
Dear reviewer 
    Please check our response to your comments point-by-point. And the changes 
track and revised figure were attached behind. 
    Thanks a lot, 
Jianjun Xu 
  
 

Response to  Referee#2 
General comments  
Although the manuscript addresses relevant scientific questions, the authors not clearly 
indicate their own new/original contribution respect to the mentioned references/studies. 
The novelty against the past should be emerged already in the introduction which is the 
“business card” of the paper. I appreciate the authors effort of adding more literature, but 
It would be useful to describe more in details results and improvements reached in these 
studies (for example pag.6441, lines 5-8) trying to make more rich and robust this part.  
Also the final discussion needs a deep revision focusing the attention on substantial 
conclusions reached and efforts to be done in the future to improve the results.  
Finally, the language is not always fluent and precise. I also suggest that the manuscript is 
read by a native speaker or undergoes professional language editing before being 
published.  
 
Answer: Actually, there is a lot of introduction usin previous studies. For example, 
Derber J. C. and W-S Wu. 1998: The use of TOVS cloud-cleared radiances in the 
NCEP SSI analysis system. Mon. Wea. Rev., 126, 2287–2299. 
In order to avoid duplication, we only simply gave a short summary. Different from 
the previous studies, we focus on the different impacts of hyperspectral infrared and 
microwaves radiance data assimilation on the weather forecasts, especially on the 
different performance of vertical structures.     
 
Specific comments  
Pag. 6442, lines 16-18 >> Try to better explain the usefulness of outer iterations and 
why you choose two and not more outer iterations.  
Answer: The experiment design is based on the suggestion of John Deber's report, 
actually the two outer iterations are used in NOAA operational forecasts, which has 
been verified in the operational forecasts.     
 
Pag. 6444, line 2 >> “with an initial time at 18:00 UTC” >> of which day?  
 
Answer:  The sentence has been changed to “with an initial time at 18:00 UTC of 30 
June to 30 July” 
 
Pag. 6444, line 3 >> which is the second control experiment?  
Answer:  In order to avoid the confusion, We changed the word 'second' to "continued". 



Actually the second control experiment means continuing to the first control experiment 
from 00:00 UTC. The first run initialed from 18:00 UTC and integrated 6 hours. Then the 
continued run from 00:00 UTC.    
Pag. 6444, lines 13-18 >> please add related literature of the physics schemes  
Answer:  Done. 
 
Pag. 6444, lines 21-23 >> please add the source of conventional observations  
Answer: We gve the source of conventional observations in the revised version. 
 
Pag. 6445, lines 5-6 >> please say when these coverage is refer to, as stated in the 
caption of figure 1b  
Answer: We have added the reference times for the radiances in the new version. 
 
Pag. 6447, line 10 >> please change the title in something like “Impact of DA on….”  
Answer: Done. 
 
 
 
Pag. 6450, line 1 >> please change the title in something like “Impact of DA on….”  
Answer: Done. 
 
Pag. 6452, lines 9-10 >> Try to better explain the statement “The reason is very 
complicated, it is partially attributed to the data selection in the processes of the data 
assimilation.”  
Answer: It is partially attributed because IASI data has 8461 channels, but we only 
used 279 channel based on previous studies. Until now, we really don't know what is 
responsible for the different performances since many factors have contributed to the 
overall result. More experiments are necessary as part of our future  study to try and 
understand the contributions from the various factors and components used in the 
analysis.. 
 
Pag. 6452, line 19… >> no next steps for the future?  
Answer: Actually, we plan to examine  longer experiments, using more data 
channels and more satellite sensors as part of future investigations.   
 



Technical corrections  
Pag.6441, line 18 >> highspectralresoluton >> miss the “i”  
Response: Done 
 
Pag.6441, line 20 >> please check “most optimal” in english  
Response: the word most was removed.  
 
Pag. 6442, line 2 >> please write ARW-WRF always in the same way  
Response: Done. 
 
Pag. 6442, line 13 >> “that is from GFS 6h forecast filed in this study” >> that comes 
from GFS 6h forecast for this study  
Response: done. 
 
Pag. 6442,line 19 >> Remove comma after “function,”  
Response: done. 
 
Pag. 6442, line 21 >> “contains”  
Response: done. 
 
Pag. 6443, line 7 >> Put “:” instead of “.” after “satellite data”  
Response: done 
 
Pag. 6443, line 19 >> Remove “through”  
Response: done 
 
Pag. 6443, line 23 >> Substitute “to the” with “as the”  
Response: done 
 
Pag. 6443, lines 25-26 >> “covered more of the region than at other anytime” >> not so 
clear, try to say better in english  
Response: we have revised this sentence to make it clear. 
 
Pag. 6444, lines 78 >> too many repetitions of “only”  
 Response: yes, the only has been deleted 
 
Pag. 6444, line 14 >> “Yosei” >> Yonsei  
Response: done 
 
Pag. 6444, line 18 >> Pa or hPa ?  
Response: done 
 
Pag. 6444, line 25 >> “most of the atmospheric”  
Response: done 



 
Pag. 6445, line 1 >> “the most WSP data” >> most of the WSP data  
Response: done 
 
Pag. 6445, line 7 >> “In this study the channels from 4 to 14 are assimilated…”  
Response: done 
 
Pag. 6445, line 9 >> substitute “by Fig. 2a” with “in Fig. 2a”  
Response: done 
 
Pag. 6445, line 12 >> substitute “by Fig. 2b” with “in Fig. 2b” 
Response: done 
  
Pag. 6445, lines 13-18 >> too many repetitions of “can detect” >> please find 
synonymous  
Response: done 
 
Pag. 6445, line 22 >> remove the first “i” in “huimidity”  
Response: done 
 
Pag. 6445, line 23 >> remove comma before “and”  
Response: done 
 
Pag. 6445, line 25 >> substitute “by Fig. 2c” with “in Fig. 2c”  
Response: done 
 
Pag. 6445, line 27 >> please define the acronym NESDIS  
Response: done 
 
Pag. 6446, line 3 >> “ingested into the data assimilation system”  
Response: done 
 
Pag. 6446, line 8 >> “Previous publications…….” >> this period is not clear  
Response: delete ' Previous publications ' 
 
Pag. 6446, line 11 >> please add a reference for GDAS and define the acronym  
Response: done 
 
Pag. 6446, line 11 >> “ and it can be used to correct….”  
Response: done 
 
Pag. 6446, line 12 >> “To that purpose in this study….”  
Response: done 
 



Pag. 6446, lines 15-16 >> “surface pressure (Fig. 3a), atmospheric temperature at the 
height of 2m (Fig. 3b) and wind speed at the height of 10m (Fig. 3c)”  
Response: done 
 
Pag. 6447, line 6 >> “error” >> “errors”  
Response: done 
 
Pag.6447, line 12 >> “The three involved….”  
Response: done 
 
Pag.6447, line 13 >> “show” instead of “showing”  
Response: done 
 
Pag.6447, line 13 >> “For the first 24 hours it seems that….”  
Response: done 
 
Pag.6448, line 4 >> “within” instead of “with”  
Response: done 
 
Pag.6448, line 5 >> “give” instead of “make”  
Response: done 
 
Pag.6448, line 9 >> “gave” instead of “made”  
Response: done 
 
Pag.6449, line 4 >> “and it” instead of “and the RMS error”  
Response: done 
 
Pag.6449, line 20 >> “gave” instead of “made”  
Response: done 
 
Pag.6449, line 21 >> “gives” instead of “makes”  
Response: done 
 
Pag.6449, line 23 >> “impact” instead of “contribution”  
Response: done 
 
Pag.6450, line 7 >> “different” instead of “differing”  
Response: done 
 
Pag.6450, line 7 >> “in the entire troposphere”  
Response: done 
 
 



Pag.6450, line 18 >> “gave” instead of “made”  
Response: done 
 
Pag.6451, line 6 >> “forecasts: in fact, the RMS error profile…”  
Response: done 
 
Pag.6451, line 9 >> “gave” instead of “made”  
Response: done 
 
Pag.6451, lines 9-10 >> “has a negative impact on the …”  
Response: done 
 
Pag.6451, line 18 >> “give” instead of “make”  
Response: done 
 
Pag.6451, line 22 >> “linked to” instead of “linkage with”  
Response: done 
 
Pag.6451, lines 22-28 >> This period is too long!  
Response: yes, we have changed the sentence 
 
Pag.6452, lines 6-7 >> “For the humidity forecast there is a different behavior: the IASI 
data…”  
Response: done 
 
Pag.6452, line 11 >> “showed” instead of “shown”  
Response: done 
 
Pag.6452, line 11 >> “the partial impact of ” instead of “the some impacts of”  
Response: done 
 
 TABLES & FIGURES  
 It would be useful to add the “initial time” of each experiment of Table 1  
 Caption of figures 57910 >> “Other definitions are the same of Fig.4”  
 Caption of figures 68 >> “Other definitions can be found in Table 1” 
 
Response: yes, please check these Figures and table. 
 
 
 
 
 
 



 1 

Impacts of AMSU-A/MHS and IASI Data Assimilation on 1 

Temperature and Humidity Forecasts with GSI/WRF 2 

 over the Western United States 3 
 4 

YANSONG BAO 5 
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key 6 
Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing 7 

University of Information Science and Technology, Nanjing, China 8 
Environmental Science and Technological Center College of Science, George Mason University, 9 

Fairfax, Virginia, USA 10 
 11 

JIANJUN XU* 12 
Global Environment and Natural Resources Institute  13 

College of Science, George Mason University, Fairfax, Virginia 14 
 15 

ALFRED M. POWELL, JR. 16 
NOAA/NESDIS/STAR, College Park, Maryland 17 

 18 
MIN SHAO  19 

College of Science, George Mason University 20 
 21 

 22 

 23 

June August 1008, 2015 24 
  25 

Revised 26 

Atmospheric Measurement Techniques  27 

 28 
 29 
 30 
 31 
*Corresponding author contact information:   32 

Dr. JIANJUN XU, Global Environment and Natural Resources Institute (GENRI) , 33 
College of Science, George Mason University. Email:  jxu14@gmu.edu 34 

 35 
 36 
 37 

mailto:jxu14@gmu.edu


 2 

Abstract 1 

          Using NOAA's Gridpoint Statistical Interpolation (GSI) data assimilation system and 2 

NCAR’s Advanced Research WRF (ARW-WRF) regional model, six experiments are designed 3 

by (1) control experiment (CTRL) and five data assimilation (DA) experiments with different 4 

data sets including (2) conventional data only (CON), (3) microwave data (AMSU-A + MHS) 5 

only (MW), (4) infrared data (IASI) only (IR), (5) s combination of microwave and infrared data 6 

(MWIR), and (6) a combination of conventional, microwave and infrared observation data 7 

(ALL). One month experiments in July 2012 and the impacts of the DA on temperature and 8 

moisture forecasts at the surface and four vertical layers, which over the western United States 9 

have been investigated.  The four layers include lower troposphere (LT) from 800 to 1000 hPa, 10 

middle troposphere (MT) from 400 to 800 hPa, upper troposphere (UT) from 200 to 400 hPa and 11 

lower stratosphere (LS) from 50 to 200 hPa. The results show that the regional GSI/WRF system 12 

is underestimating the observed temperature in the LT and overestimating in the UT and LS. The 13 

MW DA reduced the forecast bias from the MT to the LS within 30-hour forecasts, and the CON 14 

DA kept a smaller forecast bias in the LT for 2-day forecasts. The largest RMS error is observed 15 

in the LT and at the surface (SFC). Compared to the CTRL, the MW DA made the most positive 16 

contribution in the UT and LS, and the CON DA mainly improved the temperature forecasts at 17 

the SFC. However, the IR DA made a negative contribution in the LT.  18 

   Most of the observed humidity in the different vertical layers is overestimated in the 19 

humidity forecasts except in the UT. The smallest bias in the humidity forecast occurred at the 20 

SFC and UT. The DA experiments apparently reduced the bias from the LT to UT, especially for 21 

the IR DA experiment, but the RMS errors are not reduced in the humidity forecasts. Compared 22 

to the CTRL, the IR DA experiment has a larger RMS error in the moisture forecast although the 23 
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smallest bias is found in the LT and MT. 1 

Key words: Data assimilation, temperature, humidity, forecast 2 
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1. Introduction 1 

         Instead of a the random distribution and heterogeneous spatial density in the traditional 2 

conventional radiosondes, satellite observations provide a large amount of data covering 3 

worldwide areas for improving the initialization of the weather forecasts models through a data 4 

assimilation system. Many studies demonstrated that the assimilation of satellite data 5 

significantly improved weather forecasts (Eyre 1992; Andersson et al. 1991; Derber and Wu 6 

1998; Zhou et al. 2011), especially over some areas with sparse conventional observations 7 

(McNally et al. 2000; Zapotocny et al. 2008; Liu et al., 2012) 8 

The Meteorological Operational satellite program (MetOp) launched its first polar orbiting 9 

satellite (MetOp-A) on October 19, 2006. MetOp-A is in a sun-synchronous orbit, carrying a 10 

payload of 10 scientific instruments including the Advanced Microwave Sounding Unit-A 11 

(AMSU-A), Microwave Humidity Sounder (MHS) and the new generation Infrared Atmospheric 12 

Sounding Interferometer (IASI) to make atmospheric soundings at various altitudes. IASI 13 

(Clerbaux, et al. 2009) measures the radiance emitted from the Earth in 8461 channels covering 14 

the spectral interval 645-2760 cm-1 at a resolution of 0.5 cm-1 (apodized) and with a spatial 15 

sampling of 18 km at nadir. Limited spectral data is currently  transmitted, stored and assimilated. 16 

Rabier et al. (2002) compared a number of techniques for channel selection from high-spectral-17 

resolution infrared sounders, and concluded that the channel-selection method of Rodgers (1996, 18 

2000) is the most optimal method. Collard (2007) applied his method to select a subset of 300 19 

channels for data assimilation, so that the total loss of information for a typical numerical 20 

weather prediction (NWP) state vector consisting of one or more of temperature, humidity is 21 

minimized.  22 

This study focuses on assessing the effects of AMSU-A, MHS and IASI data assimilation 23 
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on numerical weather forecasts over the western United States. The model, data and 1 

methodology are presented in the section 2 and section 3, respectively. Section 4 describes the 2 

results of experiments. The results are summarized and discussed in section 5.  3 

2.  Model  4 

2.1 The GSI system for ARW- WRF Regional Model 5 

        The assimilation system used here is the Gridpoint Statistical Interpolation (GSI) analysis 6 

system, which is developed by United States National Centers for Environmental Prediction 7 

(NCEP). The current GSI regional analysis system accepts NCEP’s Nonhydrostatic Mesoscale 8 

Model (NMM) WRF and NCAR’s Advanced Research WRF (ARW) WRF mass core (Liu and 9 

Weng, 2006; Xu and Powell, 2011; Wan and Xu, 2011). The iInterfaces areis specialized 10 

separately for the WRF NMM core and the WRF ARW core. The analysis system produces an 11 

analysis through the minimization of an objective function given by  12 

 ))(())((
2
1)()(

2
1 11 oTobTb yxHRyxHxxBxxJ −−+−−= −−  13 

Where x  is the analysis state, B  is the background error covariance matrix, bx  is the first guess 14 

that is comes from GFS 6-h forecast field led in this study, H is the transformation operator from 15 

the analysis variable to the form of the observations, oy  is the observation such as AMSU-A, 16 

MHS, IASI, etc. 17 

   The minimization algorithm is composed of two outer iterations to account for weak 18 

nonlinearities in the cost function. In the first external iteration the first guess is a 6-h forecast, 19 

while in the second one it is the solution from the previous outer iteration. In the cost function, 20 

B  has been estimated from scaled differences between 24-h and 48-h forecasts valid at the same 21 

time (Parrish and Derber, 1992). The observation error covariance matrix ( R ) contains 22 

information on the observational error and errors in representativeness, which has been 23 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCAQFjAA&url=http%3A%2F%2Fwww.ncep.noaa.gov%2F&ei=jK7LVLSTEJfIsASVhoKYCQ&usg=AFQjCNEDqGCbtztoM7oJ92217DcF8bz9pw
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calculated before running the GSI.  1 

2.2 Radiative Transfer Model 2 

         The radiative transfer model incorporated into the GSI data assimilation system at the 3 

NCEP is the Community Radiative Transfer Model (CRTM). The CRTM was developed by the 4 

United .States. Joint Center for Satellite Data Assimilation (JCSDA) for rapid calculations of 5 

satellite radiances based on radiative transfer (RT) theory (Han, et al. 2006). The forward model, 6 

tangent-linear, adjoint and K-matrix models were also developed for the data assimilaition of 7 

satellite data:. CRTM is always updated for new satellite data. It supports a large number of 8 

sensors onboard geostationary and polar-orbiting satellites, covering the microwave, infrared and 9 

visible frequency regions.  10 

 The CRTM comprises four major modules: (1) RT solution module, (2) atmospheric 11 

transmittance module, (3) surface emissivity/reflectivity module, (4) particle scattering module. 12 

Six RT solution schemes were tested in the CRTM (Weng et al., 2007). According to several 13 

performance factors, the advance doubling and adding scheme (ADA; Liu and Weng, 2006) was 14 

selected for the CRTM implementation. In CRTM, a fast and optimal spectral sampling (OSS) 15 

absorption model (Moncet et al. 2004) is used to calculate atmospheric transmittance.  16 

2.3 Experiment Design  17 

         The objective of this study is to explore the effect of satellite data assimilation on the main 18 

atmospheric state forecast throughby  comparing the results from microwave (AMSU-A and 19 

MHS), hyperspectral infrared radiance (IASI) and conventional data assimilation. Over the main 20 

continent of United States of America (USA), there are many conventional observation stations, 21 

which can be used to validate the forecast results. Therefore, the western coast region of the USA 22 

is selected to as the experimental region. Analyzing the satellite data (AMSU-A, MHS and IASI) 23 



 7 

covering the western USA at 00, 06, 12 and 18 UTC, the satellite data at 18 UTC  covered more 1 

of the region than at other anytime. There were more satellite data coverage of the experimental 2 

region around 18 UTC  than other time, such as  00, 06, 12 and 18 UTC. The covered region at 3 

18 UTC is 20º - 55ºN and 85º - 155ºW, which includes the western USA and sea area near the 4 

west coast (Figure 1). 5 

         The experiment design includes six simulations (Table 1). The control (CTRL) experiment 6 

is first made with an initial time at 18:00 UTC offrom 30 June to 30 July and makes 6-h forecasts. 7 

The five data assimilation (DA) experiments and the continued second control experiment are 8 

made with initial time at 00:00 UTC from July 1 to 31, 2012 and make a 72-h forecast for each 9 

day. The initial condition in all six experiments is obtained from the 6-h forecasts of the first 10 

control experiment. The five DA experiments are made with different data sets including 11 

conventional data only (CON), microwave data (AMSU-A + MHS) only (MW), infrared data 12 

(IASI) only (IR), a combination of microwave and infrared data (MWIR), a combination of 13 

conventional, microwave and infrared observation data (ALL). The initial condition and lateral 14 

boundary conditions came from the operational GFS forecast at 6-h intervals and 0.5 x 0.5 15 

degree resolution, which were downloaded from NCEP data inventory 16 

(ftp://ftp.ncep.noaa.gov/pub/data/ nccf/com/gfs/prod/).  17 

  In the ARW model, the physics of the model includes the Goddard Cumulus Ensemble 18 

(GCE) microphysics scheme, Yonsei University planetary boundary layer (PBL) scheme, Noah 19 

land surface model, Rapid Radiative Transfer Model (RRTM) longwave radiation, and the 20 

Goddard shortwave radiation scheme (Xu et al., 2009). The 15-km WRF model forecast with a 21 

mesh size domain of 718 X 373 (Fig.1) was used. Forty-three (43) vertical layers were selected 22 

for use with a model top of 10 hPa. 23 

ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/
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3. Data and Methodology 1 

3.1  Conventional and Satellite data 2 

         In this study, the conventional observation data includes atmospheric temperature (T), 3 

moisture (Q) and wind speed (WSP) at various pressure levels and pressure data at the surface 4 

that were downloaded from NCEP data inventory (ftp://ftp.ncep.noaa.gov/pub/data/ 5 

nccf/com/gfs/prod/). Figure 1a shows the distribution of the conventional data on July 1, 2012 6 

where the atmospheric temperature, moisture and surface pressure observations are rare. Most of 7 

atmospheric temperature and moisture observations are conducted at the surface level in the 8 

pressure range of 1000-1200 hPa.  Most of tThe most WSP data are found over the sea close to 9 

the western coast of western the United States.  10 

        The satellite data includes the Advanced Microwave Sounding Unit-A (AMSU-A), 11 

Microwave Humidity Sounder (MHS) and the new generation Infrared Atmospheric Sounding 12 

Interferometer (IASI). Figure 1b shows the distribution of the AMSU-A, MHS and IASI datasets 13 

acquired about at 18:00 UTC on July 1, 2012. AMSU-A is a 15-channel cross-track, stepped-line 14 

scanning, total power microwave radiometer. In this study tThe channels from 4 to 14 are 15 

assimilated in this study, which were designed to detect atmospheric temperature at 11 layers 16 

from the surface to around 45 km. Their weighting function is illustrated inby Figure 2a. MHS 17 

on the other hand probes at millimetric frequencies between 89 and 183 GHz, the channels from 18 

2 to 5 are assimilated, which were designed to detect atmospheric moisture at 2 layers from 19 

surface to around 400 hPa. Their weighting function is illustrated inby Figure 2b. Channel 4 of 20 

AMSU-A and channel 2 of MHS can detect the atmospheric temperature and humidity at the 21 

lowest layer of the troposphere. Channels 5 and 6 of AMSU-A and channels 3, 4 and 5 of MHS 22 

can representdetect the atmospheric temperature and humidity in the middle atmospheric layer of 23 

ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/
ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/
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the troposphere. Channel 7 of AMSU-A can indicatedetect the atmospheric temperature in the  1 

highest layer of troposphere. Channels 9 and 10 of AMSU-A can detect the atmospheric 2 

temperature in  lower layer of the stratosphere  3 

          The IASI instrument covers the spectral range from the thermal infrared at 3.62 µm (2760 4 

cm-¹) to 15.5 µm (645 cm-¹) covering the peak of the thermal infrared and particularly the CO2 5 

band with the humidity (Q) branch around 666 cm-¹. Within these bands, the selected 279 bands 6 

(Table 2) correspond to atmospheric temperature and huimidity. A band number smaller than 7 

515 represents atmospheric temperature, and a band number larger than 2701 represents 8 

atmospheric humidity. Their weighting function is illustrated inby Figure 2c. 9 

3.2 Radiance data quality control and bias correction 10 

        The radiance data have been preprocessed by NOAA's Satellite and Information Service 11 

(NESDIS) before becoming available for usage. The data have been statistically limb corrected 12 

(adjusted to nadir) and surface emissivity corrected in the microwave channels and cloud cleared 13 

in the tropospheric channels. Although the satellite data have undergone preprocessing, they 14 

need further bias correction before being ingested into data assimilation system. The source of 15 

the biases can be related to instrument calibration problems, and predictor and zenith angle bias. 16 

It was demonstrated that a successful bias correction scheme must take into account the spatially 17 

varying and air-mass dependent nature of radiance biases. Previous publications have (Kelly and 18 

Flobert, 1988; McMillin et al., 1989; Uddschrtrom, 1991). Eyre (1992) and Harris and Kelly 19 

(2001) categorized the bias into two types: scan bias and air-mass bias, and presented a bias 20 

correction scheme. GSI uses this bias correction scheme to correct radiance bias. The radiance 21 

bias correction coefficients might may be downloaded from Global Data Assimilation System 22 

(GDAS) (define GDAS) data directory(ftp://ftp.ncep.noaa.gov/pub/data/ nccf/com/gfs/prod/), 23 

ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/
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and it can be used to correct the radiance bias in GSI. To that purpose in this study, monthly 1 

regional mean innovations, e.g. observation minus background (OMB) and observation minus 2 

analysis (OMA), are calculated with or without bias corrections in this study. For example, Fig. 3 

ure 3 is shows the scattering plots of surface pressure (Fig. 3a), atmospheric temperature at the 4 

height of 2m (Fig. 3b)2 meters and wind speed at the height of 10m (Fig. 3c) meters between 5 

OMB and OMA in the ALL data experiment. The result shows that the slope of the simulated 6 

line is less than 1, which indicates the analysis fields are closer to observation than background 7 

fields.   8 

3.3 Methodology  9 

          In order to evaluate the effects of radiance data assimilation on temperature and moisture 10 

at the different vertical layers, the surface (SFC) and four atmospheric layers are examined. The 11 

four layers include lower troposphere (LT) from 800 to 1000 hPa, middle troposphere (MT) from 12 

400 to 800 hPa, upper troposphere (UT) from 200 to 400 hPa and lower stratosphere (LS) from 13 

50 to 200 hPa. Similar to the a previous study (Xu, et al., 2009), two statistical variables - bias  14 

and root mean square (RMS) errors  are investigated.  15 

        If X represents any of the parameters under consideration for a given time and vertical level, 16 

then the forecast error is defined as X´ = Xf –Xo where the subscripts f and o denote forecast and 17 

observed quantities, respectively. Given N valid pairs of forecasts and observations, the bias is 18 

computed as  19 

∑
=

==
N

i
iX

N
Xbias

1

'' 1                                                     (1) 20 

the root mean-square (RMS) error is computed as  21 

∑
=

=
N

i
iX

N
RMS

1

2' )(1                                                     (2)             22 
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The bias and RMS error at 00:00 and 12:00 UTC are calculated because more than enough 1 

observational data and approximately 3000 sounding stations can be used at the two times.  2 

4. Results  3 

4.1 Impact of DA on tTemperature  4 

At the SFC, the CON (conventional data only) DA experiment shows (Fig.4a) the smallest 5 

bias value in all six experiments. The tThree involved involved infrared satellite DA experiments 6 

(IR, IR+MW, IR+MW+CON) showing a larger bias than the CTRL experiment. For the first 24 7 

hours, iIt seems that satellite radiance DA, especially for the infrared IASI data, make a negative 8 

contribution to the temperature forecasts.  InterestinglyIn additon, the bias characterized a 9 

diurnal cycle feature for the 72-h forecasts, with the smaller bias appearing at 06, 30, 54 and 72-h 10 

corresponding to a local time at 4:00 pm while the higher bias appeared at 18, 42 and 66-h 11 

corresponding to 4:00 am local time.   12 

Compared to the SFC, the LT shows a more clear diurnal variation (Fig. 4b), and all model 13 

forecasts underestimated the observed temperature. The CTRL and CON experiments obtained 14 

the smallest forecast bias.  15 

Different from the SFC and LT, the diurnal variation of bias disappeared in the MT (Fig. 16 

4c). Compared to the CTRL experiment, the bias is significantly reduced in all DA experiments 17 

especially for the two combination experiment (MWRI and ALL), the bias is almost zero within 18 

the 30-h forecast. It implies that both MW (AMUS-A and MHS) and IR (IASI) DA make give a 19 

positive contribution to the accuracy of temperature forecasts at the MT.    20 

        At the UT, the smaller bias appeared at in the CON and MW DA experiments (Fig. 4d), and 21 

the combination DA experiments (MWIR and ALL) show a larger bias than the CTRL 22 

experiment. The results indicate that the IR DA gmadve a negative contribution to the 23 
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temperature forecasts and the MW experiment improved the forecast accuracy in the UT. 1 

 In contrast, the bias in the LS indicates an opposite pattern to the SFC and LT that where 2 

all satellite DA experiments reduced the forecast bias (Fig. 4e). The result demonstrated that the 3 

conventional DA did not improve the forecasts because of the sprarse observational data used in 4 

this layer. The MW DA obtained the smallest bias at in the LS.      5 

       In order to clearly understand the different performance in the six experiments, the 6 

temperature forecast bias profile at 6-h, 30-h and 54-h has been examined. Fig. 5 indicates a 7 

similar pattern at the three forecast times where the lower bias can be found at the SFC and MT 8 

while the larger bias appeared at the UT and LS. Generally, the model forecasts overestimated 9 

the observed temperature except in the LT. Compared to the CTRL experiment, the four satellite 10 

DA experiments (MW, IR, MWIR and ALL) show a smaller bias from the MT through LS, but 11 

the forecasts did not get improved in the LT below 800 hPa. In contrast, the CON experiment has 12 

better performance in the LT, especially at the SFC.   13 

It is obvious that the larger bias in temperature forecast appeared in the LT, UT and LS, but 14 

the model is underestimating the observed temperature in the LT and overestimating in the UT 15 

and LS (Fig. 5).  The satellite DA, especially for the MW DA experiment using AMSU-A, 16 

reduced the forecast bias at the levels from the MT to LS.  Meanwhile, the CON DA has a 17 

smaller forecast bias in the LT, especially at the SFC. Note the IR experiment using the IASI 18 

data produced  a worst result in the LT.  19 

     The forecast RMS error demonstrated some different features (Fig. 6). First, the RMS error 20 

reduced the diurnal variation and the RMS errorit significantly increased with the extended 21 

length of forecast time at the SFC.  The RMS error in the CON and MW experiments is slightly 22 

less than that in the CTRL experiment and the other three satellite DA experiments within 24-h 23 
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forecasts (Fig. 6a). Second, consistent with the larger negative bias in all the satellite DA 1 

experiments (Fig. 4b) in the LT,  larger RMS errors are observed in these DA experiments (Fig. 2 

6b) compared to the CRTL. Third, different from the smaller bias in the DA experiments, the 3 

larger RMS errors are maintained in the DA experiments in the MT (Fig. 6c). Fourth, the CON 4 

and MW experiments improved the temperature forecasts in the UT (Fig. 6d). But in the LS, the 5 

involved microwave DA experiments including MW, MWIR and ALL indicate the smaller RMS 6 

errors than the CTRL experiments (Fig. 6e). It is apparent that the CON DA made gave a 7 

negative contribution to the temperature forecast in the LS.  8 

       Corresponding to the bias profile (Fig. 5), the forecast RMS error profile at 6-h, 30-h and 9 

54-h indicates (Fig. 7) that the smallest RMS error is observed at the MT and the largest RMS 10 

error appeared in the LT and SFC. Compared to the CTRL experiment, the smaller RMS errors 11 

are only found in the MW experiment in the UT and LS, and the CON DA made a positive 12 

contribution at the SFC and UT. 13 

      The results clearly show the IR DA experiment makes gives a negative contribution to the 14 

temperature forecast in the regional system. But the MW DA experiment shows a positive 15 

impactcontribution at the LS, and the CON experiment displays better performance at the SFC 16 

and UT.  It is worth noticing that the RMS error is not always consistent with the bias in the 17 

temperature forecasts, for example, the smaller bias appeared at the SFC while a larger RMS 18 

error is observed there.  19 

4.2 Impact of DA on hHumidity 20 

Similar to the temperature forecasts at the SFC, the diurnal variation of the moisture bias is 21 

observed and the smallest bias appeared in the CON and CTRL experiments within the 42-h 22 

forecast (Fig. 8a) with largest bias occurring in the MWIR experiment at 18-h. It is clear that all  23 
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four satellite DA experiments do not improve the moisture forecast compared to the CTRL 1 

experiment. In contrast, the IR DA produced a larger bias significantly differenting from the 2 

other experiments in the entire troposphere (Fig. 8b,c,d).  It seems to tell us that the IR DA 3 

significantly impacts the humidity forecasts in the troposphere. However, the impacts 4 

disappeared in the LS (Fig. 8e).  5 

Compared to the bias profile of the temperature forecast (Fig 4), all model runs 6 

overestimated the observed humidity except for the UT. The smallest bias in the humidity 7 

forecast occurred at the SFC and UT (Fig. 9). Most of DA experiments apparently reduced the 8 

bias from LT to UT, especially for the IR experiment.  But it is worth noting that the MW DA 9 

has a larger bias than the CTRL experiment in the whole troposphere.       10 

        However, the RMS error in the humidity forecasts (Fig. 10) increases from the SFC to LS. 11 

The largest error in the UT and LS is almost double the amount at the SFC. In addition, most of 12 

DA experiments demonstrated a larger RMS error than that in the CTRL experiment. In other 13 

words, the DA experiments made gave a negative contribution to the humidity forecasts. The IR 14 

DA experiment did not improve moisture forecast although its bias is very small at the LT and 15 

MT. 16 

5. Summary and Discussion 17 

5.1 Summary         18 

           In this study, six experiments were designed to assess the effects of data assimilation on 19 

atmospheric temperature and moisture forecasts over the western United States. The results are 20 

summarized as follows.  21 

           The regional model underestimates the observed temperature in the LT and overestimates 22 

it in the UT and LS. The MW experiment reduced the forecast bias from the MT to LS, and the 23 
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CON DA obtained a smaller forecast bias in the LT, especially at the SFC. But the IR 1 

experiment using the IASI data obtained the largest bias in the LT.    2 

       However, the RMS error is not always consistent with the bias profile in the temperature 3 

forecasts:, in fact,  the RMS error profile shows that the largest RMS error appeared in the LT 4 

and the smallest error in the MT. Compared to the CTRL experiment, the smaller RMS errors are 5 

only found in the MW experiment in the UT and LS, and the CON DA made gave a positive 6 

contribution at the SFC and in the UT. The IASI DA experiment hasmade a negative 7 

impactcontribution onto the temperature forecast in the regional forecast system.  8 

In contrast, all model forecasts overestimated the observed humidity except in the UT. The 9 

smallest bias in the humidity forecast occurred at the SFC and in the UT. Most of DA 10 

experiments apparently reduced the bias in the LT to UT, especially for the IR DA experiment.  11 

But the MW DA obtained a larger bias than the CTRL experiment in the  entire  troposphere.       12 

        The RMS error in the humidity forecasts increases from the SFC to the LS, which is similar 13 

to the bias profile except in the UT. The largest error in the UT and LS is almost double the 14 

amount at the SFC. The DA experiments make give a limited contribution to the humidity 15 

forecasts. The IR DA experiment does not improve the moisture forecast although its smallest 16 

bias is found in the LT and MT. 17 

5.2  Discussion 18 

This is a study using WRF-ARW mesoscale model linked tolinkage with GSI data 19 

assimilation system to explore the impacts of AMSU-A/MHS and IASI radiance data 20 

assimilation on the temperature and humidity forecasts in the different vertical layers over the 21 

western coast of United States, due to the complexity of measurements for satellite instruments 22 

(such as IASI has 8461 channels) and lack of knowledge in the estimation of impacts of those 23 
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datasets in this regional area, forecasters should be aware of the limitations of these data 1 

assimilation when forecasting in this region. 2 

The results show that the bias and forecast error is substantially related to the vertical 3 

layer of the objective. For example, the AMSU-A data assimilation  reduced the temperature 4 

forecast bias in the upper atmospheric layers, the conventional data assimilation indicates the 5 

best performance in the lower layer, but the IASI data assimilation shows worst performance in 6 

the lower layer. Compared to the largest bias in the upper atmospheric layer, the largest RMS 7 

error appeared in the lower atmospheric layers. For the The humidity forecast there is a different 8 

behavior:, the IASI data assimilation significantly reduced the bias in the troposphere, but the 9 

RMS error tells us that the IASI data assimilation does not improve the moisture forecast in this 10 

layer. The reason is very complicated, it is partially attributed to the data selection in the 11 

processes of the data assimilation.  The results showedn in this analysis demonstrate the 12 

partialsome impacts of satellite data on temperature and humidity forecasts in this region, but the 13 

positive or negative impact depends on the atmospheric layer and forecasts variables.   14 

It is worth noting that the results presented here are based on one month's forecasts with 15 

three satellite instruments. The model performance needs to be examined with longer 16 

experiments and more data selection that extend to all available satellite data sets and more 17 

experiments from the different areas. As expressed by Manning and Davis (1997), “These 18 

statistics would provide additional information to model users and alert model developers to 19 

those research areas that need more attention.”  20 
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Table 1  The experiment design includes six simulations (EXP1-EXP6) 16 

 Experiment Description Initial time 
EXP1 CTRL Control experiment without data 

assimilation 
18 UTC from 30 June to 
31 July 

EXP2 CON Conventional data assimilation  00 UTC from 1 to 31 July  
EXP3 MW AMSU-A+MHS data assimilation 00 UTC from 1 to 31 July  
EXP4 IR IASI data assimilation 00 UTC from 1 to 31 July  
EXP5 MWIR 

(MW+IR) 
AMSU-A+MHS+IASI data 
assimilation  

00 UTC from 1 to 31 July  

EXP6 ALL Conventional+AMSU-A+MHS+IASI 00 UTC from 1 to 31 July  

Formatted Table



 21 

(CON+MW+IR) data assimilation  
 1 

 2 

 3 

 4 

 5 

 6 

 7 

Table2  Listed below are the 279 Channels in IASI corresponding to atmospheric temperature 8 
and humidity.   The numbers indicate the order in which the channels were chosen in current data 9 
assimilation 10 

16 135 226 356 566 1658 2993 3248 3509 5502 
38 138 230 360 571 1671 3002 3252 3518 5507 
49 141 232 366 573 1786 3008 3256 3527 5509 
51 144 236 371 646 1805 3014 3263 3555 5517 
55 146 239 373 662 1884 3027 3281 3575 5558 
57 148 243 375 668 1991 3029 3303 3577 5988 
59 151 246 377 756 2019 3036 3309 3580 5992 
61 154 249 379 867 2094 3047 3312 3582 5994 
63 157 252 381 906 2119 3049 3322 3586 6003 
66 159 254 383 921 2213 3053 3375 3589 

 70 161 260 386 1027 2239 3058 3378 3599 
 72 163 262 389 1046 2271 3064 3411 3653 
 74 167 265 398 1121 2321 3069 3438 3658 
 79 170 267 401 1133 2398 3087 3440 3661 
 81 173 269 404 1191 2701 3093 3442 4032 
 83 176 275 407 1194 2741 3098 3444 5368 
 85 180 282 410 1271 2819 3105 3446 5371 
 87 185 294 414 1479 2889 3107 3448 5379 
 104 187 296 416 1509 2907 3110 3450 5381 
 106 193 299 426 1513 2910 3127 3452 5383 
 109 199 303 428 1521 2919 3136 3454 5397 
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111 205 306 432 1536 2939 3151 3458 5399 
 113 207 323 434 1574 2944 3160 3467 5401 
 116 210 327 439 1579 2948 3165 3476 5403 
 119 212 329 445 1585 2951 3168 3484 5405 
 122 214 335 457 1587 2958 3175 3491 5455 
 125 217 345 515 1626 2977 3178 3497 5480 
 128 219 347 546 1639 2985 3207 3499 5483 
 131 222 350 552 1643 2988 3228 3504 5485 
 133 224 354 559 1652 2991 3244 3506 5492 
  1 

 2 

 3 

 4 

  5 

Caption of Figures 6 

Fig. 1 Distribution of  observations. (a) conventional data on July 1, 2012  with the atmospheric 7 

temperature (yellow), moisture (dark blue) and surface pressure(light blue ), wind speed 8 

(orange).   (b) Scan coverage of AMSU-A (light blue), MHS (dark blue) and IASI  (red) 9 

radiance  at 18:00 UTC on July 1, 2012  10 

 Fig. 2 Vertical weighting functions for satellite observations as a function of height. (a) 11 

AMSUA , (b) MHS , (c) IASI   12 

Fig. 3 The scattering plot between observation minus background [OMB] and observation minus  13 

           analysis [OMA] in the all data ( Conventional+AMSU-A+MHS+IASI ) experiement       14 

(a: surface pressure, b: atmospheric temperature at the height of 2 meters,  15 

           c: wind speed at the height of  10 meters) for 1 July 2012  16 

Fig. 4  Bias of the temperature  (T) forecasts at (a) surface (SFC), (b) lower troposphere (LT),  17 
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           (c) middle troposphere (MT), (d) upper troposphere  (UT), (e) lower stratosphere (LS).  1 

           Unit: °C.   CTRL , CON , MW, IR, MWIR and ALL are defined in Table 1  2 

Fig. 5  Bias profile of the temperature (T) forecasts at (a) 6-h , (b) 30-h, (c)  54-h forecasts.  3 

           Unit: °C. Other definitions are the same of Fig. 4. The other definition is same as Fig. 4.  4 

Fig. 6 RMSE of the temperature (T) forecasts at (a) surface (SFC), (b) lower troposphere (LT),  5 

           (c) middle troposphere (MT), (d) upper troposphere , (e) lower stratosphere. Unit: °C  6 

           Other definitions can be found in Table 1. The other definition can be found Table 1. 7 

Fig. 7  The RMSE profile of the temperature  forecasts at (a) 6-h , (b) 30-h, (c)  54-h forecasts.  8 

            Unit: °C. Other definitions are the same of Fig. 4. The other definition is same as Fig. 4.  9 

 10 

Fig. 8  The bias of the specific humidity (Q) forecasts at (a) surface (SFC), (b) lower troposphere  11 

             (LT), (c) middle troposphere (MT), (d) upper troposphere , (e) lower stratosphere. Unit:  12 

              g/kg.    Other definitions can be found in Table 1.The other definition can be found 13 

Table 1. 14 

Fig. 9  Bias profile of the specific humidity forecasts at (a) 6-h , (b) 30-h, (c)  54-h forecasts.  15 

             Unit: g/kg. Other definitions are the same of Fig. 4. The other definition is same as Fig. 4.  16 

Fig. 10  The RMSE profile of the specific humidity  forecasts at (a) 6-h , (b) 30-h, (c)  54-h  17 

             forecasts. Unit: g/kg. Other definitions are the same of Fig. 4.The other definition is 18 

same as Fig. 4. 19 



Fig. 1 Distribution of  observations. (a) conventional data on July 1, 2012  with the atmospheric temperature 
(yellow), moisture (dark blue) and surface pressure(light blue ), wind speed (orange).   (b) Scan coverage of 
AMSU-A (light blue), MHS (dark blue) and IASI  (red) radiance  at 18:00 UTC on July 1, 2012  
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 Fig. 2 Vertical weighting functions for satellite observations as a function of height. (a) AMSUA , (b) MHS , (c) IASI   
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Fig. 3 The scattering plot between observation minus 
background [OMB] and observation minus analysis [OMA] 
in the all data ( Conventional+AMSU-A+MHS+IASI ) 
experiment  (a: surface pressure, b: atmospheric 
temperature at the height of 2 meters, c: wind speed at the 
height of  10 meters) for 1 July 2012 
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Fig. 4  Bias of the temperature  (T) forecasts at (a) surface (SFC), (b) lower 
troposphere (LT), (c) middle troposphere (MT), (d) upper troposphere  
(UT), (e) lower stratosphere (LS). Unit: °C.   CTRL , CON , MW, IR, 
MWIR and ALL are defined in Table 1 
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Fig. 7 The RMSE profile of the temperature  forecasts at (a) 6-h , (b) 30-h, (c)  54-h forecasts. Unit: °C. 
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Fig. 8  The bias of the specific humidity (Q) forecasts at (a) surface (SFC), 
(b) lower troposphere (LT), (c) middle troposphere (MT), (d) upper 
troposphere , (e) lower stratosphere. Unit: g/kg . Other definitions can be 
found in Table 1. 
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Fig. 9  Bias profile of the specific humidity forecasts at (a) 6-h , (b) 30-h, (c)  54-h forecasts. Unit: g/kg. 
Other definitions are the same of Fig. 4. 
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Fig. 10  The RMSE profile of the specific humidity  forecasts at (a) 6-h , (b) 30-h, (c)  54-h forecasts. Unit: g/kg.  
Other definitions are the same of Fig. 4. 
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