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The authors would like to thank the reviewer#2 for the detailed revision of the manuscript. The 

reviewer has provided several valuable comments and suggestions to improve the quality of the 

manuscript and to correct some inaccuracies. English is improved in the new version of the 

manuscript along with its general structure. The authors have got benefit from the notes reported 

by the reviewer in form of hand-written comments. The manuscript length is reduced, the Sect 

2.2, 2.2.1, 2.2.2, 2.3 and 3.5 are now moved in the Appendix. The math notation is now more 

consistent.  

Note: unless otherwise stated, page/line numbers refer to the Annotated Manuscript from 

Referee #2. 

Answers to “Major Comments”.  

(1) Reviewer comment: ”The first part of the manuscript (whole Sect. 2) and, more intensively 

until Eq. (7), is just a review – in summary “book” fashion – of well-known concepts on 

digital signal processing, which conveys no original material. Suggestions are given next to 

improve it in terms of notation, terminology and clearer structuration of ideas.” 

The Sect.2 is improved: it rewritten and the relevant references are cited.  In details: 

1. Response of linear-time-invariant (LTI) systems to arbitrary inputs: convolution sum 

Eq.(R1) is now the Eq.(1). 

“The general time-domain relationship between the system output value at time n 

and the input values for a linear-time invariant (LTI) system can be written as:  
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In Eq. (1) the sequence h(k) is the so-called impulse response and it represents the 

wanted LTI transformation.” 

2. Causality  

The causality characteristics of the FIR filters used in this work are briefly 
commented in the revised manuscript (see below the point 3., 4. and 5.): 

“In the case of real-time DSP the Eq. (1) cannot be used directly since it requires 

future discrete-time input samples to be available, i.e. those with positive (n–k) time-

index (for this reason the LTI system is required to be causal) moreover it has 



infinite limits. However, for the current study only Finite Impulse Response (FIR) 

filter will be examined, i.e., only those filters for which h(k) has a finite number of 

non-zero elements. Furthermore the analysis of lidar signals is typically carried out 

offline, and for this reason, “future” samples are always available (Orfanidis, 2010).” 

 

3. Finite Impulse Response (FIR) 

The FIR definition is inserted as suggested by the reviewer (Eq.R3). 

“According to the above considerations, the Eq. (2) can be written as:  
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The Eq. (2) is a representation of the so-called non-causal Linear Time Invariant 

(LTI) Finite Impulse Response (FIR) digital filter (Orfanidis, 2010).” 

4. Highlight the importance of linear-phase FIR filters, which is what you use all over 
the papers. 

The role of linear-phase FIR filters is discussed in the manuscript: 

“The FIR frequency response can be written as:  
)()()( jeAH                        (4) 

where A( ) is the amplitude and is the phase. FIR filters can have ( )=–b , 

where b is a constant. This form of  simply shifts the different frequency 

components of a signal, avoiding phase distortion. A sufficient condition to have 

linear-phase is a real and symmetric impulse response (Oppenheim and Schafer, 

2009). In this study, non-causal low-pass FIR filters are considered for which ( )=0 

(zero-phase) and the symmetry condition is h(k)= h(–k). Then H( ) is a real function 

(Kuc, 1988) which can assume positive and negative values.” 

 

5. Fourier Transform (FT) of a discrete-time aperiodic signal (your Eq.(2)). Introduce the 
concept of “frequency for discrete-time signals”. 

The equivalent concept of digital frequency. The symbol is preserved (Kaiser,1977)  
because it is also used in other papers about the lidar effective resolution (Godin, 
1999; Masci, 1999): 

“The impulse response of a non-causal FIR filter is a real-valued sequence (as this is 

true also for the signals considered in this study) and its Discrete Time Fourier 

Transform (DTFT) (Karam et al., 2009; Hamming, 1989; Smith, 2007):  
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gives the frequency response, with  (the digital frequency) that is the ratio between 

the analog angular frequency , and fS the sampling frequency, “it represents a 

convenient normalization of the physical frequency f ”(Orfanidis, 2010). In general 

H( ) is a complex, continuous and periodic function of  with period 2 . For real 

h(k), H
*
( )=H(– ), and all the information carried by the frequency response are 

confined in the range 0≤  ≤  (Kuc, 1988). If f is normalized to the Nyquist 



frequency fN=fs/2 (Orfanidis, 2010), i.e. reported in f/fN= / units, then 0≤ 

≤1. The variable is usually called reduced or normalized frequency (Kaiser, 

1977; Godin, 1999, Masci, 1999; Orfanidis, 2010); it will be used as an independent 

variable in all the frequency response plots presented in this work.” 

6. Fig. 1 Why the negative part of the spectrum is not represented? Explain that only 
positive frequencies need be represented. 
 
See the above answer. 

 

(2) Reviewer comment: FIGURES. Please consider plotting 20log10|H | all over most of (not 

all) the spectral figures of the paper instead of plain H . The standard representation in 

signal processing is 20log10|H | and arg[H  [deg]. This will help identifying sidelobes 
in the STOPBAND. The correct notation for decibel is [dB] (not db). 

 

The linear scale helps to explain the effects of the negative values of H. In the revised 

manuscript Fig.6 and Fig.8 are shown also using dB scale. The correct decibel notation is 

included.  

 

 
New Fig.6 



 
New fig.8 

 

(3) Reviewer comment: Notation (not exhaustive): (…) 

Notation is now consistent and homogeneous. 

 

(4) Reviewer Comment: Equivalent SG filter. The author propose cascaded SG filter 

combinations of the type SG2(L1) & SG4(L2). How does a single filter, for example 

SG2(L1+L2), compare with the cascaded solution? More generally, the authors should 

discuss on an equivalent SGx(y), i.e., a suitable pair of order “x” and length “y” based on 

nice parametric studies carried out. This is better oriented to the focus of the paper. 

 

The authors think that a complete parametric study on this topic is beyond the scope of 

the manuscript. We also think that our examples are sufficient to describe the cascade 

methodology and its performance.  

The cascade SG filter is proposed as one of the possible solutions to reduce the side-lobe 

effects of the SG filters. The cascade filter SGx(y)SGx1(y1) “equivalent” to SGx(y) (i.e. with 

nearly the same pass-band and less pronounced side-lobes of the SGx(y)), is found with the 

simple rule: x=x1-x=2, y1=y.  

A single SG2 filter of any length could not overcome the side-lobe effect, see Fig.A1. In Fig. 

A1 (right plot) it is shown that the simple rule for the construction of the “equivalent” 



cascade SG filter works beyond the validity limit of Eq.(10), and this is included in the 

revised manuscript. 

In addition, in Fig. A1 (left plot) the cascade SG2(N)·SG2(N) is plotted to show that it 

remove efficiently the side-lobe effects, but it is not “equivalent” to SG2(N) from to pass-

band point of view.  

 

Fig. A 1. Left plot: the cascade filter “equivalent” to the SG2(33) should have nearly the same 

pass-band of SG2(33) (green-dot line) and less pronounced side-lobes. The best results (red line) 

is obtained adopting the cascade construction with the simple rule: x=2 and same y. Right plot: 

it is shown our simple rule works well (red line) beyond the validity limits of Eq.(10). 

 

(5) Reviewer comment: Variable spatial resolution. How lidar signals are processed under a 

variable spatial-resolution approach? Using the same SG filter over the full range of the 

lidar sensor (or other remote-sensing sensor) means processing the lidar signal with the 

same spatial resolution (i.e., constant all over the inversion range). However, when faced 

with data records several km long, the rhythm of decrease of SNR forces to use much longer 

spatial resolutions at further ranges, where the SNR is getting lower and lower. It is difficult 

to believe that the same SG filter can solve the problem for the full inversion range (say 0-8 

km). I advise the authors to expand/discuss this part in detriment of others. 

 

The reviewer is right, it is a common practice to change the smoothing parameters to 

overcome the decrease of the SNR of the lidar signal as the range increases. We briefly 

describe the application of low-pass filters with variable parameters. Further analysis is 

outside the scope of this paper: 

 

“Due to the large dynamic range of a lidar signals, digital filters with a different frequency 

response could be applied at different ranges, in order to deal properly with local values of 

the signal-to-noise ratio (SNR). This means that the filter’s smoothing parameters are range 

dependent, therefore the smoothed lidar returns will be characterized by a range dependent 

effective resolution (see Sect.3).” 

 



(6) Reviewer comment: Conclusion. Just a preliminar review: Important is that –from what you 

have in hands- the scope of the paper at least covers: 1) an in-depth parametric study on SG 

and Gaussian filters and 2) Effective resolutions studies/methodologies. Both are equally 

important and nice to contribute, not only the second! The paper title could also be better 

adapter to reflect this. 

This study was carried out focusing on the effective resolution of lidar measurements. We 

agree with the reviewer and for this reason in the revised manuscript the corresponding 

part (p. 32 lines 1-13 in the old version of manuscript) have been changed as in the 

following: 

“Concerning the latter point, a parametric study of several smoothing filters has been 

performed to provide recommendations about the type to be used. The estimation of the 

ERes does not provide any definitive indications on the best filter to be applied in the data 

analysis: because the ERes does not contain any information about the spectral behavior of 

the different filters. Among the investigated filters, for example the cascade Savitzky – 

Golay filters are well suited for the lidar data analysis. This class of filters is characterized 

by: 

 the preservation of the spectral features of the signal in the pass-band; 

 steep transition band; 

 reduction of the side-lobe effects; 

 larger transient zone. 

The Gaussian filter characterized by : 

 an efficient suppression of the noise; 

 less accurate preservation of the signal in the pass-band;  

 more extended transition-band.” 

  



Answers to the “Detailed comments”. Note: unless otherwise stated, page/line numbers refer to 

the Annotated Manuscript from Referee #2. 

 

1. Reviewer comment: p.4, lin. 8. Clarify that according to SG (1964) paper there are two 

big families of SG filters: “smoothers” and “n-th order differentiators” and that 

derivation always implies a certain level of smoothing because of the inherent 

construction of the SG filter. 

The details of the filters properties (SG and Gaussian) are now in Appendix: 

 

“These kinds of filters are widely known as Savitzky – Golay (SG) (Savitzky and Golay, 

1964), a family of filters which comprise both pure smoothers and n
th

 order 

differentiators: this is discussed in the Appendix A1.” 

 

In Appendix it is stated that for the SG filters, the differentiator has a low-pass 

inherently present by construction: 

 

“The impulse response, for a given P and N, of the SG n
th

 order derivative filter is 

directly calculated (Savitzky and Golay, 1964): this is another useful property of the 

Savitzy – Golay recipe. The way the SG filters are constructed implies that derivation 

has a low-pass filter inherently embedded.” 

 

2. Reviewer comment: p.4, lin. 13. Notation. Unclear indexes. In the convolution equation, 

it is standard to say that the impulse response has “M” samples, the signal (x(n)), N 

samples, and the output (y(n)) N+M-1 samples. Please consider to include a figure 

sketch to help the reader (otherwise lins 21-23 becomes cumbersome…). 

 

In the new version of the manuscript, the authors have corrected the index and 

rephrased the implication of the convolution (the transient effect) in a more clear way 

and for this reason the authors think that the figure sketch is not needed. This is done 

following the reviewer corrections/suggestions in the annotated manuscript: 

“Then, the Eq. (1) can be written as:  
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The Eq. (2) is a representation of the so-called non-causal Linear Time Invariant (LTI) 

Finite Impulse Response (FIR) digital filter (Orfanidis, 2010). If the impulse response is 

composed of 2N+1=M elements and if the length of the input signal x(n) is nmax 

(n=1,2,...,nmax), than the length of the output signal y(n) will have normally M+nmax–1 

elements, if we do not consider the limits for n in Eq. (2). When y(n) is calculated for n 

outside those limits, i.e. for n<N+1(n>nmax–N), there is always a lack of one or more of 

the needed input samples. Those missing inputs will be treated as zeroes in the 

convolution sum, and this will cause an transient effect, and hence, a distortion on the 



smoothed signal. To remove this transient effect, the limits in n have been inserted in 

Eq.(2) and of course this implies an overall loss of information in the output signal 

because the necessary removal of N points at the beginning and at the end of the output 

signal. Anyhow, it should be noted that there are techniques (Gorry, 1990; Khan, 1987; 

Leach et al. 1984; Orfanidis, 2009) that are able to deal with this problem.” 

 

3. Reviewer comment: p.5, lin. 12. Remove “aliasing”. “Sampling of a continuous-time 

aperiodic signal (e.g., the lidar signal) causes the spectrum of the discrete-time signal 

(i.e., H(omega)) to be a continuous and periodic function of variable omega (with period 

2*pi (-pi<=omega<=pi)).” “Aliasing” usually refers to the unwanted effect of multiple 

spectrum folding on the frequency axis due to a too low sampling rate. 

 

The term “aliasing” is removed. See the answer [point (1), sub-point 5] in “Major 

Comments” answer section. 

 

4. Reviewer comment: p.5, lin. 15. Normalized frequency. Please see major comments.  

 

 See the answer [point (1), sub-point 5 and point (3)] in “Major Comments” answer 

section. 

 

5. Reviewer comment: p.6, lins 3-5. A negative value of H… results in artifacts. This 

assertion is FALSE. What causes “artifacts” of unwanted effects is the frequency content 

in the transient+stop-band of the spectrum, be it positive, negative, or with a given 

phase (in the case of a complex-valued spectrum, not your case). This part of the 

spectrum conveys “unwanted” leakage frequencies. The fact that an unwanted 

frequency has arg (H(omega1)) = 0 or 180 deg (i.e., H(omega_sub_1)=+1 or -1, 

respectively) means that this high-frequency will show up in the grey zone of Fig.2 

without or with a sign reversal in the oscillatory behaviour of the Chirp signal. KEY is to 

have low sidelobes and no discontinuities in the time domain. 

 

Thanks for pointing out this problem. We have revised this paragraph. A more 

complete discussion about artifacts is done in the new version of the manuscript: 

 

“Ideal low-pass filter cannot be practically realized and the departure from the ideal 

behavior will cause artifacts in the output signal. In fact, real low-pass filters are 

characterized by a finite transition region between the pass-band and the stop-band and 

at higher frequencies H could be significantly different from zero and with alternating 

positive/negative values (ringing or side-lobe effect). As an example, a negative value of 

H in the stop-band region could results in a particularly evident high frequency artifacts 

in the output signal. For this reason the filter’s design tries to minimize the transition 

region and the side-lobe effects as discussed in Appendix.” 

 

6. Reviewer comment: p.6, lin. 8, Eq. (3). Revise/wrong. See Eq. (R8b) next. 



 

Eq. (3). Corrected (now is Eq. (5)): 
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7. Reviewer comment: p.8, lin. 4, Eq. (5). See annotated ms.  

 

Eq. (5). Corrected (now is Eq. (7)): 
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8. Reviewer comment: p.8, lins. 8 and 17. Clearly expose that the goal is to implement a 

low-pass-limited differentiator with the“j*omega” slope reset to zero between c and 

 , c the low-pass cut-off frequency. 

We have further clarified this concept: 

“(…) in Fig. 2, the portion of the differentiated signal we want to preserve is the low 

frequency one (for example the part corresponding to the 0÷1 interval of the time axis), 

but the high frequencies (the noisy portion) are strongly amplified respect those 

originally included in Eq. (5) and the higher are the frequency the higher is the 

amplification, as described by Eq. (7). Therefore a proper tradeoff has to be considered 

between perform the ideal derivative procedure for the whole signal and the necessary 

cut of high frequencies. For this reason, the goal is to design a band-limited 

differentiator that for frequencies greater than a certain cut-off value (i.e. for c) will 

ideally remove the high frequency component in Eq. (7). In other words a low-pass 

differentiator is wanted, i.e. one whose overall frequency response can be written as 

H
(1)L

 and that can be thought as a cascade of a low-pass filter H 

L
 and the ideal derivative 

H
(1)

 (Luo et al., 2005; Zuo et al., 2013)” 

  
9. Reviewer comment: p.8 lins 8-12. Slang, magazine oriented (in my opinion). 

 

This part has been removed. 

 

10. Reviewer comment: p.9. Eq. (7). Revise/wrong. 

 

The suggested equation and our expression are equivalent: this can be seen if the 

different summation limits are considered. We keep [-N,N] interval to be consistent 

with the previous and subsequent equations. In the new math notation: 
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11. Reviewer comment: p.9, lins 18-20. Somehow slang and difficult to follow. 

Suggestion: The SG-derivative filter can be understood as a cascaded system of two 

filters, the first one being a low-pass filter (LPF) acting on the raw input signal and the 

second one being the ideal differentiator (H( )=j ) and acting on the LPF signal. Prefix 

“d” stands for the low-pass filter prototype associated to this first stage of the SG 

differentiator (inherently, low pass). 

 

The suggestion is considered in rewriting the paragraph. 

 

“The SG low-pass derivative filter can be understood as a cascaded system of two filters, 

the first one being a low-pass filter acting on the raw input signal and the second one 

being the ideal differentiator (j  and acting on the low-pass filtered signal. Prefix “d” 

stands for the low-pass filter prototype associated to this first stage of the SG 

differentiator (inherently low-pass), i.e. dSG2 for those in Fig. 4.” 

 

12. Reviewer comment: p.13 lin 3. This is just a valid approximation. In fact there are 

hundred of alternative low-pass filter design approaches. 

 

The authors agree that it is just one of the possibilities. For this reason, some 

comments have been inserted in the text (note: the cascade section is in Appendix 

now): 

 

“Operatively, for an efficient “equivalent” cascade of two smoothing filters (L1,L2) one 

possible solution is to get the frequency response of filter L2 to have a c large enough to 

cover the frequency response of L1 up to the beginning of its stop-band.” 

 

13. Reviewer comment: p.13, lins. 13-14. How does a SG2(L1+L2) compares with the 

cascaded SG2(L1)-SG4(L2)? What about SGx(y), i.e., a suitable pair of order “x” and 

length “y”? 

 

See the answers reported in the “Major Comments” section, point (4). 

 

14. Reviewer comment: p.14, lins 13-25. This part can be moved to a discussion sub-section 

in Sect. 3 or simply removed. Your paper is too long. 

 

Paragraph removed.   

 

15. Reviewer comment: p.15. Unclear writing/structuration for Sect. 2.2.2 

Please distinguish between time windowing and spectral windowing. 



Windowing in the time domain means multiplying x(n) by a window w(n) as indicated 
by Eq. (11) + handwritten block diagram. According to FT properties, multiplication in 
the time domain equal convolution in the frequency domain. However in Fig. 7 
frequency response it is not clear if the SGBlackman window is the result of 
multiplication in the time domain (correct) or the result of multiplication of a Blackman 
window in the frequency domain by the SG spectral response (incorrect). Please 
clarify.Most readers will not understand what is “leakage”: Better introduce the 
problem by saying that “truncating” x(n) in the time domain is equivalent to multiplying 
by a rectangular window, w(n), which causes sinc=sin(x)/x (the FT of the rectangular 
window) to convolve in the frequency domain, i.e., many unwanted secondary lobes in 
the frequency response! 
 

The reviewer is right, this section needs a revision. For the SG2+Blackman, the 

multiplication is done in the time domain. This section is in the Appendix, and it is 

rewritten as: 

“The frequency response and the impulse response of an ideal low-pass filter are (Mitra, 

2001): 
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The previously mentioned necessity to deal with finite length impulse response, i.e. with 

FIR filter of Eq.(2), requires that the impulse response in Eq. (C1) must be truncated 

within –N ≤ k ≤ N. This operation can be seen like the multiplication of the impulse 

response by a rectangular window function w(k): 
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However, the FIR filter frequency response calculated with Eq. (3) and Eq. (C2), 

however is not identical to the ideal one. In particular it will exhibit undesired 

oscillations in both pass-band and stop-band (i.e. the side-lobes) which is the so-called 

Gibbs phenomenon. Moreover the transition-band will be of finite extent (Mitra, 2001). 

The main reason of the insurgence of the Gibbs phenomenon with the rectangular 

window consist in its sudden switch to zero at both ends. In order to reduce the Gibbs 

phenomenon more efficient window functions which taper-off more smoothly to zero at 

each end, are generally applied. However the more efficient the Gibbs phenomenon 

elimination is the wider the transition-band results. 
For this reason, each window function is a kind of the usual compromise between the 

requirements of higher spectral selectivity, i.e. the narrowest the transition-band and the 

highest suppression of unwanted spectral features (Mitra, 2001). Several window 

functions are reported in literature (Harris, 1978). Eisele has introduced an efficient 

window function of the Blackman–type to lidar work: 
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The filter constructed with this window (Eisele, 1998; Trickl, 2010) does not exhibit 

significant  side-lobes.  

As sn example of the application of the window method, a Blackman–type window of 

Eq. (C3) has been applied to an SG2 low-pass filter impulse response. The result, 

reported in Fig.7, shows a frequency response with very small side-lobes (maximum 

magnitude ~0.001); see also Fig.8 (lower panel). It can be also seen that using the same 

N, the pass-band extension of the windowed SG2 is nearly the same of the SG2.  

As can be seen from the right plot in Fig. 7, the transition band in the SG2 filter with the 

application of the Blackman–type window, is quite larger (of about a factor 2) than the 

SG2 filter one (see the left plot in Fig. 7). This illustrates the previously mentioned 

compromise between better spectral selectivity and side-lobe suppression. From the 

comparison between the SG2 filter and SG2-windowed filter in Fig.7, for the latter it can 

be observed a less efficient damping in the stop-band of those frequencies over the pass-

band and before the first side lobe of the (not windowed) SG2 (i.e. for 0.2< <0.3) and 

also a less flat behavior in pass-band i.e. worst signal preservation for <0.2.” 

 

16. Reviewer comment: p.15, Eq. (12). Eq. (12) Revise/wrong. 

 

The equation should be correct, if the limits are [-N,N]. This could be checked with the 

Matlab function window(@blackman,2*N+1), see Trickl, 2010. The reviewer correctly 

noted that information on the limits is needed, and these have been added : 

         

elsewhere    ,0

       ),2cos(080)cos(50420
)(

NkN
N

k
π.+

N

k
π.+.

=kwBL     

  



Other Comments found in the Annotated Manuscript. Note: unless otherwise stated, page/line 

numbers refer to the Annotated Manuscript from Referee #2. 

The other relevant points of the reviewer #2 and reported as hand-written notes on the 

manuscripts are considered below.  

Introduction 

1. Reviewer comments p.2, lins 9-11: The reviewer said that the statement “Indeed, the 

smoothing is a low pass filter, while the numerical derivative has a low pass filter 

inherently associated (see Sect. 2.1).” is false. 

 

The text modified as it follows: 

 

“The smoothing is a low-pass filter, instead the ideal numerical derivative enhances 

high frequencies (Mollova, 1999). This means that in order to effectively perform a 

numerical derivative of a signal, a smoothing filter has to be coupled in cascade with 

the ideal derivative (see, Sect. 2.1).” 

Sect.2.2 (now in Appendix) 

We accomplish to the reviewer request to organize this section (now Appendix A1) in 

bullets. 

2. Reviewer comments p.11, lin 3: The reviewer corrects “P+1” with “P”.  

The authors think that “P+1” is correct. In Bromba and Ziegler (1981): "[…] a 

Savitzky-Golay smoothing filter of degree 2M (=P) exactly conserves every existing 

moment (from the zeroth) up to m = 2M + 1 (=P+1)." (in parenthesis authors’ 

notes.) 

 Sect. 2.3 (now in Appendix) 

3. Reviewer comments on Sect 2.3: Correction on Eq.(13). 

 

The Eq.(13) has been corrected as suggested by the reviewer. 

 

4. Reviewer comment, p.16 lin.9. Why low-pass?  

Here, low-pass first derivative indicates that also the numerical differentiation filter 

originating from a Gaussian filter has a low pass filter embedded: 

“This filter is characterized by a single parameter (  the standard deviation), and its 

impulse response (a zero mean Gaussian) has the advantage that can be written 

analytically as: 
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In Eq. (D1) )(kh  is the impulse response of the Gaussian smoothing filter and )()1( kh L is 

the one for the Gaussian first derivative filter. The convolution of a signal with a Gaussian 

first derivative is equivalent to differentiating that signal before (or after) the low-pass 

filtering operation. This means that, as seen for SG derivative filters, also the Gaussian 

derivative filter has a low-pass filter inherently embedded. Moreover, the frequency 

response of the low-pass embedded in the Gaussian low-pass first derivative filter (dG, in 

analogy with the denomination adopted for SG filters) is a Gaussian low-pass filter with 

the same parameter  (Hale, 2011). 

 
5.  Reviewer comment, p.17 lin.1-8. Simplify your reasoning! 

The authors have followed the reviewer suggestion and all the section is revised (see also 

the previous answer): 

 

“To be used in FIR filters the impulse responses in Eq. (D1) must be truncated. Luckily, 

the Gaussian curve has a quick approach to zero and for this reason it can be truncated 

without a strong approximation. In fact, Eq. (D1) provides a value less than 0.0004 for 

|k|≥4 . This latter condition implies that, to proper truncate the impulse response, it is 

sufficient to employ a value of N equal to 4  (actually the nearest integer to 4 ) in Eq. (2) 

with no needs to go beyond this value. When increases, the pass-band reduces its 

extension and provides a stronger smoothing effect, although a Gaussian filter has a 

transition band quite wider than a SG filter with a similar pass-band. A Gaussian filter is 

also less flat in the pass-band (van Vliet et al., 1998) than a SG filter (for P≥ 2), but it has 

also the advantage of being almost without side lobes. 

 

6. Reviewer comment, p.17 lin.15. In fact is similar to the Blackman window not to the 

SG2+Blackman:  

 

In Fig.8 the function H is related to the use of a SG2 combined with a Blackman window 

not to the use of a Blackman window only. 

 

Sect. 3 

7. Reviewer comments on Sect. 3: Paragraph organization. Title Correction. Too 

discursive/ambiguous: key is to begin with resolution<-> fcut-off. 

This section is reorganized according to the reviewer’s comment. The authors will keep 

the title as is, because in the section the two main procedures to estimate quantitatively 

the Effective Resolution (ERes) are described also by giving the rationale of these 

approaches.  

The cutoff frequency can be also related to the reduction of the vertical resolution: in the 

cited papers, the cutoff frequency is the main parameter needed to retrieve the effective 

vertical resolution.  See also answer 16. below. 

In this manuscript however, we choose to give more emphasis to the Rayleigh criterion 

and to the NRR criterion and to the link between the cut-off frequency and the ERes 

estimated with the previous criterions. 

 



8. Reviewer comment,  p.18 lin.8. Which type of filter?: 

The used filter, i.e. the low pass embedded in the 1st order differentiation filter based on 

the SG2 (or dSG2  according to our definition), is included. 

 

9. Reviewer comment. p.18, lin8: Define notation(about the aerosol backscatter)  

Defined in the Introduction. 

 

Sect. 3.2 

10. Reviewer comment,  p.21 lin 14. Which parameter? Whose parameters?  Plural? 

With 2 test parameters changed:  

All the parameters are changed, (N,P) for SG filters and sigma for the Gaussian filter. 

Operatively for SG, P is fixed and N is changed for any pulse couple, then the procedure 

is repeated for a different P: 

 

“Operatively, two unitary pulses at a fixed distance are smoothed by a low-pass filter 

whose parameters are changed to achieve an increasing signal distortion. Increasing N for 

SG filters with fixed P, or  for Gaussian filters, it is possible to find the maximum value 

of the filter parameter that allows to still resolve the two smoothed pulses according to the 

Rayleigh criterion. For SG filters, afterwards P will be changed and the whole procedure 

is repeated to have results of the application of the criterion also for different polynomial 

degrees.” 

 

11. Reviewer comment, p.24 lins 1-11. Unclear (about how the linear fits are constraint) 

 

An example is included in which, to clarify this point, is explicitly stated how the 

constraints are used to find the linear fit parameters: 

 

“As an example on how the constraints are applied, for the SG4, the condition N=P/2 

implies that with N=2 the filter will not operate any smoothing and Reff= Rraw(=1 in our 

plots), then to obtain the fit parameters, the linear fit have been constrained through to the 

point (N=2, Reff =1).” 

 

Sect. 3.3 

12. Reviewer comments p.24, lin. 22. Noise Variance:  

 

We use the term “noise variance” and we comment that this refers to zero-mean white 

noise. 

 

13. Reviewer comments on Eq.(23) Say clearly that is just your “Departing Hypothesis”:  

 

Done: 



“From the noise reduction point of view, the Eq. (22) makes possible a more general 

hypothesis on how to estimate the effective resolution by means of the NRR. In fact it can 

be inferred that the ERes associated to the application of a generic low-pass filter L on a 

signal could be written by means of the general equation: 

L

raw

NRR

L

eff
NRR

R
R .            (23) 

Adopting a slight different point of view, a proof or at least a solid hint of the validity of 

the hypothesis represented by the Eq. (23) could be provided.” 

14. Reviewer comments p.26. “TIP”:   

We think that the SNR matching criterion included as proposed, along with the Fig. 

16/17, well supports our hypothesis  for the NRR criterion.  

 

15. Reviewer comments p.27: Reverse Order: 

We reorganized this part of the manuscript according to the reviewer’s suggestions. 

 

Sect. 3.4 

16. Reviewer comment p.28 Eq(27).  

The main point in this Section is not to assume a particular cut-off definition but to find 

the definition that is more compatible with the ERes estimations found in the previous 

Sections. This is done because the results of Fig.18 suggest that a different criterion for 

the ERes requires a different cutoff definition in Eq.(27). 

 

17. Reviewer comment p.29 lin 8. I would suggest to repeat Fig.20 using the 1-st zero 

criterion, instead.  

 

This comment is not completely clear. Anyway Fig.20 (see below) is redone and the 

corresponding sentence in the main text is rewritten. In this way the data reported in 

Fig.20 have a clear connection with Eq.(29): 

 

“For the Rayleigh approach, the ERes calculated via Eq. (27) are similar to those 

estimated using Eq. (19) and Eq. (20), if the cut-off frequency is 2sbRayc  (Orfanidis, 

2009); this is shown in Fig. 20.” 



   

Sect. 3.5 (now in Appendix) 

18. Reviewer comment on Sect. 3.5. I would delete or reduce this section to a 

minimum(…). 

This section provides a more comprehensive review of the existing methods used 

throughout the remote sensing community. The authors agree with the reviewer that 

this Section is more speculative than the previous ones and that a deeper investigation is 

required. For this reason, this section is moved in Appendix.  

 

Conclusions 

19. Reviewer comments on Conclusions:  

See response for the “Major Comments”, point (5). All the remaining minor 

comments/correction and suggestions reported by the reviewer are considered in the 

new version of the manuscript. 


