiance DA, especially for the infrared IASI data, make a negative 2 

contribution to the temperature forecasts.  In addition, the bias characterized a diurnal cycle 3 

feature for the 72-h forecasts, with the smaller bias appearing at 06, 30, 54 and 72-h 4 

corresponding to a local time at 4:00 pm while the higher bias appeared at 18, 42 and 66-h 5 

corresponding to 4:00 am local time.   6 

Compared to the SFC, the LT shows a more clear diurnal variation (Fig. 4b), and all model 7 

forecasts underestimated the observed temperature. The CTRL and CON experiments obtained 8 

the smallest forecast bias.  9 

Different from the SFC and LT, the diurnal variation of bias disappeared in the MT (Fig. 10 

4c). Compared to the CTRL experiment, the bias is significantly reduced in all DA experiments 11 

especially for the two combination experiment (MWRI and ALL), the bias is almost zero within 12 

the 30-h forecast. It implies that both MW (AMUS-A and MHS) and IR (IASI) DA give a 13 

positive contribution to the accuracy of temperature forecasts at the MT.    14 

        At the UT, the smaller bias appeared in the CON and MW DA experiments (Fig. 4d), and 15 

the combination DA experiments (MWIR and ALL) show a larger bias than the CTRL 16 

experiment. The results indicate that the IR DA gave a negative contribution to the temperature 17 

forecasts and the MW experiment improved the forecast accuracy in the UT. 18 

 In contrast, the bias in the LS indicates an opposite pattern to the SFC and LT where all 19 

satellite DA experiments reduced the forecast bias (Fig. 4e). The result demonstrated that the 20 

conventional DA did not improve the forecasts because of the sparse observational data used in 21 

this layer. The MW DA obtained the smallest bias in the LS.      22 

       In order to clearly understand the different performance in the six experiments, the 23 
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temperature forecast bias profile at 6-h, 30-h and 54-h has been examined. Fig. 5 indicates a 1 

similar pattern at the three forecast times where the lower bias can be found at the SFC and MT 2 

while the larger bias appeared at the UT and LS. Generally, the model forecasts overestimated 3 

the observed temperature except in the LT. Compared to the CTRL experiment, the four satellite 4 

DA experiments (MW, IR, MWIR and ALL) show a smaller bias from the MT through LS, but 5 

the forecasts did not get improved in the LT below 800 hPa. In contrast, the CON experiment has 6 

better performance in the LT, especially at the SFC.   7 

It is obvious that the larger bias in temperature forecast appeared in the LT, UT and LS, but 8 

the model is underestimating the observed temperature in the LT and overestimating in the UT 9 

and LS (Fig. 5).  The satellite DA, especially for the MW DA experiment using AMSU-A, 10 

reduced the forecast bias at the levels from the MT to LS.  Meanwhile, the CON DA has a 11 

smaller forecast bias in the LT, especially at the SFC. Note the IR experiment using the IASI 12 

data produced  a worst result in the LT.  13 

     The forecast RMS error demonstrated some different features (Fig. 6). First, the RMS error 14 

reduced the diurnal variation and it significantly increased with the extended length of forecast 15 

time at the SFC.  The RMS error in the CON and MW experiments is slightly less than that in 16 

the CTRL experiment and the other three satellite DA experiments within 24-h forecasts (Fig. 17 

6a). Second, consistent with the larger negative bias in all the satellite DA experiments (Fig. 4b) 18 

in the LT, larger RMS errors are observed in these DA experiments (Fig. 6b) compared to the 19 

CRTL. Third, different from the smaller bias in the DA experiments, the larger RMS errors are 20 

maintained in the DA experiments in the MT (Fig. 6c). Fourth, the CON and MW experiments 21 

improved the temperature forecasts in the UT (Fig. 6d). But in the LS, the microwave DA 22 

experiments including MW, MWIR and ALL indicate smaller RMS errors than the CTRL 23 
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experiments (Fig. 6e). It is apparent that the CON DA gave a negative contribution to the 1 

temperature forecast in the LS.  2 

       Corresponding to the bias profile (Fig. 5), the forecast RMS error profile at 6-h, 30-h and 3 

54-h indicates (Fig. 7) that the smallest RMS error is observed at the MT and the largest RMS 4 

error appeared in the LT and SFC. Compared to the CTRL experiment, the smaller RMS errors 5 

are only found in the MW experiment in the UT and LS, and the CON DA made a positive 6 

contribution at the SFC and UT. 7 

      The results clearly show the IR DA experiment gives a negative contribution to the 8 

temperature forecast in the regional system. But the MW DA experiment shows a positive 9 

impact at the LS, and the CON experiment displays better performance at the SFC and UT.  It is 10 

worth noticing that the RMS error is not always consistent with the bias in the temperature 11 

forecasts, for example, the smaller bias appeared at the SFC while a larger RMS error is 12 

observed there.  13 

4.2 Impact of DA on humidity 14 

Similar to the temperature forecasts at the SFC, the diurnal variation of the moisture bias is 15 

observed and the smallest bias appeared in the CON and CTRL experiments within the 42-h 16 

forecast (Fig. 8a) with largest bias occurring in the MWIR experiment at 18-h. It is clear that all  17 

four satellite DA experiments do not improve the moisture forecast compared to the CTRL 18 

experiment. In contrast, the IR DA produced a larger bias significantly different from the other 19 

experiments in the entire troposphere (Fig. 8b,c,d).  It seems to tell us that the IR DA 20 

significantly impacts the humidity forecasts in the troposphere. However, the impacts 21 

disappeared in the LS (Fig. 8e).  22 

Compared to the bias profile of the temperature forecast (Fig 4), all model runs 23 
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overestimated the observed humidity except for the UT. The smallest bias in the humidity 1 

forecast occurred at the SFC and UT (Fig. 9). Most of DA experiments apparently reduced the 2 

bias from LT to UT, especially for the IR experiment.  But it is worth noting that the MW DA 3 

has a larger bias than the CTRL experiment in the whole troposphere.       4 

        However, the RMS error in the humidity forecasts (Fig. 10) increases from the SFC to LS. 5 

The largest error in the UT and LS is almost double the amount at the SFC. In addition, most of 6 

DA experiments demonstrated a larger RMS error than that in the CTRL experiment. In other 7 

words, the DA experiments gave a negative contribution to the humidity forecasts. The IR DA 8 

experiment did not improve moisture forecast although its bias is very small at the LT and MT. 9 

5. Summary and Discussion 10 

5.1 Summary         11 

           In this study, six experiments were designed to assess the effects of data assimilation on 12 

atmospheric temperature and moisture forecasts over the western United States. The results are 13 

summarized as follows.  14 

           The regional model underestimates the observed temperature in the LT and overestimates 15 

it in the UT and LS. The MW experiment reduced the forecast bias from the MT to LS, and the 16 

CON DA obtained a smaller forecast bias in the LT, especially at the SFC. But the IR 17 

experiment using the IASI data obtained the largest bias in the LT.    18 

       However, the RMS error is not always consistent with the bias profile in the temperature 19 

forecasts: in fact, the RMS error profile shows that the largest RMS error appeared in the LT and 20 

the smallest error in the MT. Compared to the CTRL experiment, the smaller RMS errors are 21 

only found in the MW experiment in the UT and LS, and the CON DA gave a positive 22 

contribution at the SFC and in the UT. The IASI DA experiment has a negative impact on the 23 
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temperature forecast in the regional forecast system.  1 

In contrast, all model forecasts overestimated the observed humidity except in the UT. The 2 

smallest bias in the humidity forecast occurred at the SFC and in the UT. Most of DA 3 

experiments apparently reduced the bias in the LT to UT, especially for the IR DA experiment.  4 

But the MW DA obtained a larger bias than the CTRL experiment in the  entire  troposphere.       5 

        The RMS error in the humidity forecasts increases from the SFC to the LS, which is similar 6 

to the bias profile except in the UT. The largest error in the UT and LS is almost double the 7 

amount at the SFC. The DA experiments give a limited contribution to the humidity forecasts. 8 

The IR DA experiment does not improve the moisture forecast although its smallest bias is found 9 

in the LT and MT. 10 

5.2  Discussion 11 

In this is study,  the WRF-ARW mesoscale model was linked to GSI data assimilation 12 

system,  the impacts of AMSU-A/MHS and IASI radiance data assimilation on the temperature 13 

and humidity forecasts have been investigated. Due to the complexity of measurements for 14 

satellite instruments (such as IASI has 8461 channels) and lack of knowledge in the estimation of 15 

impacts of those datasets in this regional area, forecasters should be aware of the limitations of 16 

these data assimilation. 17 

The results show that the bias and forecast error is substantially related to the vertical 18 

layer of the objective. For example, the AMSU-A data assimilation reduced the temperature 19 

forecast bias in the upper atmospheric layers, the conventional data assimilation indicates the 20 

best performance in the lower layer, but the IASI data assimilation shows worst performance in 21 

the lower layer. Compared to the largest bias in the upper atmospheric layer, the largest RMS 22 

error appeared in the lower atmospheric layers. For the humidity forecast there is a different 23 
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behavior: the IASI data assimilation significantly reduced the bias in the troposphere, but the 1 

RMS error tells us that the IASI data assimilation does not improve the moisture forecast in this 2 

layer. The reason is very complicated, it is partially attributed to the data selection processes of 3 

the data assimilation.  The results showed in this analysis demonstrate the partial impact of 4 

satellite data on temperature and humidity forecasts in this region, but the positive or negative 5 

impact depends on the atmospheric layer and forecasts variables.   6 

It is worth noting that the results presented here are based on one month's forecasts with 7 

three satellite instruments. The model performance needs to be examined with longer 8 

experiments and more data selection that extend to all available satellite data sets and more 9 

experiments from the different areas. As expressed by Manning and Davis (1997), “These 10 

statistics would provide additional information to model users and alert model developers to 11 

those research areas that need more attention.”  12 
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Table 1  The experiment design includes six simulations (EXP1-EXP6) 12 

 Experiment Description Initial time 
EXP1 CTRL Control experiment without data assimilation 18:00 UTC  
EXP2 CON Conventional data assimilation  00:00 UTC  
EXP3 MW AMSU-A+MHS data assimilation 00:00 UTC  
EXP4 IR IASI data assimilation 00:00 UTC  
EXP5 MWIR 

(MW+IR) 
AMSU-A+MHS+IASI data assimilation  00:00 UTC  

EXP6 ALL 
(CON+MW+IR) 

Conventional+AMSU-A+MHS+IASI data 
assimilation  

00:00 UTC 

 13 

 14 

 15 



 21 

Table2  Listed below are the 279 Channels in IASI corresponding to atmospheric temperature 1 
and humidity.   The numbers indicate the order in which the channels were chosen in current data 2 
assimilation 3 

16 135 226 356 566 1658 2993 3248 3509 5502 
38 138 230 360 571 1671 3002 3252 3518 5507 
49 141 232 366 573 1786 3008 3256 3527 5509 
51 144 236 371 646 1805 3014 3263 3555 5517 
55 146 239 373 662 1884 3027 3281 3575 5558 
57 148 243 375 668 1991 3029 3303 3577 5988 
59 151 246 377 756 2019 3036 3309 3580 5992 
61 154 249 379 867 2094 3047 3312 3582 5994 
63 157 252 381 906 2119 3049 3322 3586 6003 
66 159 254 383 921 2213 3053 3375 3589 

 70 161 260 386 1027 2239 3058 3378 3599 
 72 163 262 389 1046 2271 3064 3411 3653 
 74 167 265 398 1121 2321 3069 3438 3658 
 79 170 267 401 1133 2398 3087 3440 3661 
 81 173 269 404 1191 2701 3093 3442 4032 
 83 176 275 407 1194 2741 3098 3444 5368 
 85 180 282 410 1271 2819 3105 3446 5371 
 87 185 294 414 1479 2889 3107 3448 5379 
 104 187 296 416 1509 2907 3110 3450 5381 
 106 193 299 426 1513 2910 3127 3452 5383 
 109 199 303 428 1521 2919 3136 3454 5397 
 111 205 306 432 1536 2939 3151 3458 5399 
 113 207 323 434 1574 2944 3160 3467 5401 
 116 210 327 439 1579 2948 3165 3476 5403 
 119 212 329 445 1585 2951 3168 3484 5405 
 122 214 335 457 1587 2958 3175 3491 5455 
 125 217 345 515 1626 2977 3178 3497 5480 
 128 219 347 546 1639 2985 3207 3499 5483 
 131 222 350 552 1643 2988 3228 3504 5485 
 133 224 354 559 1652 2991 3244 3506 5492 
  4 

 5 

 6 

 7 

 8 
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  2 

Caption of Figures 3 

Fig. 1 Distribution of  observations. (a) conventional data on July 1, 2012  with the atmospheric 4 

temperature (yellow), moisture (dark blue) and surface pressure(light blue ), wind speed 5 

(orange).   (b) Scan coverage of AMSU-A (light blue), MHS (dark blue) and IASI  (red) 6 

radiance  at 18:00 UTC on July 1, 2012  7 

 Fig. 2 Vertical weighting functions for satellite observations as a function of height. (a) 8 

AMSUA , (b) MHS , (c) IASI   9 

Fig. 3 The scattering plot between observation minus background [OMB] and observation minus  10 

           analysis [OMA] in the all data ( Conventional+AMSU-A+MHS+IASI ) experiement       11 

(a: surface pressure, b: atmospheric temperature at the height of 2 meters,  12 

           c: wind speed at the height of  10 meters) for 1 July 2012  13 

Fig. 4  Bias of the temperature  (T) forecasts at (a) surface (SFC), (b) lower troposphere (LT),  14 

           (c) middle troposphere (MT), (d) upper troposphere  (UT), (e) lower stratosphere (LS).  15 

           Unit: °C.   CTRL , CON , MW, IR, MWIR and ALL are defined in Table 1  16 

Fig. 5  Bias profile of the temperature (T) forecasts at (a) 6-h , (b) 30-h, (c)  54-h forecasts.  17 

           Unit: °C. Other definitions are the same of Fig. 4.  18 

 Fig. 6 RMSE of the temperature (T) forecasts at (a) surface (SFC), (b) lower troposphere (LT),  19 

           (c) middle troposphere (MT), (d) upper troposphere , (e) lower stratosphere. Unit: °C.  20 

Other definitions can be found in Table 1.  21 

Fig. 7  The RMSE profile of the temperature  forecasts at (a) 6-h , (b) 30-h, (c)  54-h forecasts.  22 



 23 

            Unit: °C. Other definitions are the same of Fig. 4. 1 

Fig. 8  The bias of the specific humidity (Q) forecasts at (a) surface (SFC), (b) lower troposphere  2 

             (LT), (c) middle troposphere (MT), (d) upper troposphere , (e) lower stratosphere. Unit:  3 

              g/kg. Other definition can be found in Table 1. 4 

Fig. 9  Bias profile of the specific humidity forecasts at (a) 6-h , (b) 30-h, (c)  54-h forecasts.  5 

             Unit: g/kg. Other definitions are the same of Fig. 4.  6 

Fig. 10  The RMSE profile of the specific humidity  forecasts at (a) 6-h , (b) 30-h, (c)  54-h  7 

             forecasts. Unit: g/kg. Other definitions are the same of Fig. 4. 8 



Fig. 1 Distribution of  observations. (a) conventional data on July 1, 2012  with the atmospheric temperature 
(yellow), moisture (dark blue) and surface pressure(light blue ), wind speed (orange).   (b) Scan coverage of 
AMSU-A (light blue), MHS (dark blue) and IASI  (red) radiance  at 18:00 UTC on July 1, 2012  
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 Fig. 2 Vertical weighting functions for satellite observations as a function of height. (a) AMSUA , (b) MHS , (c) IASI   
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Fig. 3 The scattering plot between observation minus 
background [OMB] and observation minus analysis [OMA] 
in the all data ( Conventional+AMSU-A+MHS+IASI ) 
experiment  (a: surface pressure, b: atmospheric 
temperature at the height of 2 meters, c: wind speed at the 
height of  10 meters) for 1 July 2012 
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Fig. 4  Bias of the temperature  (T) forecasts at (a) surface (SFC), (b) lower 
troposphere (LT), (c) middle troposphere (MT), (d) upper troposphere  
(UT), (e) lower stratosphere (LS). Unit: °C.   CTRL , CON , MW, IR, 
MWIR and ALL are defined in Table 1 
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Fig. 6 RMSE of the temperature (T)  forecasts at (a) surface (SFC), 
(b) lower troposphere (LT), (c) middle troposphere (MT), (d) upper 
troposphere , (e) lower stratosphere. Unit: °C. Other definitions can 
be found in Table 1. 
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Fig. 8  The bias of the specific humidity (Q) forecasts at (a) surface (SFC), 
(b) lower troposphere (LT), (c) middle troposphere (MT), (d) upper 
troposphere , (e) lower stratosphere. Unit: g/kg . Other definitions can be 
found in Table 1. 
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