Atmos. Meas. Tech. Discuss., 8, 1–26, 2015 www.atmos-meas-tech-discuss.net/8/1/2015/ doi:10.5194/amtd-8-1-2015 © Author(s) 2015. CC Attribution 3.0 License.

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

This discussion paper is/has been under review for the journal Atmospheric Measurement Techniques (AMT). Please refer to the corresponding final paper in AMT if available.

Validation of MIPAS IMK/IAA methane profiles

A. Laeng¹, J. Plieninger¹, T. von Clarmann¹, U. Grabowski¹, G. Stiller¹, E. Eckert¹, N. Glatthor¹, F. Haenel¹, S. Kellmann¹, M. Kiefer¹, A. Linden¹, S. Lossow¹, L. Deaver³, A. Engel², M. Hervig³, I. Levin⁷, M. McHugh³, S. Noël⁴, G. Toon⁵, and K. Walker⁶

¹Institut für Meteorologie und Klimaforschung, Karlsruhe Institute of Technology, Karlsruhe, Germany

²Institut für Atmosphäre und Umwelt, University of Frankfurt, Frankfurt, Germany ³GATS Inc Driggs, Idaho, USA

⁴Institut für Umweltphysik, University of Bremen, Bremen, Germany

⁵Jet Propulsion Laboratory, California Institute of Technology, California, USA

⁶Department of Physics, University of Toronto, Toronto, Canada

⁷Institut für Umweltphysik, Heidelberg University, Heidelberg, Germany

Received: 2 May 2015 - Accepted: 22 May 2015 - Published:

Correspondence to: A. Laeng (alexandra.laeng@kit.edu)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) was an infrared (IR) limb emission spectrometer on the Envisat platform. It measured during day and night, pole-to-pole, over an altitude range from 6 to 70 km in nominal mode and up

- to 170 km in special modes, depending on the measurement mode, producing more than 1000 profiles day⁻¹. We present the results of a validation study of methane version V5R_CH4_222 retrieved with the MK/IAA MIPAS scientific level 2 processor. The level 1 spectra are provided by 3SA, the version 5 was used. The time period covered corresponds to the period when MIPAS measured at reduced spectral resolution,
- i.e. 2005–2012. The comparison with satellite instruments includes the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), the HALogen Occultation Experiment (HALOE), the Solar Occultation For Ice Experiment (SOFIE) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIA-MACHY). Furthermore, comparisons with MkIV balloon-borne solar occultation mea-
- ¹⁵ surements and with air sampling measurements performed by the University of Frankfurt are presented. The validation activities include bias determination, in selected cases, assessment of histograms and comparison of corresponding climatologies. Above 50 km altitude, MIPAS methane mixing ratios agree within 3% with ACE-FTS and SOFIE. Between 30 and 40 km an agreement within 3% with SCIAMACHY has been found in the middle eterteenbage there is no clean indication of a MIDAC bias.
- a MIPAS high bias between 20 and 25 km altitude. Precision validation is performed on collocated MIPAS-MIPAS pairs and suggests a slight underestimation of its errors by a factor of 9.2. A parametric model consisting of constant, linear, QBO and several sine and cosine terms with different periods has been fitted to the temporal variation

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Summary of Comments on Validation of MIPAS IMK/IAA methane profiles

Page: 2

TNumber: 1	Author: User	Subject: Highlight	Date: 26/8/2015 3:58:38 µµ	
I assume this -1 i	is a typo error?			
TNumber: 2	Author: User	Subject: Highlight	Date: 26/8/2015 3:58:51 μμ	
I guess you need	to explain the acror	nyms here.		
TNumber: 3	Author: User	Subject: Highlight	Date: 26/8/2015 4:00:42 μμ	
Ditto for this acro	onym.			
TNumber: 4	Author: User	Subject: Highlight	Date: 26/8/2015 9:43:16 μμ	
What is this reso	lution?			
TNumber: 5	Author: User	Subject: Highlight	Date: 26/8/2015 9:44:11 μμ	
Are these in situ	measurements?			
TNumber: 6	Author: User	Subject: Highlight	Date: 26/8/2015 9:44:46 μμ	

I.e. 20%? are these the apriori errors or the retrieval errors?

of differences of stratospheric CH₄ measurements by MIPAS and ACE-FTS for all 10° latitude/1-2 km altitude bins. Only few significant drifts can be calculated, due to the lack of data. Uignificant drifts with respect to ACE-FTS tend to have higher absolute values in the Northern Hemisphere, have no pronounced tendency in the sign, and do not exceed 0.2 ppmv per decade in absolute value.

1 Introduction

(2006).

The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is a high resolution limb emission Fourier transform spectrometer designed to measure trace gas distributions from the upper troposphere_to the mesosphere at global coverage during day and night (Fischer et al., 2008). 2nstitut für Meteorologie und Klimaforschung

- 10 (IMK) operates a scientific data processor (von Clarmann et al., 2003b) which relies on ESA level 1B spectra. The MIPAS IMK methane data product covers mixing ratio profiles of the period 2002-2004 when MIPAS operated in its original high spectral resolution mode (Glatthor et al., 2005), as well as data from 2005-2012 when MIPAS
- measured at reduced spectral resolution (Chauhan et al., 2009; von Clarmann et al., 15 4009b). MIPAS reduced resolution nominal mode data are sampled along the orbit every 410 km, and a vertical profile contains information from up to 27 sangent altitudes. while reduced resolution UTLS-1 mode data are sampled along the orbit every 290 km, and a vertical profile contains information from up to 19 the angent altitudes. This paper
- reports the validation of the most recently released methane data retrieved from re-20 duced spectral resolution measurements in nominal mode, which is version number V5R_CH4_222. The analysis is restrained on the reduced resolution measurements only because the corresponding baseline was developed for reduced resolution only. Detailed descriptions of the inversion algorithm used by the MIPAS IMK ZAA scientific retrieval processor can be found in von Clarmann et al. (2003b, 2009b) and Laeng 25
- **Discussion** Paper Discussion Paper et al. (2015). Its first application to stratospheric CH₄ is documented in Glatthor et al.

Discussion Paper

Discussion Paper

AMTD

👖 Number: 1	Author: User	Subject: Highlight	Date: 26/8/2015 9:45:41 μμ	
And what does this	s indicate?			
TNumber: 2	Author: User	Subject: Highlight	Date: 26/8/2015 9:46:05 μμ	
The Institut fur				
TNumber: 3	Author: User	Subject: Highlight	Date: 26/8/2015 9:46:39 μμ	
Please mention her	re what these two re	esolutions are.		
TNumber: 4	Author: User	Subject: Highlight	Date: 26/8/2015 9:46:19 μμ	
TNumber: 5	Author: User	Subject: Highlight	Date: 26/8/2015 9:59:30 μμ	
Might be also interesting to note the range of heights as well.				
TNumber: 6	Author: User	Subject: Highlight	Date: 26/8/2015 9:59:53 μμ	
As above, Might be	e also interesting to	note the range of he	eights as well.	
TNumber: 7	Author: User	Subject: Highlight	Date: 26/8/2015 10:00:23 μμ	
\//hat is the a susse				

What is this acronym?

IMK-IAA MIPAS results are characterized by error estimates, as well as vertical averaging kernels. The latter is used to estimate the altitude resolution of the retrievals. In addition, the horizontal smoothing information is calculated for sample cases on the basis of the 2-dimensional averaging kernels, computed from 2-dimensional Jacobians (von Clarmann et al., 2009a). The random error covariance matrices of the retrieved quantities are provided. The vertical resolution of a typical MIPAS AMK methane retrieval, derived from the full width at half maximum (FWHM) of the rows of averaging kernel matrix, varies between 2 and 5 km²see Fig. 1.

2 Reference instruments and comparison methodology

- ¹⁰ The MIPAS reduced resolution period covers the years 2005–2012. During this time, ³ nly five other satellite instuments measured the vertical profiles of methane: the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), the Halogen Occultation Experiment (HALOE), the Scanning Imaging Spectrometer for Atmospheric Chartography (SCIAMACHY), the Solar Occultation For Ice Experiment
- (SOFIE), and the Tropospheric Emission Spectrometer (TES) (see for example, the list of trace gases measured by atmospheric sensors collected at the URA website Network for the Detection of Atmospheric Composition Change, NDACC). The comparison with four of these instruments is presented here. TES data were not used because its coarse vertical resolution makes it less suited for validation of a limb dataset. No
- ²⁰ ground-based FTIR measurements were used because of low upper limit of the profiles (30 km) and coarse (10 km) vertical resolution. Also, we have used two balloon-borne instruments: the MkIV solar occultation interferometer and ^[5]ryosampler.

For the satellite instruments ACE-FTS the collocation criteria were chosen to be 9 h and 800 km. This was a result of the trade off between the collocations being as 25 close as possible and the sampling sample being sufficiently big. For SCIAMACHY and SOFIE, which have a denser sampling dattern, these were tightened to 5 h and 500 km. For HALOE, whose time overlap with MIPAS reduced resolution period is less

Discussion

Paper

Discussion Paper

Discussion Paper

Discussion Paper

👖 Number: 1	Author: User	Subject: Highlight	Date: 26/8/2015 10:01:31 μμ	
Is this the same as the iMK/IAA retrieval?				
TNumber: 2	Author: User	Subject: Highlight	Date: 26/8/2015 10:10:14 μμ	
Replace with ", as s	seen in Figure 1."			
TNumber: 3	Author: User	Subject: Highlight	Date: 26/8/2015 10:02:01 μμ	
I wouldn't say "onl	y", it is quite remark	able that there are s	ix instruments measuring the atmospheric state simultaneously.	
TNumber: 4	Author: User	Subject: Highlight	Date: 26/8/2015 10:02:12 μμ	
Provide the acrony	νm.			
TNumber: 5	Author: User	Subject: Highlight	Date: 26/8/2015 10:19:05 μμ	
Make a reference here to Table 1 where very important information is given of high interest to the reader.				
TNumber: 6	Author: User	Subject: Highlight	Date: 26/8/2015 10:06:19 μμ	
What what is this sample? who/what decides what is sufficiently big?				
TNumber: 7	Author: User	Subject: Highlight	Date: 26/8/2015 10:06:47 μμ	
This sampling pattern should also be included in the Table for all instruments/datasets.				

than eight months, the criteria were relaxed to 44 h and 1000 km. This led to the number of matched pairs as listed in Table 1. Figure 2 shows the latitudinal distributions over months of collocated measurements of MIPAS with 2 atellite reference instrument. Figure 2 suggests that even an initial assessmen 3 of precision of pairs MIPAS/reference instrument can not be performed here. Indeed, it is usually done by comparing the

- standard deviation of the differences with the dombined estimated random error (von Clarmann, 2006). Here in all cases except HALOE, most collocations are concentrated at high latitudes, where the atmospheric variability contribution into the standard deviation of the differences is dignificant. To assess the quality of uncertainty estimates of
- ¹⁰ MIPAS CH₄ data, the structure functions as in Laeng et al. (2015) will be constructed in Sect. 5. The matched pairs were chosen in such a way that none of the MIPAS (or reference instrument) measurements participated in two pairs. Such a choice reduces the number of matches, but produces pairs that are independent. For MkIV and cryosampler measurements, the collocation criteria were also relaxed and chosen to
- ¹⁵ be 24 h and 1000 km. In cases where no MIPAS data were available around the flight within the collocation criteria, zonal mean of MIPAS data for the corresponding month, season and latitude range were compared with the reference instrument profiles.

All profiles were interpolated to the MIPAS grid for intercomparison. Rodgers and Connor (1999) suggest application of averaging kernels of the poorer resolved profiles

- to the better resolved profiles during the regridding of atmospheric profiles. However, for any of the comparison instruments, the vertical resolution of typical MIPAS IMK methane profiles differs from the vertical resolution of reference instrument profiles by less than a factor of 2–2.5 and often is close to 1. Thus the application of averaging kernels appears unnecessary. To be on the safe side, sensitivity studies were performed to
- assess the impact of the application of the averaging kernels. When no averaging kernels were available for the coarser resolved reference instrument, the smoothing was done with a Gaussian of corresponding width. After this application, the profiles were hanging by less than 2 % in the middle, where the MIPAS averaging kernel values are close to 1, and an artificial 300 % bias appeared on the extremities of the profile, where

Discussion

Paper

Discussion Paper

Discussion Paper

Discussion Paper

👖 Number: 1	Author: User	Subject: Highlight	Date: 26/8/2015 10:07:46 μμ		
In terms of the phy	In terms of the physics of CH4 in the stratosphere, is that acceptable? normal? used in other studies? presented before?				
TNumber: 2	Author: User	Subject: Highlight	Date: 26/8/2015 10:10:53 μμ		
with each satelli	te reference				
Mumber: 3	Author: User	Subject: Highlight	Date: 26/8/2015 10:11:46 uu		
	Aution Oser	Subject. Highlight			
Replace with "a	ssessment of the pre	cision of the pairs b	etween MIPAS and each reference instrument"		
Number: 4	Author: Usor	Subject: Highlight	Data: 26/0/2015 10:20:00		
T Number. 4	Author. User	Subject. Highlight	Date. 20/8/2015 10.20.08 μμ		
What does combined mean in this context?					
	A .1		D + 26/0/2015 10 12 02		
T Number: 5	Author: User	Subject: Highlight	Date: 26/8/2015 10:12:03 μμ		
And hence the co-	And hence the co-location criteria play an important role?				
TNumber: 6	Author: User	Subject: Highlight	Date: 26/8/2015 10:14:50 μμ		
from the					
Ni wala aw 7		Culsiante I limblimba	Dete: 26 /8 /2015 10:15:20		
T number: 7	Author: User	Subject: Highlight	Date: 20/8/2015 10:15:20 μμ		

... were changed by less....

the MIPAS averaging kernel values are close to zero. Hence, the differences in vertical resolution were chosen to be neglected and no averaging kernels were applied.

3 Bias assessment

3.1 Comparison with satellite reference instruments

⁵ ¹/₁igure 3 represents the percentage bias of MIPAS CH₄ retrievals with respect to the satellite reference instruments. We should keep in mind that the percentage bias is tricky to interpret when the reference values are low, which is the case for methane at the heights above 40–45 km.

The agreement with ACE-FTS at 20–65 km height is within 12%, while in the lower stratosphere MIPAS volume mixing rations (vmrs) are consistently higher than those of ACE-FTS. The largest bias found is 15% at 17 km altitude. A secondary maximum of the differences is found at 38 km altitude, where MIPAS methane mixing are higher by 12%. The standard deviations of MIPAS and ACE-FTS in different seasons were studied. They have a pronounced maximum at about 30 km altitude in autumn, winter

- ¹⁵ and spring, when the polar vortex is formed, persists, and breaks down, respectively, which causes enhanced variability. One might speculate that different viewing geometries (with a larger north-south component for MIPAS and a larger east west component for ACE-FTS) or different sensitivity to along-line-of-sight temperature variation might turn the enhanced random variability into a bias. The reduced variability actually leads
- to a smaller bias between MIPAS and ACE-FTS. In summer, when the meteorological situation in the stratosphere is quite calm, no such enhanced variability is observed. Another region of enhanced variability is the lowermost altitudes: the large variability there is attributed to tropopause height ²/₂uctuations.

Between 30–40 km altitude, the agreement between the global mean MIPAS and $_{25}$ SCIAMACHY CH₄ profiles is within 3%. Below, MIPAS methane mixing ratios are

8, 1-26, 2015 Validation of MIPAS **IMK/IAA** methane profiles A. Laeng et al. Title Page Abstract Introduction Conclusions References Tables Figures Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion $(\mathbf{\hat{P}})$

AMTD

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

📊 Number: 1	Author: User	Subject: Highlight	Date: 26/8/2015 10:26:35 μμ
To the uninitiate	ed eye the most striki	ng feature of this Figu	re is the matching fluctuations/oscillations in height shown in the red and blue curves/
comparisons. N	laybe a small commer	nt on that? and why is	the green curve, the SCIA comparisons, following the same pattern?

Number: 2Author: UserSubject: HighlightDate: 26/8/2015 10:21:44 μμReading all these reasons for variability of methane between MIPAS and ACE-FTS it is a wonder that a 12 to 15% bias is achieved!

higher than those of SCIAMACHY. The largest bias found is 17% at the lowest SCIA-MACHY altitude, 20 km.

HALOE data are considered as a reference in the atmospheric science community and have been extensively used for scientific analysis (Ruth et al., 1997). Unfortunately

- the time overlap between MIPAS reduced resolution period and HALOE operations is only eight months, during which there were gaps in the MIPAS data. Even after relaxing the collocation criteria to 24 h and 1000 km, only 244 independent matched pairs were found. The blue curve on Fig. 3 exposes the agreement within 10% of MIPAS and HALOE at 20–30 km. Over almost the whole height range, the bias does not change sign and stays positive. Below 25 km, the high bias of MIPAS methane is confirmed.
 - Largest mean relative differences are about 20 %.

At the heights between 45 and 60 km, the agreement between MIPAS and SOFIE is within 8%. The maximum differences of 15% are observed at 63 km. Let us recall that the relative differences become difficult to interpret when the reference values are

getting small. This is particularly true for SOFIE whose delievered methane profiles start at 45 km height.

3.2 Comparison with MkIV balloon interferometer profiles

Figure 4 presents the three MkIV balloon profiles recorded within the MIPAS reduced resolution period. The first two MkIV profiles, from 20 September 2005 and 22 September 2007, were cheasured when MIPAS was temporary inactive and no matches were found within 24 h and 1000 km. The MkIV profiles were hence compared to the monthly (September) and seasonal (September–October–November, SON) means of MIPAS in [30;40] latitudes. For the profile from 20 September 2005, the digreement is very good from 20 to 24 and 28 to 31 km, while a positive MIPAS bias in the order of 0.2 ppmv is present at 12–20 and 31–37 km heights. For the profile from the sunset of 22 September 2007, the agreement is very good at 23–36 km, while a positive MIPAS bias in the

order of 0.1 ppmv is present at 14–18 km heights and a negative MIPAS bias of the same order is present at 18–23 km heights.

7

AMTD

Discussion

Paper

Discussion Paper

Discussion Paper

Discussion Paper

8, 1-26, 2015

Validation of MIPAS IMK/IAA methane profiles

Title	Title Page					
Abstract	Introduction					
Conclusions	References					
Tables	Figures					
14	۶I					
•	•					
Back	Close					
Full Scre	Full Screen / Esc					
Printer-friendly Version						
Interactive Discussion						
CC ①						

📊 Number: 1	Author: User	Subject: Highlight	Date: 26/8/2015 10:23:11 μμ
"Extensively used	and then providing	g only one reference f	rom 18 years ago do not coincide. Please provide reference to more HALOE CH4
works.			
📊 Number: 2	Author: User	Subject: Highlight	Date: 26/8/2015 10:22:13 μμ
📊 Number: 3	Author: User	Subject: Highlight	Date: 26/8/2015 10:29:38 μμ
Where were the b	alloons launched fr	om? by which organis	ation?
👖 Number: 4	Author: User	Subject: Highlight	Date: 26/8/2015 10:30:49 μμ

The agreement with which MIPAS profile: the Sept one or the SON one?

For the profile from the sunrise of 23 September 2007, three collocated MIPAS profiles were found (gray lines). Maximum deviation of those three profiles from the MkIV profile is 0.3 ppmv. Note that the positive MIPAS bias under 25 km, shown in the comparison with satellite instruments, is less pronounced in the comparison with MkIV **Profiles**.

3.3 Comparison with cryosampler profiles

25

Pryosampler measurements do not provide continuous profiles but a series of independent point measurements. This means that not even smeared information about the atmospheric state between two sampling points is available. Thus no regridding
 has been performed; instead, these data have been used as they are and on the height where they were measured.

In Fig. 5 the comparison of MIPAS methane and the cryosampler measurements is hown. Besides the closest MIPAS profile (orange line) and the set of all MIPAS profiles meeting the coincidence criteria (grey lines; mean value: green line) also the climatological mean of the season and latitude is shown (green line). For the first two flights (upper panel of Fig. 5) the agreement between 23 and 32 km heights is excellent. As expected, the individual collocated profiles agree better than the corresponding means. Below 20 km, the high MIPAS dias of about 0.2 ppmv is present. Let us point out that on 20–25 km height, unlike in the satellite-satellite comparisons, the MIPAS measurements agree very well with the cryosampler measurements.

The third flight (bottom left panel of Fig. 5) of the cryosampler instrument gave rise to only four measurements, none of which is situated between 18 and 32 km. The two measurements over 32 km agree well with MIPAS. The two data points below 18 km reveal that the MIPAS CH_4 vmr is larger by 0.1 and 0.2 ppmv than the cryosampler measurement.

The last flight (bottom right panel of Fig. 5) stands out by a pronounced CH_4 minimum in the cryosampler data at approximately 22 and 24 km, which is not reproduced by the MIPAS data. This suggests that the cryosampler, which performs point measure-

Discussion

Paper

Discussion Paper

Discussion Paper

Discussion Paper

T Number: 1	Author: User	Subject: Highlight	Date: 26/8/2015 10:34:47 μμ
I think that a sen	tence as to the scien	tific merit of these co	omparisons is missing: are they good? bad? mediocre? what are the errors associated
with the in situ m	neasurements? within	n the MIPAS errors? h	have any of the other satellite products been compared in papers to these in situ
measurements?			
	A		

The Number: 2 Author: User Subject: Highlight Date: 26/8/2015 10:36:00 μμ What are cryosampler measurements? who makes them? have they been used in other works? what is their error estimate? important information is missing from this introduction.

Number: 3 Author: User Subject: Highlight Date: 26/8/2015 10:37:40 μμ
This figure is incredibly busy and the information you are trying to convey cannot be seen at all. Not all these lines are paramount, either separate the plots or choose what to show.

Number: 4 Author: User Subject: Highlight Date: 26/8/2015 10:38:58 μμ How much is this in percentage? is it big? small? normal? expected? ments, samples a very localized phenomenon which is not resolved by MIPAS whose measurements represent for each profile point an air parcel of about 400 km in length times 30 km in width times 3 km in height. At the other altitudes, the cryosampler profile agrees reasonably well with both the collocated and the zonal mean MIPAS profiles. Below 20 km the tendency of MIPAS towards higher CH_4 mixing ratios is confirmed also here.

4 Temporal evolution of the bias

10

Based on the monthly distribution of coincident measurements (see Fig. 2) and altitude coverage (see Table 1), only ACE-FTS collocations could eventually provide enough of data for studying the stability of MIPAS CH_4 data in some latitude bands. Note however, that the stability of ACE-FTS itself has not yet been investigated. As to MIPAS, the study by Kiefer et al. (2013) showed that the way the detector non-linearity is corrected in Level 1B spectra (up to version 5) could be a potential source for the drift in MIPAS data products.

To assess the temporal evolution of the bias of MIPAS with respect to ACE-FTS (i.e. drifts), the monthly means of differences MIPAS-ACE were calculated, then the multilinear parametric trend model from von Clarmann et al. (2010) with extensions by Stiller et al. (2012) and Eckert et al. (2014) was applied. Most of the obtained drift estimates were found to be insignificant $\frac{4}{2}$ t 2σ level due to the small number of months for which

²⁰ collocations were found. Figure 6 shows an example of ⁵ignificant drift. Generally the significant drifts tends to be higher at the Nothern Hemisphere, have no pronounced tendency in the sign, and do not exceed 0.2 ppmv per decade in absolute ⁶alue.

5 Assessment of quality of uncertainty estimates of MIPAS methane profiles

The uncertainty usually provided with a dataset is the random component of the error (random error). In order to evaluate how realistic these uncertainties are, one compares

9

Discussion

Paper

Discussion Paper

Discussion Paper

Discussion Paper

Number: 1	Author: User	Subject: Highlight	Date: 26/8/2015 10:40:34 μμ
What does this m	ean in physical term	s? that there are no l	ocalised phenomena in other altitudes? a discussion on the scientific merit of this
comparison is also	o important here.		
Number: 2	Author: Llcor	Subject: Highlight	Date: 26/8/2015 10:42:00
T Number. 2	Aution User	Subject. Highlight	Date. 20/8/2013 10.45.00 μμ
Is this so? do the	ACE-FTS co-authors	agree with this state	ment?
Number: 3	Author: User	Subject: Highlight	Date: 26/8/2015 10:43:30 μμ
a recent study	by	, , , , , , , , , , , , , , , , , , , ,	
,	-)		
📊 Number: 4	Author: User	Subject: Highlight	Date: 26/8/2015 10:43:40 μμ
at the 2sigma le	evel		
-			
T Number: 5	Author: User	Subject: Highlight	Date: 26/8/2015 10:44:56 μμ
Significant to what level? 90%? 95%? why are you expecting a drift? or are you not expecting a drift?			
	A	C. h.' u. u.'. h.'. h.	D - L - 26 /0 /2015 10 /7 07
T Number: 6	Author: User	Subject: Highlight	Date: 26/8/2015 10:47:07 μμ
I find this paragra	ph somewhat disapp	pointing. There is abs	solutely no discussion on the physicality of the findings, only one example at high NH
latitudes for 20km is given where already the authors have claimed the MIDAS has a tendency to higher CH4 values. This section should be			

latitudes for 20km is given where already the authors have claimed the MIPAS has a tendency to higher CH4 values. This section should be expanded, maybe a table of results, both significant and non-significant should be included, and a full discussion as well.

the square of the mean uncertainty σ_{noise} provided with the dataset with the variance of a sample derived from the dataset, performed in a region with low natural variability σ_{nat} . We work with the sample which is composed of differences of losed profiles, with converging collocation criteria. This approach was used in Sofieva et al. (2014) and Laeng et al. (2015). Then the variance S_{diff}^2 reflects the variability of (MIPAS-MIPAS) for collocated MIPAS pairs; the natural variability included in this variance is the smallscale natural variability:

$$2\sigma_{\text{noise}}^2 + \sigma_{\text{nat}}^2 = S_{\text{diff}}^2$$

We expect that the smaller the separation distance, the smaller is the discrepancy between σ_{noise} and S_{diff}/√2. In particularly, when the separation distance tends to zero, S_{diff}/√2 should approach σ_{noise}, if the latter is realistic (recall that the atmospheric variability in the selected regions is small). The parameter S_{diff}/√2 is a direct analogue of the integral of the structure function from the theory of random functions. More details can be found in Sofieva et al. (2014) and Laeng et al. (2015). In Fig. 7, we construct
¹⁵ ³ tructure functions for MIPAS methane retrieval. The colored lines in Fig. 7 ⁴ ×-post) correspond to S_{diff}/√2 for converging distance *r* between the air parcels, and the red line (ex-ante) shows σ_{noise}. As observed in Fig. 7, S_{diff}/√2 nicely converges with decreasing separation distance, but does not approach σ_{noise}, the values on the limit curve of S_{diff}/√2's being approximatively 1.2 bigger than σ_{noise} values. ⁵ his indicates IMK retrievals.

6 Climatologies and histograms comparisons

Figure 8 represents the temporal evolution of methane monthly zonal means of SCIA-MACHY (top panel), MIPAS (middle panel), and the relative difference (bottom panel). The CIAMANY instrument was choosen for this study because of its best agreement

10

Validation of MIPAS **IMK/IAA** methane profiles A. Laeng et al. Title Page Abstract Introduction Conclusions References Tables Figures Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion

AMTD

8, 1-26, 2015

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

TNumber: 1	Author: User	Subject: Highlight	Date: 26/8/2015 10:47:47 μμ	
What does "closed	profiles" mean?			
TNumber: 2	Author: User	Subject: Highlight	Date: 26/8/2015 10:48:29 μμ	
And what did those	e two studies show?	the fact that an app	roach was used does not give it merit.	
TNumber: 3	Author: User	Subject: Highlight	Date: 26/8/2015 10:50:16 μμ	
What does this ter	m mean? is it the Sd	iff?		
TNumber: 4	Author: User	Subject: Highlight	Date: 26/8/2015 10:50:50 μμ	
I do not think that the common reader should be expected to know what ex-post and ex-ante mean				
TNumber: 5	Author: User	Subject: Highlight	Date: 26/8/2015 10:51:45 μμ	
And? will you sugg	est to the PIs of this	data to re-evaluate	their error estimates? how will the knowledge gained with this analysis you made	
improve the IMK/IA	AA CH4 product? ag	ain, a scientific discu	ission of the findings of this paragraph is missing.	
TNumber: 6	Author: User	Subject: Highlight	Date: 26/8/2015 10:52:02 μμ	
SCIAMACHY.				

in the stratosphere with MIPAS methane profiles. The bin [50° N, 70° N] is restricted by the measuring mode of SCIAMACHY, from which vertical profiles of methane are retrieved (Noël et al., 2011)¹As dynamical tracer, CH₄ is expected to follow the transport patterns. As one can see at the Fig. 8, MIPAS and SCIAMACHY instruments see a similar morphology in the structure of atmospheric variation of methane, in particular a pronounced annual cycle. In the springs of the years 2005 and 2007, MIPAS methane distribution present ²econdary peaks at 25–27 km. The strong red parts in the lower panel of Fig. 8 occur mostly in winter time and are most probably due to the polat³ brtex edge, i.e. the ⁴tudied air masses are not always comparable.

- ¹⁰ Figure 9 shows the histograms of measured CH₄ mixing ratios at 45 and 60 km heights on the ⁵MIPAS-SOFIE co-incidences. In each column, frequency polygons of both histograms are supposed to imitate the distribution function of the same random variable, which is the value of methane vmr at a given height independent of location. Hence top and bottom distributions in each column should look similar, with the
- same number and position of local maxima. The corresponding MIPAS and SOFIE histograms agree with respect to the approximate position of the main mode, their approximate width, and their skewness. The SOFIE histograms, however, presents several chaotic secondary modes. Such a structure is not seen in any comparison of MIPAS with other instruments, which hints at some systematic or retrieval-related effect causing the numerous positive and negative outliers, e.g. turning-points of presents.
- related profile escillations.

7 Conclusions

The MIPAS IMK V5R_CH4_222 data were compared to the data from four satellite instruments and two balloon-borne instruments. Below 25 km, MIPAS methane is biased high. The magnitude of this bias cannot unambigouosly be inferred from the comparisons because results are not fully consistent, but $\frac{10}{10}$ % seems to be a reasonable estimate. In the middle stratosphere, the bias analysis is a little ambiguous but MIPAS

Discussion

Paper

Discussion Paper

Discussion Paper

Discussion Paper

TNumber: 1	Author: User	Subject: Highlight	Date: 26/8/2015 10:54:37 μμ		
This is the first tir	This is the first time in the paper that the function of CH4 in the atmosphere is mentioned!				
TNumber: 2	Author: User	Subject: Highlight	Date: 26/8/2015 10:56:06 μμ		
What is the physi	cs behind this?				
TNumber: 3	Author: User	Subject: Highlight	Date: 26/8/2015 10:55:43 μμ		
polar vortex					
TNumber: 4	Author: User	Subject: Highlight	Date: 26/8/2015 10:55:32 μμ		
Hence, for the co	-locaton criteria you	have chosen, you sh	ould not compare the winter-times.		
TNumber: 5	Author: User	Subject: Highlight	Date: 26/8/2015 11:02:30 μμ		
Why these coinci	Why these coincidences and not the MIPAS-SCIA coincidences?				
TNumber: 6	Author: User	Subject: Highlight	Date: 26/8/2015 10:56:55 μμ		
present					
TNumber: 7	Author: User	Subject: Highlight	Date: 26/8/2015 10:57:35 μμ		
I.e. in the SOFIE r	etrievals?				
TNumber: 8	Author: User	Subject: Highlight	Date: 26/8/2015 10:57:17 μμ		
What does this te	What does this term mean?				
TNumber: 9	Author: User	Subject: Highlight	Date: 26/8/2015 10:57:53 μμ		
Again, a discussion	on as to the physics/	meaning of this parag	graph is missing.		
Number: 10	Author: Llcor	Subject: Highlight	Date: 26 /8 /2015 10:50:15		

 Number: 10
 Author: User
 Subject: Highlight
 Date: 26/8/2015 10:59:15 μμ

 It might be more prudent to claim between 10 and 20%. 14% seems to be too "specific" as value when you claim in the paragraph above that you cannot unambiguously infer the magnitude.

seems to have a slight tendency towards higher values. In the upper stratosphere and above, excellent agreement with the other instruments is found, except for altitudes near 70 km, at the upper end of the MIPAS profiles, where MIPAS tends towards lower values. A high bias in MIPAS methane in the lower stratosphere has also been reported

- ⁵ for the operational MIPAS data product provided by ESA (Payan et al., 2009). Interestingly, in the comparison with CH₄ data obtained from cryosampler measurements, there is no evidence of a MIPAS high bias between 20 and 25 km altitude. Precision validation was performed on collocated MIPAS-MIPAS pairs and suggested a slight underestimation of uncertainties provided with the data by a factor of 1.2. Significant
- ¹⁰ drifts with respect to ACE-FTS tend to have higher absolute values in the Nothern Hemisphere, have no pronounced tendency in the sign, and do not exceed 0.2 ppmv per decade in absolute value¹Dverall, this MIPAS data set has a reasonable bias with respect to standard methane data records and can be used for climatological studies in an altitude range from 10 to 60 km.
- Acknowledgements. The first author is grateful to Viktoria Sofieva for numerous helpful conversations. This work was performed in the framework of the European Space Agency Climate Change Initiative Greenhouse Gases Project. MIPAS level 1 data are provided by the European Space Agency. The ACE mission is supported primarily by the Canadian Space Agency. Part of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. We thank the Columbia Scientific Balloon Facility (CSBF) for
- 20 ogy, under contract with NASA. We thank the Columbia Scientific Balloon Facility (CSBF) for performing the launches of the JPL MkIV instrument. We acknowledge support by Deutsche Forschungsgemeinschaft and Open Access Publish-

ing Fund of Karlsruhe Institute of Technology.

²⁵ The article processing charges for this open-access publication were covered by a Research Centre of the Helmholtz Association.

Discussion

Paper

Discussion Paper

Discussion Paper

Discussion Paper

 Number: 1
 Author: User
 Subject: Highlight
 Date: 26/8/2015 11:01:23 μμ

 Does the climate community agree with this assessment? is 10 to 20% bias a reasonable bias for climatological studies? have such studies been performed either with MIPAS or other CH4 datasets?

References

15

- Boone, C. D., Walker, K. A., and Bernath, P. F.: Version 3 retrievals for the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), in: The Atmospheric Chemistry Experiment ACE at 10: A Solar Occultation Anthology, edited by: Bernath, P. F., A. Deepak Publishing, Hampton, Virginia, USA, 103–127, 2013. 17
- Deepak Publishing, Hampton, Virginia, USA, 103–127, 2013. 17
 Chauhan, S., Höpfner, M., Stiller, G. P., von Clarmann, T., Funke, B., Glatthor, N., Grabowski, U., Linden, A., Kellmann, S., Milz, M., Steck, T., Fischer, H., Froidevaux, L., Lambert, A., Santee, M. L., Schwartz, M., Read, W. G., and Livesey, N. J.: MIPAS reduced spectral resolution UTLS-1 mode measurements of temperature, O₃, HNO₃, N₂O, H₂O and relative humidity over ice: retrievals and comparison to MLS, Atmos. Meas. Tech., 2, 337–353,
 - doi:10.5194/amt-2-337-2009, 2009. 3
 - Echle, G., von Clarmann, T., Dudhia, A., Flaud, J.-M., Funke, B., Glatthor, N., Kerridge, B., López-Puertas, M., Martín-Torres, F. J., and Stiller, G. P.: Optimized spectral microwindows for data analysis of the Michelson interferometer for passive atmospheric sounding on the environmental satellite, Appl. Optics, 39, 5531–5540, 2000.
- Eckert, E., von Clarmann, T., Kiefer, M., Stiller, G. P., Lossow, S., Glatthor, N., Degenstein, D. A., Froidevaux, L., Godin-Beekmann, S., Leblanc, T., McDermid, S., Pastel, M., Steinbrecht, W., Swart, D. P. J., Walker, K. A., and Bernath, P. F.: Drift-corrected trends and periodic variations in MIPAS IMK/IAA ozone measurements, Atmos. Chem. Phys., 14, 2571–2589, doi:10.5194/acp-14-2571-2014, 2014. 9
 - Engel, A., Schmidt, U., and Stachnik, R. A.: Partitioning between chlorine reservoir species deduced from observations in the arctic winter stratosphere, J. Atmos. Chem., 27, 107–126, 1997. 17
- Fischer, H., Birk, M., Blom, C., Carli, B., Carlotti, M., von Clarmann, T., Delbouille, L., Dudhia, A., Ehhalt, D., Endemann, M., Flaud, J. M., Gessner, R., Kleinert, A., Koopman, R., Langen, J., López-Puertas, M., Mosner, P., Nett, H., Oelhaf, H., Perron, G., Remedios, J., Ridolfi, M., Stiller, G., and Zander, R.: MIPAS: an instrument for atmospheric and climate research, Atmos. Chem. Phys., 8, 2151–2188, doi:10.5194/acp-8-2151-2008, 2008. 3
- Glatthor, N., von Clarmann, T., Fischer, H., Funke, B., Grabowski, U., Höpfner, M., Kellmann, S.,
 ³⁰ Kiefer, M., Linden, A., Milz, M., Steck, T., Stiller, G. P., Mengistu Tsidu, G., and Wang, D. Y.:
 Mixing processes during the Antarctic vortex split in September/October 2002 as inferred

Validation of MIPAS
IMK/IAA methane
profilesA. Laeng et al.A. Laeng et al.Title PageAbstractAbstractIntroductionConclusionsReferencesTablesFigures

Close

AMTD

8, 1-26, 2015

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Back

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

۲

from source gas and ozone distributions from ENVISAT-MIPAS, J. Atmos. Sci., 62, 787–800, 2005. 3

- Glatthor, N., von Clarmann, T., Fischer, H., Funke, B., Gil-López, S., Grabowski, U., Höpfner, M., Kellmann, S., Linden, A., López-Puertas, M., Mengistu Tsidu, G., Milz, M.,
- Steck, T., Stiller, G. P., and Wang, D.-Y.: Retrieval of stratospheric ozone profiles from MI-PAS/ENVISAT limb emission spectra: a sensitivity study, Atmos. Chem. Phys., 6, 2767–2781, doi:10.5194/acp-6-2767-2006, 2006. 3

5

10

15

20

- Gordley, L., Hervig, M. E., Fish, C., Russell, J. M., Bailey, S., Cook, J., Hansen, S., Shumway, A., Paxton, G., Deaver, L., Marshall, T., Burton, J., Magill, B., Brown, C., Thompson, E., and
- Kemp, J.: The solar occultation for ice experiment, J. Atmos. Solar-Terr. Phy., 71, 300–315, 2009. 17
- Kiefer, M., Aubertin, G., Birk, M., de Laurentis, M., Eckert, E., Kleinert, A., Perron, G., and Wagner, G.: Impact of Improved Corrections for MIPAS Detector Non-Linearity, Atmospheric Composition Validation and Evolution, Frascati, 13–15 March 2013, Abstract Book, 38, 2013.
- Laeng, A., Hubert, D., Verhoelst, T., von Clarmann, T., Dinelli, B. M., Dudhia, A., Raspollini, P., Stiller, G., Grabowski, U., Keppens, A., Kiefer, M., Sofieva, V., Froidevaux, L., Walker, K. A., Lambert, J.-C., and Zehner, C.: The ozone climate change initiative: comparison of four level 2 processors for the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), Remote Sens. Environ., 162, 316–343, 2015. 3, 5, 10
- Levin, I., Glatzel-Mattheier, H., Marik, T., Cuntz, M., Schmidt, M., and Worthy, D. E.: Verification of German methane emission inventories and their recent changes based on atmospheric observations, J. Geophys. Res., 104, 3447–3456, 1999. 17
- Network for the Detection of Atmospheric Composition Change (NDACC) Satellite Working Group: Trace gases measured by atmospheric sensors, available online at: http: //accsatellites.aeronomie.be/index.php/measured-trace-gases (last access: 1 June 2015), 2008. 4
 - Noël, S., Bramstedt, K., Rozanov, A., Bovensmann, H., and Burrows, J. P.: Stratospheric methane profiles from SCIAMACHY solar occultation measurements derived with onion peel-
- ing DOAS, Atmos. Meas. Tech., 4, 2567–2577, doi:10.5194/amt-4-2567-2011, 2011. 11, 17
 Park, J. H., Russell III, J. M., Gordley, L. L., Drayson, S. R., Benner, D. C., McInerney, J. M., Gunson, M. R., Toon, G. C., Sen, B., Blavier, J.-F., Webster, C. R., Zipf, E. C., Erdman, P.,

8, 1–26, 2015 Validation of MIPAS IMK/IAA methane profiles

AMTD

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Title Page			
Abstract	Introduction		
Conclusions	References		
Tables	Figures		
I	۶I		
•	•		
Back	Close		
Full Screen / Esc			
Printer-friendly Version			
Interactive Discussion			
CC BY			

Schmidt, U., and Schiller, C.: Validation of halogen occultation experiment CH₄ measurements from the UARS, J. Geophys. Res., 101, 10183–10203, 1996. 17

- Payan, S., Camy-Peyret, C., Oelhaf, H., Wetzel, G., Maucher, G., Keim, C., Pirre, M., Huret, N., Engel, A., Volk, M. C., Kuellmann, H., Kuttippurath, J., Cortesi, U., Bianchini, G., Mencar-
- aglia, F., Raspollini, P., Redaelli, G., Vigouroux, C., De Mazière, M., Mikuteit, S., Blumenstock, T., Velazco, V., Notholt, J., Mahieu, E., Duchatelet, P., Smale, D., Wood, S., Jones, N., Piccolo, C., Payne, V., Bracher, A., Glatthor, N., Stiller, G., Grunow, K., Jeseck, P., Te, Y., and Butz, A.: Validation of version-4.61 methane and nitrous oxide observed by MIPAS, Atmos. Chem. Phys., 9, 413–442, doi:10.5194/acp-9-413-2009, 2009. 12
- Rodgers, C. D. and Connor, B. J.: Intercomparison of remote sounding instruments, in: Optical Remote Sensing of the Atmosphere OSA Technical Digest, Optical Society of America, Washington DC, 46–48, 1999. 5
 - Russell III, J. M., Gordley, L. L., Park, J. H., Drayson, S. R., Hesketh, W. D., Cicerone, R. J., Tuck, A. F., Frederick, J. E., Harries, J. E., and Crutzen, P. J.: The halogen occultation experiment, J. Geophys. Res., 98, 10777–10797, 1993. 17
- Ruth, S., Kennaugh, R., Gray, L. J., and Russell III, J. M.: Seasonal, semiannual, and interannual variability seen in measurements of methane made by the UARS Halogen Occultation Experiment, J. Geophys. Res., 102, 16189–16199, 1997. 7

15

Sofieva, V. F., Tamminen, J., Kyrölä, E., Laeng, A., von Clarmann, T., Dalaudier, F., Hauchecorne, A., Bertaux, J.-L., Barrot, G., Blanot, L., Fussen, D., and Vanhellemont, F.: Validation of GOMOS ozone precision estimates in the stratosphere, Atmos. Meas. Tech., 7, 2147–2158, doi:10.5194/amt-7-2147-2014, 2014. 10

Stiller, G. P., Kiefer, M., Eckert, E., von Clarmann, T., Kellmann, S., García-Comas, M., Funke, B., Leblanc, T., Fetzer, E., Froidevaux, L., Gomez, M., Hall, E., Hurst, D., Jor-

- dan, A., Kämpfer, N., Lambert, A., McDermid, I. S., McGee, T., Miloshevich, L., Nedoluha, G., Read, W., Schneider, M., Schwartz, M., Straub, C., Toon, G., Twigg, L. W., Walker, K., and Whiteman, D. N.: Validation of MIPAS IMK/IAA temperature, water vapor, and ozone profiles with MOHAVE-2009 campaign measurements, Atmos. Meas. Tech., 5, 289–320, doi:10.5194/amt-5-289-2012, 2012. 9
- Toon, G. C.: The JPL MkIV interferometer, Opt. Photonics News, 2, 19–21, 1991. 17 Toon, G. C., Blavier, J.-F., Sen, B., Margitan, J. J., Webster, C. R., May, R. D., Fahey, D., Gao, R., DelNegro, L., Proffitt, M., Elkins, J., Romashkin, P. A., Hurst, D. F., Oltmans, S., Atlas, E., Schauffler, S., Flocke, F., Bui, T. P., Stimpfle, R. M., Bonne, G. P., Voss, P. B., and

AMTD

Discussion

Paper

Discussion Paper

Discussion Paper

Discussion Paper

8, 1-26, 2015

Validation of MIPAS IMK/IAA methane profiles

Title Page				
Abstract	Introduction			
Conclusions	References			
Tables	Figures			
I	۶I			
•	►			
Back	Close			
Full Screen / Esc				
Printer-friendly Version				
Interactive Discussion				
CC O				

Cohen, R. C.: Comparison of MkIV balloon and ER–2 aircraft measurements of atmospheric trace gases, J. Geophys. Res., 104, 26779–26790, 1999. 17

von Clarmann, T.: Validation of remotely sensed profiles of atmospheric state variables: strategies and terminology, Atmos. Chem. Phys., 6, 4311–4320, doi:10.5194/acp-6-4311-2006, 2006. 5

5

10

- von Clarmann, T. and Echle, G.: Selection of optimized microwindows for atmospheric spectroscopy, Appl. Optics, 37, 7661–7669, 1998.
- von Clarmann, T., Ceccherini, S., Doicu, A., Dudhia, A., Funke, B., Grabowski, U., Hilgers, S., Jay, V., Linden, A., López-Puertas, M., Martín-Torres, F.-J., Payne, V., Reburn, J., Ri-
- dolfi, M., Schreier, F., Schwarz, G., Siddans, R., and Steck, T.: A blind test retrieval experiment for infrared limb emission spectrometry, J. Geophys. Res., 108, 4746, doi:10.1029/2003JD003835, 2003a.
- von Clarmann, T., Glatthor, N., Grabowski, U., Höpfner, M., Kellmann, S., Kiefer, M., Linden, A., Mengistu Tsidu, G., Milz, M., Steck, T., Stiller, G. P., Wang, D. Y., Fischer, H., Funke, B.,
- Gil-López, S., and López-Puertas, M.: Retrieval of temperature and tangent altitude pointing from limb emission spectra recorded from space by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), J. Geophys. Res., 108, 4736, doi:10.1029/2003JD003602, 2003b. 3
- von Clarmann, T., De Clercq, C., Ridolfi, M., Höpfner, M., and Lambert, J.-C.: The horizontal resolution of MIPAS, Atmos. Meas. Tech., 2, 47–54, doi:10.5194/amt-2-47-2009, 2009a. 4
- von Clarmann, T., Höpfner, M., Kellmann, S., Linden, A., Chauhan, S., Funke, B., Grabowski, U., Glatthor, N., Kiefer, M., Schieferdecker, T., Stiller, G. P., and Versick, S.: Retrieval of temperature, H₂O, O₃, HNO₃, CH₄, N₂O, CIONO₂ and CIO from MIPAS reduced resolution nominal mode limb emission measurements, Atmos. Meas. Tech., 2, 159–175, doi:10.5194/amt-2-159-2009, 2009b. 3
 - von Clarmann, T., Stiller, G., Grabowski, U., Eckert, E., and Orphal, J.: Technical Note: Trend estimation from irregularly sampled, correlated data, Atmos. Chem. Phys., 10, 6737–6747, doi:10.5194/acp-10-6737-2010, 2010. 9
- Waymark, C., Walker, K. A., Boone, C. D., and Bernath, P. F.: ACE-FTS version 3.0 data set: validation and data processing update, Ann. Geophys.-Italy, 56, doi:10.4401/ag-6339, 2013.

AMTD

8, 1–26, 2015

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Validation of MIPAS IMK/IAA methane profiles

Title Page				
Abstract	Introduction			
Conclusions	References			
Tables	Figures			
I	►I			
•	•			
Back	Close			
Full Screen / Esc				
Printer-friendly Version				
Interactive Discussion				
CC O BY				

AMTD

8, 1–26, 2015

Validation of MIPAS IMK/IAA methane profiles

A. Laeng et al.

Title Page				
Abstract	Introduction			
Conclusions	References			
Tables	Figures			
I	۶I			
•	►			
Back	Close			
Full Screen / Esc				
Printer-friendly Version				
Interactive Discussion				
CC O BY				

Discussion Paper | Discussion Paper | Discussion Paper |

Table 1. deference datasets.

Reference instrument	Version	Viewing geometry	Time overlap	Collocation criteria	Number of matches	Reference	Recent validation
ACE-FTS HALOE SCIAMACHY SOFIE	v3.5 v19 v3.3.6 v1.2	solar occultation solar occultation solar occultation solar occultation	2005–2012 Jan–Aug 2005 2005–2010 2007–2012	9 h – 800 km 24 h – 1000 km 5 h – 500 km 5 h – 500 km	14 200 783 5636 29 124	Boone et al. (2013) Russell III et al. (1993) Noël et al. (2011) Gordley et al. (2009)	Waymark et al. (2013) Park et al. (1996) Noël et al. (2011)
MkIV Cryosampler	n/a n/a	solar occultation n/a	2005–2007 n/a	24 h – 1000 km 24 h – 1000 km	3 n/a	Toon (1991) Engel et al. (1997); Levin et al. (1999)	Toon et al. (1999)

I think you should also note where you got the data from, personal communication or are they publicly available?

 Number: 1
 Author: User
 Subject: Highlight
 Date: 26/8/2015 10:13:50 μμ

 Please, reduce the amount of colours in the colour bar to something more manageable, like 32. Then make the tick marks round numbers, what kind of percent is 13.9?! What what does the dark blue colour in the ACE-FTS comparisons mean, one co-location per month?

CC

The Number: 1 Author: User Subject: Highlight Date: 26/8/2015 10:33:23 μμ What is this product? the SON you mention in the text? why not compare the Sept 2005 profiles only? a confusion is to be found in this.

TNumber: 1 Author: User Subject: Highlight Date: 26/8/2015 10:36:52 μμ You mean maybe "refers to" instead of "stays for"?

Interactive Discussion

(00)

۲

variability: North Pole in June-July-August (JJA, left column) and South Pole in December-January-February (DJF, right column). The analysis was run on 430 pairs within 220 km, 7500 pairs within 880 km, going up to 12 400 pairs within 2000 and more km.

25

in 2005–2010.

Figure 9. Relative frequency of vmr values of MIPAS (upper line) and SOFIE (bottom line) at 45 km (left column) and 60 km (right column).

26

Figure 6. Drift of MIPAS methane with respect to ACE-FTS at 20 km height in [60° N; 70° N] latitudes. Upper panel: monthly means (blue diamonds), calculated fit and the related trend (orange lines) for the differences (MIPAS-ACE). The drift here is -0.06 ppmv per decade. Bottom panel: differences between the fit and the data points (the residual).

