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Abstract. In Canada routine ozone soundings have been carried at Resolute Bay since 1966, making 10 

this record the longest in the world. Similar measurements started in the 1970s at three other sites, 11 

and the network was expanded in stages to 10 sites by 2003. This important record for understanding 12 

long-term changes in tropospheric and stratospheric ozone has been re-evaluated as part of the 13 

SPARC/IO3C/IGACO-O3/NDACC (SI
2
N) initiative. The Brewer-Mast sonde, used in the Canadian 14 

network until 1980, is different in construction from the ECC sonde, and the ECC sonde itself has 15 

also undergone a variety of minor design changes over the period 1980-2013. Corrections have been 16 

made for the estimated effects of these changes, to produce a more homogeneous dataset.  17 

The effect of the corrections is generally modest, and so should not invalidate past analyses that 18 

have used Canadian network data. However, the overall result is entirely positive: the comparison 19 

with co-located total ozone spectrometers is improved, in terms of both bias and standard deviation, 20 

and trends in the bias have been reduced or eliminated. An uncertainty analysis (including the 21 

additional uncertainty from the corrections, where appropriate) has also been conducted, and the 22 

altitude-dependent estimated uncertainty is included with each revised profile. 23 

The resulting time series show negative trends in the lower stratosphere of up to 5% per decade 24 

for the period 1966-2013. Most of this decline occurred before 1997, and linear trends for the more 25 

recent period are generally not significant. The time series also show large variations from year to 26 

year. Some of these anomalies can be related to cold winters (in the Arctic stratosphere), or changes 27 

in the Brewer-Dobson circulation, which may thereby be influencing trends. 28 

In the troposphere trends for the 48-year period are small, and for the most part not significant.  29 

This suggests that ozone levels in the free troposphere over Canada have not changed significantly in 30 

nearly 50 years. 31 

32 
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1  Introduction 33 

Ozone plays a major role in the chemical and thermal balance of the atmosphere, . It controlsling 34 

the oxidizing capacity of the lower atmosphere via its photochemical link to the OH radical, and also 35 

acting acts as an important short-lived climate forcer, . while oOzone changes in the stratosphere, as 36 

well as strongly affecting surface UV radiation, may also affect future climate (IPCC, 2013, and 37 

references therein).  In addition to the information ozone soundings they provide on the vertical 38 

distribution of ozone in the lower stratosphere, ozone soundings they are the major source, 39 

worldwide, of information on ozone amounts in the free troposphere.  40 

Vertical distribution information is particularly important for ozone transport studies, as 41 

transport in the atmosphere occurs in thin, quasi-horizontal layers. The global ozonesonde record is 42 

therefore increasingly important for understanding long-term changes in both tropospheric and 43 

stratospheric ozone, as each may be affected by changes in long-range quasi-horizontal transport, as 44 

well as by vertical exchange/mixing between layers. For example, ozonesonde measurements show 45 

impact on near-surface ozone concentrations of intrusions of ozone from the lower stratosphere (e.g. 46 

He et al., 2011; Hocking et al., 2007), and the inter-continental transport of tropospheric ozone and 47 

its precursor species (Oltmans et al., 2006; 2010). Canadian ozonesondes have also provided 48 

essential information on the nature of Arctic stratospheric ozone loss (Manney et al., 2011Fioletov et 49 

al., 1997; Kerr et al., 1993, and references therein), of Arctic surface depletion events (Tarasick and 50 

Bottenheim, 2002; Bottenheim et al., 2002), and of the global circulation of ozone (e.g. Lin et al., 51 

2015; Bönisch et al., 2011; Pan et al., 2009), as well as of tropospheric sources and budgets (e.g. 52 

Emmons et al., 2015; Parrington et al., 2012; Walker et al., 2010; 2012; Macdonald et al., 2011; 53 

Thompson et al., 2007; Tarasick et al., 2007). 54 
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The time series of ozone soundings from Canadian stations comprises some of the longest 55 

records of vertical ozone profile measurement that exist, as well as the only time series of 56 

measurements in the free troposphere over Canada.  Following some initial ozone soundings 57 

conducted in cooperation with the US Air Force Cambridge Research Laboratories (AFGL) from 58 

1963-1965 at Goose Bay and Churchill, employing chemiluminescent (Regener, 1960) sondes 59 

(Hering, 1964; Hering and Borden, 1964; 1965; 1967), regular ozone soundings using 60 

electrochemical Brewer-Mast sondes  (Brewer and Milford, 1960) began at Resolute in January, 61 

1966. Table 1 describes the locations of Canadian ozonesonde stations and their data records.  62 

Preparation procedures for the Brewer-Mast sondes are described in Tarasick et al. (2002), but 63 

essentially followed Mueller (1976).  In 1980 the Canadian network switched to electrochemical 64 

concentration cell (ECC) sondes (Komhyr, 1969). ECC sonde preparation and launch procedures are 65 

as described in Tarasick et al. (2005). Although these procedures were not changed at any time in the 66 

Canadian record, the change of sonde type, as well as minor changes in the design of the ECC sonde 67 

over the past three decades, may have introduced biases in the measurement time series that could 68 

Station Location Altitude (m) Start of sonde record 

Edmonton 53.6N, 114.1W 766 Brewer-Mast (1970); ECC  (1979) 

Goose Bay 53.3N, 60.3W 44 Brewer-Mast (1969); ECC  (1980) 

Churchill 58.8N, 94.1W 35 Brewer-Mast (1973); ECC  (1979) 

Resolute 74.7N, 95.0W 64 Brewer-Mast (1966); ECC  (1979) 

Eureka 80.1N, 86.4W 10 ECC (1992) 

Alert 82.5N, 62.3W 62 ECC (1987) 

Kelowna 49.9 N, 119.4W 456 ECC (2003) 

Bratt’s Lake 50.2 N, 104.7W 580 ECC (2003-2011) 

Egbert 44.2 N, 79.8W 251 ECC (2003-2011) 

Yarmouth 43.9 N, 66.1W 9 ECC (2003) 

Table 1: The Canadian ozonesonde network. Soundings are weekly (generally Wednesdays), with 
extra releases during  special campaigns (i.e. MATCH, TOPSE, IONS, BORTAS). Regular ozone 
soundings have been made at Resolute since January, 1966.  
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Year Change  Possible Effect 

1979 ECC 3A  introduced ~15% increase in tropospheric response response relative 
to BM sondes. Sonde T measured via rod thermistor. 

1984 ECC 4A  introduced redesigned pump; maximum change <1%,  at 50-20 hPa.  

Sonde “box” T measured; new rod thermistor. 

1993 ECC 5A  introduced New pump correction; maximum change ~1%,  at 100 hPa. 

1993 Vaisala RS-80, RSA-11 
introduced 

Older VIZ sonde: warm bias in daytime; pressure errors. 

May introduce altitude shifts in profile; ozone increases of up 
to ~2% at 20 hPa. 

1996 ECC 6A No differences below about 20-25 km (Smit et al., 2000). 

2000 ENSCI 1Z design change High bias with 1% KI solution (Smit et al., 2007). 

2004 3cc solution (new sites) Better ozone capture in troposphere 

2006 Vaisala RS-92 introduced RS80s low by ~20m in the troposphere, high by 100m at 
10hPa (Steinbrecht et al., 2008) 

2007 Thermistor in ECC pump More accurate measurement of air volume 

Table 2:  Changes in ozonesondes and associated radiosondes in the Canadian network. 

affect trends (Table 2). The associated radiosonde has also changed, which could influence the ozone 69 

profile by introducing altitude shifts, primarily above 25 hPa (25km),  due to temperature or pressure 70 

biases. 71 

As part of the SPARC/IO3C/IGACO-O3/NDACC (SI
2
N) initiative, the Ozonesonde Data 72 

Quality Assessment (O3S-DQA) was initiated in order to resolve inhomogeneities in the global long-73 

term ozone sounding record. The effects of many of the changes listed in Table 2 have been 74 

characterized by recent laboratory and field work and can now be corrected. The uncertainty of 75 

ozonesonde profile measurements can now also be described with a degree of confidence that was 76 

not available in the past. These developments are described in a recent report (Smit et al, 2012), and 77 

the re-evaluation of the Canadian record described here follows those recommendations.  78 

2  Corrections to the sounding data 79 
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The operating principle of ozonesondes is the well-known reaction of potassium iodide with ozone:  80 

  2223 OI KOH2 OHOKI2          (1) 81 

 82 

followed by 83 

 I I2 2 2  e   (2) 84 

 85 

Thus for each molecule of ozone two electrons are produced and an equivalent amount of current 86 

flows through the external circuit. The measurement is therefore, in principle, absolute; however 87 

there may be losses of ozone and/or of iodine, and there may be side reactions that also convert 88 

iodide to iodine. Ozone partial pressure is calculated using the ideal gas law, noting from (R2) that 89 

the number of moles per second of ozone passing through the sonde is equal to half the current 90 

divided by the Faraday constant. This gives (e.g. Komhyr, 1986),  91 

          TtiikP BO )(
3

      (3) 92 

where i is the measured cell current in microamperes, iB is the background current, T is the 93 

temperature of the air in the pump in kelvins (often approximated by the sonde box temperature) and 94 

t is the measured time in seconds for the sonde to pump 100 ml of air. k is a constant, equal to 95 

0.0004307  for current in microamperes and ozone partial pressures in mPa. Errors or bias changes in 96 

the temperature or background current measurement or the pump rate (or its change with ambient 97 

pressure during flight) can therefore affect the ozonesonde measurement. 98 

2.1  Total ozone normalization 99 

In practice ECC ozonesondes  have a precision of 3-5% and a total uncertainty of about 10% (Smit et 100 

al., 2007; Kerr et al, 1994; Deshler et al., 2008a; Liu, G., et al., 2009).  The precision of the older 101 

Brewer-Mast sonde is somewhat poorer, at about 5–10% (Kerr et al., 1994; Smit et al., 1996). The 102 

Brewer-Mast soundings required normalizing, or “correcting”, by linearly scaling the entire ozone 103 

profile (plus an estimate of the residual above the balloon burst altitude) to a total ozone 104 
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measurement. This was because they showed a typical response equivalent to about 80% of the 105 

actual ozone amount when prepared according to the manufacturer’s instructions (the Canadian 106 

practice), and so needed to be scaled, by what is traditionally referred to as the “correction factor”, to 107 

give a more accurate result. Although the ECC sonde response is much closer to 100%, normalizing 108 

to a coincident Brewer or Dobson spectrophotometer measurement has continued to be the Canadian 109 

practice because it demonstrably reduces uncertainties in ozonesonde data (e.g., Kerr et al., 1994; 110 

Smit et al., 1996; Beekmann et al., 1994, 1995).  Uncertainties are 7–10% for non-normalized data 111 

and 5–7% for normalized data (Fioletov et al., 2007). This improvement is because of the greater 112 

accuracy of total ozone measurements: . for For well-calibrated total ozone instruments the standard 113 

uncertainty of direct sun measurements is less than 3% (Basher, 1982). 114 

The Canadian total ozone record has been extensively revised, but the corresponding revisions 115 

to normalization factors in the sonde record had not, until now, been made. We found occasional 116 

cases of surprisingly large differences (~35%). In some cases, particularly in the older Dobson 117 

record, a total ozone value for the previous day appears to have been used. In addition, historical 118 

practice in Canada for estimating the residual ozone amount above the profile top has been to simply 119 

assume constant ozone mixing ratio above the balloon burst altitude. Much better knowledge now 120 

exists for the distribution of ozone at higher altitudes, and so the use of a climatological estimate is 121 

preferred. We have used the climatology of McPeters and Labow (2012) to renormalize the 122 

Canadian data. The total ozone normalization is applied only after all other corrections have been 123 

applied (to the non-normalized data; that is, any previous normalization is first removed). 124 

Normalization is not applied to flights that fail to reach 32 hPa. This is also a change from previous 125 

practice, which required flights to reach 17 hPa for total ozone normalization to be applied. 126 
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There are arguments against normalization of ECC sonde profiles: the process introduces a 127 

degree of uncertainty because the amount of ozone above the balloon burst height can only be 128 

estimated. It is also not clear that a scaling factor that is constant with altitude is appropriate in all 129 

cases. This is of particular concern for the tropospheric part of the profile; whether normalization, 130 

which is necessarily weighted to the much larger stratospheric part of the profile, improves 131 

tropospheric measurements is an open question. Normalization also renders the sonde record no 132 

longer independent of the total ozone record, which is an important issue for trend studies (although 133 

to some extent alleviated if there is no trend in scaling factors), and evidently can introduce a serious 134 

bias if the total ozone instrument calibration is in error. Fortunately, since the scaling is linear in 135 

measured ozone, it can be applied, and as easily removed, in post-processing or by the data user.   136 

The normalization factor is unquestionably of value as a data quality control indicator, and we 137 

will use it as such in the analysis to follow. We present here normalized data, for consistency 138 

between the Brewer-Mast and ECC records, and with past trend analyses (e.g. Tarasick et al, 2005). 139 

2.2  Correction for Brewer-Mast tropospheric response 140 

Laboratory work (Tarasick et al., 2002) suggests that the response of Brewer-Mast sondes in the 141 

Canadian program was biased low in the troposphere.  We have applied a correction based on simple 142 

quadratic fit to the data shown in Figure 7 of Tarasick et al. (2002). The correction is consistent with 143 

that implied by the WMO-II  intercomparison of 1978 (Attmannspacher and Dütsch, 1981; see also 144 

Figure 10 of Liu et al., 2013) and also similar to, but somewhat more modest than that suggested by 145 

the WMO-I and BOIC sonde intercomparison campaigns (Attmannspacher and Dütsch, 1981; 146 

Hilsenrath et al., 1986) and the analysis by Lehmann (2005) of Brewer-Mast data from the 147 

Australian program. The Australian program used similar procedures to those in Canada.  148 
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2.3  Pump corrections  149 

The efficiency of the ozonesonde pump decreases at low pressures, and a correction for this is part of 150 

normal data reduction. Pump corrections from  Komhyr et al. (1968) were used for Canadian 151 

Brewer-Mast sonde data (Mateer, 1977). We have now applied the more commonly used  Komhyr 152 

and Harris (1965) pump corrections, recommended by WMO (Claude et al., 1987), which are larger 153 

than the  Komhyr et al. (1968) corrections. Significantly larger pump  corrections have been 154 

recommended by Steinbrecht et al., (1998), but these may not apply to older  Brewer-Mast sondes 155 

(Lehmann and Easson, 2003). 156 

For ECC model 3A sondes, flown in Canada between 1979 and 1982, no change to the pump 157 

correction has been made, but the pump correction table has been added to the file. The correction is 158 

that supplied by the manufacturer, but also similar to that found by Torres (1981). 159 

The ECC model 4A sonde differs significantly from the 3A; the major difference is a redesigned 160 

pump. In the original data reduction the correction curve supplied in 1983 by the manufacturer was 161 

used for all 4A flights. We have now applied the revised  Komhyr (1986) correction curve. This 162 

correction curve was already in use for 5A and all subsequent ECC sonde models. The pump 163 

correction table has been added to the WOUDC file for all flights. 164 

2.4  Solution volume correction  165 

Standard practice in Canada has been to charge ECC sensors with 2.5 ml of sensing solution, rather 166 

than the 3.0 ml which is now recommended. Laboratory and field investigations have shown that 167 

with 2.5 ml of sensing solution only ~96% of the ozone is captured by the sensing solution at ground 168 

pressure, but at lower pressures the 4% deficit vanishes, apparently because of  faster gas-diffusion 169 

rates in solution (Davies et al., 2003). We have made a correction for this effect. 170 
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2.5  Use of standard 1% buffered KI solution in En-Sci sondes  171 

Two types of ECC ozonesondes have been in use since about 2000, the 2Z model manufactured by 172 

EnSci Corp. and the 6A model manufactured by Science Pump, with minor differences in 173 

construction and in recommended concentrations of the potassium iodide sensing solution and of its 174 

phosphate buffer (Smit et al., 2007). Since the Canadian network has used standard 1% buffered KI 175 

solution at all times, where En-Sci sondes have been used a positive bias of about 4% below 50 hPa 176 

and somewhat larger above is expected (Boyd et al., 1998; Smit et al., 2007; Deshler et al., 2008b).  177 

We have made a correction for this bias. 178 

2.6  Pump Temperature Measurement 179 

The measurement of pump temperature is required to accurately measure the amount of air passing 180 

through the pump into the ECC sensor cell. In the past this has been approximated by a measurement 181 

using a rod thermistor at the base of the electronics unit (3A and 4A sondes), and later a thermistor 182 

suspended in the sonde box. Field and laboratory experiments suggest that this produced a consistent 183 

relationship between the “box” temperature and the pump body temperature (Komhyr and Harris, 184 

1971). Measurement of the actual pump temperature only became standard in Canada in about 2008. 185 

We have made corrections for temperatures measured by either “rod” or “box” thermistors 186 

(following Smit et al., (2012).  187 

2.7  Background current 188 

The background current of the ECC sonde is not well understood, and may have several sources. It 189 

represents a non-equilibrium condition in the cell, possibly from residual tri-iodide in new sensing 190 

solution (Thornton and Niazy, 1982; 1983), or from previous exposure to ozone (Johnson et al., 191 

2002). Canadian practice has been to treat it as proportional to pressure, but there is no reason now to 192 

think that this is correct, and treating it as approximately constant over the duration of a flight may 193 
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be a better approximation and is in fact recommended (Smit and ASOPOS panel, 2011). 194 

Unfortunately to properly recalculate ozone assuming a constant background current requires 195 

knowledge of the pump temperature profile, and this information has recorded in the WOUDC 196 

filebeen preserved only for flights after 1999. We have therefore not attempted to correct the 197 

background current, but have instead treated it as an error source (see Section 4), a not entirely 198 

satisfactory choice, since although randomly variable in magnitude, it is always a positive bias.  199 

2.8  Radiosonde changes 200 

Errors in radiosonde pressure or temperature will imply corresponding errors in calculated 201 

geopotential heights, causing measured ozone concentrations to be assigned to incorrect altitudes and 202 

pressures.  This is potentially an important issue for the derivation of trends, as radiosonde changes 203 

may therefore introduce vertical shifts in the ozone profile, and apparent changes in ozone 204 

concentration at a given height.  205 

A number of different radiosonde designs have been used in the Canadian observing network 206 

over the last five decades. Temperature differences between the VIZ sonde, used widely in the 207 

1980’s and early 1990’s, and the Vaisala RS-80 sonde, adopted subsequently Environment in 208 

Canada, are well documented. The VIZ sonde showed a warm bias in the daytime by as much as 2C 209 

(Richter and Philips, 1981; Luers and Eskridge, 1995; Wang and Young, 2005). From simultaneous 210 

measurements made during a WMO intercomparison in 1985, Schmidlin (1988) estimates that this 211 

bias contributed 17m at 50hPa and 71m at 10hPa to the difference in geopotential height estimates 212 

from the two sondes. This corresponds to a shift of ~1% at 10hPa (31km), but less than 0.1% at 213 

50hPa (21km). Nevertheless, Sstatistical comparisons, however, show that the switch from VIZ to 214 

Vaisala RS-80 at U.S. stations introduced a shift of as much as 120m at 50hPa in the daytime (Elliot 215 

et al., 2002).   216 
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This may be in part due to pPressure errors, which appear to have a much larger effect than 217 

temperature errors (e.g. Morris et al., 2012; Stauffer et al., 2014): comparisons with radar 218 

measurements of height showed the VIZ high relative to the radar (and the Vaisala) in daytime by 219 

~150m at 20hPa; up to 500m at 10hPa (Schmidlin, 1988; Nash and Schmidlin, 1987), while at night 220 

both VIZ and Vaisala RS80 calculated geopotentials were low by ~100m at 20hPa, and  ~150m at 221 

10hPa. The daytime differences correspond to ozone differences of ~2% and ~7% at 20 hPa and 222 

10hPa respectively. The effect of pressure errors is most significant at higher altitudes: a 1hPa offset 223 

will introduce a geopotential height error of 63m at 100hPa, 120m at 50hPa, and over 300m at 224 

20hPa; these correspond to ozone differences of 0.25%, 0.5% and ~4% respectively. Pressure errors 225 

also seem more variable, as well: local noon flights during the same intercomparison show much 226 

smaller height differences between the VIZ and Vaisala. 227 

The Vaisala RS-92 has replaced the RS-80, and has been in use in Canada since 2006. 228 

Comparison flights with GPS tracking show that it gives more accurate heights than the RS80; 229 

differences from the GPS are small (Steinbrecht et al., 2008; Nash et al., 2006). RS80 sondes, 230 

however, were found to be low by ~20m in the troposphere, and high by 100m at 10hPa (Steinbrecht 231 

et al., 2008; also da Silveira et al., 2006). 232 

Unfortunately intercomparison experiments do not tell the whole story, as not all manufacturing 233 

changes are advertised by a change in model number. For example, Steinbrecht et al. note systematic 234 

differences between batches of RS-92 sondes produced before July, 2004. Overall, the expected 235 

systematic differences in the ozone profile resulting from radiosonde errors are probably small below 236 

50hPa.  We do not attempt to correct for radiosonde errors, but do include possible pressure offsets 237 

as an error source in the uncertainty estimation (Section 4). Estimated radiosonde errors are largest 238 



 

13 

for the older VIZ sonde, with the manufacturer quoting a 1 uncertainty in the pressure measurement 239 

of 1 hPa. 240 

3  Effects of the corrections  241 

An analysis of the effects of these corrections is shown in Figures 1-4 for the station at Edmonton 242 

(Stony Plain). The average change to the ozone profile has been calculated for the corrections 243 

described above, both individually and collectively. Figure 1 shows the changes for the 1970s when 244 

only Brewer-Mast sondes were flown at Edmonton. The largest change is in the lowermost 245 

troposphere, where the response correction raises ozone values by about 15%, although the changes 246 

to the normalization make a significant difference as well. In Figure 2, the changes to the ECC 247 

record in the 1980s are comparatively minor, although again the largest change is in the lowermost 248 

troposphere, where the solution volume correction raises ozone values by as much as 4%. The new 249 

normalization also increases ozone values through the entire profile by 1%. In the 1990s (Figure 3) 250 

the shifts are larger: up to 2-3% throughout the stratosphere. Most of this appears to be due to the 251 

change of temperature measurement, from the rod thermistor at the base of the electronics unit, to the 252 

“box” temperature, and in a few cases in 1999, pump temperature measurements. In the 2000s 253 

(Figure 4) the “DESHLER” correction for the change to En-Sci sondes seems to almost cancel that 254 

for the change of temperature measurement, so that the overall correction is close to zero, except at 255 

the top of the profile, and in the lower troposphere. 256 

With the exception of the Brewer-Mast data in the troposphere, The the overall effect of the 257 

corrections is generally modest, and so should not invalidate past analyses that have used Canadian 258 

network data. They can be summarized as: 259 
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 Tropospheric changes: increases of up to 5% after 1979; up to 20% before 1980 (Brewer-260 

Mast sondes), declining with altitude. 261 

 Stratospheric changes: decreases of up to 4% before 1980 at 25 km, smaller decreasesless 262 

above and below 25km. Increases of ~1% in the 1980s, ~2-3% in the 1990s, and little change 263 

in the 2000s.  264 

An examination of the revised record shows that the removal of these artifacts from it has 265 

indeed reduced uncertainty, as measured by the changes in the comparison to the total ozone record. 266 

Table 3 describes these differences. The normalization factors are closer to 1, and their variance is 267 

reduced, for both Brewer-Mast and ECC sondes. A trend in the normalization factors for the Brewer-268 

Mast sondes is reduced, and that for ECC sondes is effectively removed (no longer statistically 269 

significant). 270 

4  Uncertainty analysis 271 

An important goal of the Ozonesonde Data Quality Assessment (O3S-DQA) is to produce an 272 

uncertainty analysis for ozonesonde data. There have been only a few published efforts to quantify 273 

 Mean Ratio (Normalization 

Factor) 

Standard 

Deviation 

Trend in Normalization 

Factors 

BM data (up to 1979) 

Original 1.27 0.303 2.7%/decade 

Renormalized 1.20 0.198   

Response 

correction 

1.03 0.179 2.2%/decade 

ECC data (1980-2013) 

Original 0.97 0.101 -2.6 +/- 0.6 %/decade 

All corrections 0.99 0.087  0.6 +/- 0.5 %/decade 

Table 3:  Cummulative effects of corrections to ozonesonde data for the record at Edmonton 
(Stony Plain), as indicated by changes in the comparison of the integrated profile to a coincident 
spectrophotometric total ozone measurement. 
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Error Source Uncertainty (1σ) 

 BM 3A 4A 5A/6A 2Z 

Stoichiometry ±1.0% ±1.0% ±1.0% ±1.0% ±1.0% 

T measurement  ±3.0% ±0.3% ±0.3% ±0.2% ±0.2% 

Pump calibration ±0.5% ±0.5% ±0.5% ±0.5% ±0.5% 

Pump cal. RH error -- ±0.5% ±0.5% ±0.5% ±0.5% 

En-Sci 1% KI 
correction error 

-- -- -- -- ±0.5% 

Pump corr. error 
(100hPa/10hPa) 

±2.0%/±6.9% ±0.5%/±2.1% ±1.1%/±2.6% ±1.1%/±2.6% ±1.1%/±2.6% 

2.5 ml solution corr. 
error   ( p ) 

±4% (sl) ±4% (sl) ±4% (sl) ±4% (sl) ±4% (sl) 

Background 
current 

±0.05 mPa iB(1-p/p0) iB(1-p/p0) iB(1-p/p0) iB(1-p/p0) 

BM response corr. 
error ( correction) 

±7.0% (sl) -- -- -- -- 

Iodine loss ( p1 ) ±6% (10 hPa) -- -- -- -- 

Ascent rate 
variation 

-- ±12%* 3

/ O te  ±12%* 3

/ O te  ±12%* 3

/ O te  ±12%* 3

/ O te  

Pressure offset ±1 hPa (VIZ) ±1 hPa (VIZ) ±1 hPa (VIZ) ±0.5 hPa (RS80) ±0.5 hPa (RS80) 
±0.15 hPa (RS92) 

Table 4: Sources of ozonesonde profile error considered in this analysis and their estimated magnitudes. 
See text for details. 

the uncertainty in ozonesonde profile measurements, either from an analysis of error sources 274 

(Komhyr et al., 1995) or empirically, from field or laboratory intercomparisons (Smit et al., 2007; 275 

Kerr et al, 1994; Deshler et al., 2008; Barnes et al., 1985; Smit and ASOPOS panel, 2011) or via 276 

statistical data analysis (Liu et al., 2009). Here we attempt a “bottom-up” approach similar to that of 277 

Komhyr et al., (1995). 278 

Table 4 lists the error sources considered in this analysis. The first five lines refer to errors 279 

that are assumed constant throughout the profile:  280 

1. Stoichiometry 281 

Although the stoichiometry of the neutral buffered-KI  method for measuring ozone was the 282 

subject of some controversy in the 1970s (e.g. Boyd et al., 1970; Pitts et al., 1976) most 283 
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workers have found a stoichiometry of 1.0 within experimental error (Hodgeson et al., 1971; 284 

Kopczynski and Bufalini, 1971; Dietz et al., 1973) especially when potassium bromide is 285 

added (Lanting, 1979;  Bergshoeff et al., 1980), as is the case in ozonesondes, and provided 286 

that slow side reactions with the phosphate buffer are excluded (Saltzman and Gilbert, 1959; 287 

Flamm, 1977; Johnson et al., 2002).  We have allowed a modest (1%) uncertainty for the 288 

reaction stoichiometry in both types of ozonesonde.  289 

2. Temperature measurement 290 

The Brewer-Mast sonde did not have a measurement of the instrument temperature, and so 291 

the processing assumes a constant temperature of 300K. Measurements of the actual 292 

temperature made by Dütsch (1966) and Steinbrecht et al. (1998) suggest that it varies over a 293 

range of 10-20K (3-6%) over a flight, with a standard deviation of 1-3%. We have 294 

represented this as a 3% uncertainty. For the ECC sondes, the box temperature measurement 295 

in the 3A and 4A models was less accurate than the pump measurement used with later 296 

models; we have assumed a standard error of 0.5K for the latter and 1.0K for the former. 297 

3. Pump calibrationflow measurement 298 

An examination of pre-flight volumetric pump flow measurementcalibration data from 299 

several sites shows that standard deviations of 0.1-0.3% in this measurement (performed the 300 

day before launch) are typical. However, differences between this measurement and the 301 

corresponding flow rate determination made at the manufacturer’s facility are larger, with 302 

standard deviations of about 1%. Torres (1981) found a 1 variation in the speed of 303 

individual model 3A pump motors of 0.5%. We have assumed a calibration uncertainty of 304 

0.5% for all types of sonde.  305 
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4.  Relative humidity error 306 

For ECC sondes an additional error source is present, as the during the pump flow 307 

measurementcalibration the pump draws relatively dry air from the room and expels it water-308 

saturated air into the graduated cylinder at close to 100% relative humidity. The measured 309 

volume is larger than the actual volume pumped by an amount proportional to the ratio of the 310 

saturation vapour pressure to the room pressure, times the relative humidity change. 311 

Assuming a typical indoor humidity range of 40-70% (1) gives an uncertainty of ±0.5%. 312 

5. Correction for use of standard 1% buffered KI solution in En-Sci sondes 313 

A bias correction of about 4% below 50 hPa and somewhat larger above has been made to 314 

En-Sci sondes flown with 1% KI solution (Deshler et al., 2008b). We have allowed an 315 

additional uncertainty of ±0.5%, representing the standard error of the Deshler et al. 316 

measurements, where this correction was made. 317 

The latter seven lines refer to errors that vary throughout the profile, either with pressure or ozone 318 

gradient. Errors are calculated for each point in the profile:  319 

6. Pump correction error 320 

Pump corrections, and their associated uncertainties, have been measured by a small number 321 

of authors. For Brewer-Mast sondes we have used the estimates of  Komhyr and Harris 322 

(1965), and for ECC 3A sondes those of Torres (1981). For ECC 4A and later models (which 323 

have similar pumps), Johnson et al. (2002) provide a table summarizing the results of very 324 

large number of pump tests, primarily at the University of Wyoming and at the 325 

NOAA/CMDL laboratories. Both of these give much larger uncertainties than those quoted 326 

by Komhyr (1986), for a small number of tests. We have averaged these larger uncertainty 327 
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values from the Wyoming and NOAA/CMDL tests. Torres (1981) also notes that his  328 

uncertainty estimates are based on a modest number of sondes from the same manufacturing 329 

batch, and so may also be biased low. For each sonde type we have interpolated the measured 330 

uncertainties to other pressures to estimate this error for all points in each profile. 331 

7. Solution volume correction 332 

As the ozone loss in sensors charged with only 2.5 ml of KI solution appears quite variable, a 333 

fairly large error of 4% at 1000 hPa, withinversely proportional to declining with pressure, 334 

was assumed. 335 

8. Background current 336 

As noted above, Canadian practice has been to treat background current  as proportional to 337 

pressure, but it is now recommended (Smit and ASOPOS panel, 2011) to treat it as constant. 338 

Here we have treated the difference between the two values as an uncertainty, although it 339 

should be noted that although randomly variable in magnitude, it is always a positive bias. It 340 

is largest in relative terms just below the tropopause, where absolute amounts of ozone tend 341 

to be lowest. The average magnitude of the difference is shown in Figures 5-8; it is largest in 342 

the 1980’s, and has a modest effect on calculated trends in the upper troposphere (Tarasick et 343 

al., 2005). 344 

9. Brewer-Mast response correction 345 

The quadratic fit to the data shown in Figure 7 of Tarasick et al. (2002) has a standard 346 

deviation of ~7%. We have added this uncertainty, scaled to the absolute magnitude of the 347 

correction, which is largest at 1000 hPa. The correction is largest (i.e. 7%) at 1000 hPa and 348 

declines quadratically withand quadratic in log(pressure). 349 

10.  Iodine loss 350 
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Brewer-Mast sondes show increasing errors at higher altitudes relative to ECC sondes (Kerr 351 

et al., 1994; Fioletov et al., 2007). One possibility for this is solution evaporation, and/or 352 

iodine evaporation loss from the sensing solution. The Brewer-Mast sensor has a somewhat 353 

more open construction that may allow more solution evaporation. Brewer-Mast sondes also 354 

use a much weaker (0.1%) KI solution, which may allow significant iodine evaporation 355 

(Brewer and Milford, 1960; Tarasick et al., 2002). We have included an empirical estimate 356 

for this uncertainty of 0.6/p, where p is pressure in hPa.  357 

11.  Ascent rate variation 358 

The relatively slow response of ECC sondes causes their response to lag changes in the ozone 359 

concentration as the balloon rises. This implies that different balloon rise rates will give 360 

somewhat differing ozone amounts, especially in parts of the profile with large ozone 361 

gradients. We assumed an e
-1

 response time of  =20 s (Smit and Kley, 1998). The standard 362 

deviation of balloon rise rate at Edmonton in the 2000s is ~12%, which yields modest errors 363 

(<1%) at the sharp ozone gradients near the tropopause and mostly insignificant errors 364 

elsewhere. 365 

12. Pressure offset 366 

The error in ozone implied by an a pressure offset equal to the manufacturer’s estimated 1 367 

uncertainty is calculated for every point in the profile by multiplying by the measured ozone 368 

gradient with respect to pressure.  We have used the values quoted by Richner and Phillips 369 

(1981) for the VIZ sonde and Steinbrecht et al. (2008) for the Vaisala sondes. 370 

 371 

The uncertainty profile is calculated for each flight, using the pressure and ozone partial pressure 372 

data for that flight. Figure 5 shows the average uncertainty profile for the Brewer-Mast flights at 373 



 

20 

Edmonton, along with the standard deviation of the response of ECC sondes during the Vanscoy and 374 

JOSIE 1996 ozonesonde intercomparison campaigns (Kerr et al, 1994; Smit et al., 2007), and the 375 

standard deviation of the response of Brewer-Mast sondes during the Vanscoy campaign (Kerr et al, 376 

1994). Several of the individual contributions to the overall uncertainty are shown. The total 377 

uncertainty without the contribution from radiosonde pressure offsets, labelled “Same balloon”, is 378 

also shown, to facilitate comparison with the JOSIE 1996 and Vanscoy intercomparison uncertainty 379 

estimates, which were referenced to a common pressure measurement. It will be noted that the 380 

uncertainty in the VIZ radiosonde pressure measurement dominates the calculated uncertainty above 381 

about 32 km. 382 

Figure 6 shows similar calculations for the first decade of ECC soundings (3A and 4A models). 383 

The VIZ radiosonde was used throughout. As the other sources of uncertainty are smaller, the 384 

uncertainty in the VIZ radiosonde pressure measurement now dominates the calculated uncertainty 385 

above about 26 km. Figures 7 and 8 show similar calculations for the 1990s and 2000s respectively.  386 

Notable improvements are reductions in background current, and the reduction of pressure offsets 387 

with the introduction of the Vaisala radiosondes.  388 

 389 

5  Time series and trend analysis 390 

For this analysis each ozone profile was represented by a surface-level measurement (the ozone 391 

measurement at sonde release) and 11 layers equally spaced in log pressure (each ~3 km in 392 

thickness). Troposphere and stratosphere have been explicitly separated: that is, integration for the 393 

400-250 hPa layer is from 400 hPa to 250 hPa or the tropopause, whichever comes first. Similarly, 394 

integration of the 250-158 hPa layer starts either at 250 hPa or at the tropopause, if the latter is found 395 
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above 250 hPa. (Cases where the tropopause is below the 400 hPa height or above 158 hPa occur 396 

rarely but are dealt with similarly). The WMO definition of the tropopause (WMO, 1992) is 397 

employed.  398 

Partial ozone columns were integrated within these 11 layers and divided by the pressure 399 

difference across each layer to find average ozone mixing ratios.  These and the ground-level mixing 400 

ratio values were deseasonalized by subtracting the average annual cycle as described in Tarasick et 401 

al. (1995). The deseasonalized time series were also adjusted for the effects of diurnal variation in 402 

ozone concentration. Sondes are generally launched at either 12 or 0 GMT, which are early morning 403 

and mid-afternoon in Kelowna and Edmonton, and later at other stations. The amount of diurnal shift 404 

(a scalar value for each station at each level) was calculated as the average difference between values 405 

for the two launch times, where both were available in the same year and month.  The effect is 406 

significant primarily at Edmonton, where it can be as large as 42% at ground level, and 14% below 407 

700 hPa (Tarasick et al., 2005). However, for consistency all stations were adjusted at all levels.  408 

Figures 9 through 14 show time series of percent deviations in average ozone mixing ratio for 409 

three northern midlatitude stations (Edmonton, Goose Bay, and Churchill) and for the three Arctic 410 

stations  (Resolute, Alert, and Eureka). For ease of visualization, a 4-month running average has 411 

been applied to smooth the data.  412 

Figures 9 and 10 show the surface and the three tropospheric layers. The most notable feature in 413 

both cases is that there appears to be no long-term trend in the troposphere, over the 45-year 414 

(midlatitude) or 48-year (Arctic) record, except at the surface and possibly in the upper troposphere 415 

of the Arctic. In the latter cases these trends are negative. The surface trend at the northern 416 

midlatitude sites appears may be primarily due to urban development near Edmonton (Tarasick et 417 

al., 2005), although Churchill shows a strong decline at the surface in recent decades, for unknown 418 
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reasons. The surface trend at the Arctic sites may be related to an increase in the frequency of 419 

halogen-induced surface ozone depletions, which appear to correlate with negative anomalies in the 420 

surface ozone record shown in Figure 10 (Oltmans et al., 2012). The frequency of such events at 421 

Resolute has increased by nearly 32% over the 1966-2013 period (Tarasick et al., 2014). 422 

The decadal trends (not shown) are much more variable. In general, however, trends are negative 423 

in the 1980s, positive in the 1990s, and small after 2000. 424 

Figures 11 and 12 show the four lower stratospheric layers. Here the long-term trends are all 425 

negative (with the exception of Eureka, whose record began in 1993). Notable features are the low 426 

values in the early 1990s, and the high values in the early 2000s, the latter possibly caused by small 427 

changes in the Brewer-Dobson circulation (Bönisch et al., 2011). These high values cause the lower 428 

stratospheric trends for 2000-2013 (which might otherwise be expected to show signs of recovery 429 

from stratospheric ozone depletion with declining effective chlorine levels over this period) to be 430 

negative, both at midlatitudes and in the Arctic.  In the Arctic, particularly above 100 hPa, the 431 

springtime negative anomalies in cold vortex years (1996, 1997, 2000, 2005, and 2011) are evident. 432 

At these levels the 2011 anomaly (e.g. Manney et al., 2011) is larger than the 1993 anomaly related 433 

to the eruption of  Mt. Pinatubo. 434 

The four middle stratospheric layers (Figures 13 and 14) show less variability, and the decadal 435 

trends more closely follow the long-term trends at each level. These long-term linear trends are 436 

shown in Figures 15-17. 437 

Figure 15 shows calculated trends in ozone mixing ratio from ozonesonde data at six Canadian 438 

stations from 1966-2013 (for Alert and Eureka from 1987 and 1992 respectively), for the ground 439 

level and the 11 layers equally spaced in log pressure.  To calculate these trends the deseasonalized 440 
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station time series were averaged by month, and a simple linear regression (without subtraction of 441 

QBO, solar-cycle, or other known influences on ozone) was used to derive trends. Trends are 442 

expressed as per cent per decade, relative to the layer mean. The time series of monthly means show 443 

in general significant autocorrelation both in the stratosphere and the troposphere.  Allowance is 444 

made for this in the confidence limits for trends by basing the confidence limit calculation on a 445 

(reduced) effective sample size, )1()1(   nneff , where   is the lag-1 autocorrelation 446 

coefficient, and the ozone variability is assumed to be an AR(1) process (Zwiers and von Storch, 447 

1995; Thiebaux and Zwiers, 1984).   448 

Except at the surface, trends in the troposphere are in general non-significant over this very 449 

significant period. Trends in the middle stratosphere are also non-significant at the 95% (2) level, 450 

while those in the lower stratosphere are significant and negative. Trends in the lower stratosphere, 451 

however, are as large -5% per decade over the 48-year record. To gauge the uncertainty introduced 452 

by the addition of the older Brewer-Mast data, we have also calculated trends using only ECC data 453 

(that is, from 1980). The differences are surprisingly modest. We also show trends from 1980 454 

calculated using ECC data before corrections are applied. The largest differences are seen at Alert 455 

and Eureka. The increases of 2-5% to the 1990s data (Figure 3) have a larger effect on trends at these 456 

sites as they lack data from the early 1980s. 457 

For comparison with other analyses in the SI
2
N initiative (e.g. Harris et al., 2014) and the WMO 458 

Scientific Assessment of Ozone Depletion: 2014 (WMO, 2014), in Figures 16 and 17 we show  trends 459 

calculated using only data prior to 1997 (Figure 16), and from 1997-2013 (Figure 17). The trends for 460 

1966-1996 show a similar picture to that of Figure 15, although here some of the middle 461 

stratospheric layers show positive trends. If the trends are calculated using only data after 1979 (that 462 
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is, ECC-only data) the trend picture is quite similar. However, trends in the 17-year period from 463 

1997-2013 are almost all non-significant at the 95% (2) level, except at the surface, which shows 464 

some surprisingly large variations. This is true even in the Arctic lower stratosphere, despite the 465 

large negative anomaly in 1997 (Figure 14). Since stratospheric halogen loading has been decreasing 466 

during this period (WMO, 2014), the lack of evident ozone increases recovery may be due to 467 

atmospheric variability (Kiesewetter et al., 2010; Chehade et al., 2014), in particular the high values 468 

in the early 2000s, possibly caused by changes in the Brewer-Dobson circulation (Bönisch et al., 469 

2011).  However, the standard deviations of the monthly ozone anomalies in the stratosphere at the 470 

four long-term stations for the 17 years prior to 1997 average 8-40% greater than those for the 17 471 

year period 1997-2013, which suggests that the stratosphere has in fact been less variable in the latter 472 

period.  473 

 474 

6  Conclusion 475 

As part of the SPARC/IO3C/IGACO-O3/NDACC (SI
2
N) initiative, Canada’s important record of 476 

ozone sounding data has been re-evaluated, taking into account the estimated effects of changes in 477 

the type and design of ozonesondes used in Canada over the last five decades.  478 

The effect of the corrections is generally modest, and so should not invalidate past analyses that have 479 

used Canadian network data. However, the overall result is entirely positive: the comparison with co-480 

located total ozone spectrometers is improved, in terms of both bias and standard deviation, and 481 

trends in the bias have been reduced or eliminated. An uncertainty analysis (including the additional 482 



 

25 

uncertainty from the corrections, where appropriate) has also been conducted, and the altitude-483 

dependent estimated uncertainty is included with each revised profile. 484 

The resulting time series show negative trends in the lower stratosphere of up to 5% per decade 485 

for the period 1966-2013. Most of this decline occurred before 1997, and linear trends for the more 486 

recent period are generally not significant. The time series also show large variations from year to 487 

year. Some of these anomalies can be related to cold winters (in the Arctic stratosphere), or changes 488 

in the Brewer-Dobson circulation, which may thereby be influencing trends. 489 

In the troposphere trends for the 48-year period are small, and for the most part not significant.  490 

This suggests that ozone levels in the free troposphere over Canada have not changed significantly in 491 

nearly 50 years. 492 

 493 
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Figure 1: Average ozone profile at Edmonton before (NONE) and after corrections to the Brewer-763 

Mast record. The largest change is in the lowermost troposphere, where the response correction 764 

raises ozone values by about 15%. 765 
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Figure 2: As Figure 1, but for the first decade of ECC soundings. The changes to the ECC record in 767 

the 1980s are comparatively minor. 768 
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Figure 3:  As Figure 1, but for the 1990s. 771 
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Figure 4:  As Figure 1, but for the 2000s. Overall changes to the record are minor. 773 
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 774 

Figure 5: Average estimated uncertainty of Brewer-Mast soundings at Edmonton, showing 775 

contributions from selected sources. “Same balloon” indicates the total uncertainty without the 776 

contribution from radiosonde pressure offsets, to facilitate comparison with the JOSIE and Vanscoy 777 

intercomparison uncertainty estimates, which were referenced to a common pressure measurement. 778 

The uncertainty in the VIZ radiosonde pressure measurement dominates the calculated uncertainty 779 

above about 32 km. 780 
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 782 

Figure 6: Average estimated uncertainty of ECC (3A and 4A) soundings in the 1980s at Edmonton, 783 

showing contributions from selected sources. “Same balloon” indicates the total uncertainty without 784 

the contribution from radiosonde pressure offsets, to facilitate comparison with the JOSIE and 785 

Vanscoy intercomparison uncertainty estimates, which were referenced to a common pressure 786 

measurement. As the overall uncertainty is smaller, the uncertainty in the VIZ radiosonde pressure 787 

measurement now dominates the calculated uncertainty above about 26 km. 788 
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 789 

 790 

Figure 7:  Average estimated uncertainty of ECC (4A and 5A) soundings in the 1990s at Edmonton, 791 

showing contributions from selected sources. The uncertainty in the VIZ or (from 1994) RS-80 792 

radiosonde pressure measurement dominates the calculated uncertainty above about 28 km. 793 
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 795 

Figure 8:  Average estimated uncertainty of ECC (5A and En-Sci) soundings in the 2000s at 796 

Edmonton, showing contributions from selected sources. The uncertainty in the RS-80 or (from 797 

2006) RS-92 radiosonde pressure measurement now dominates the calculated uncertainty only above 798 

about 31 km. 799 
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 802 

Figure 9: Percent deviations in average ozone mixing ratio for the surface and three tropospheric 803 

layers, for three midlatitude stations.  Monthly anomalies have been smoothed with a four-month 804 

running average. The overall station trend lines (up to 45 years in the case of Goose Bay) are shown. 805 

The troposphere and stratosphere have been explicitly separated: that is, integration for the 400-250 806 

hPa layer is from 400 hPa to 250 hPa or the tropopause, whichever comes first.  807 
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 809 

 810 

Figure 10: As Figure 9, for the three Arctic stations. The overall station trend lines (up to 48 years in 811 

the case of Resolute) are shown. 812 
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 814 

 815 

Figure 11: Percent deviations in average ozone mixing ratio for four lower stratospheric layers, 816 

using data from three midlatitude stations.  Monthly anomalies have been smoothed with a four-817 

month running average. The overall station trend lines are shown. The troposphere and stratosphere 818 

have been explicitly separated: that is, integration of the 250-158 hPa layer starts either at 250 hPa or 819 

at the tropopause, if the latter is found above 250 hPa.  820 
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 822 

 823 

Figure 12: As Figure 11, for the three Arctic stations. The overall station trend lines are shown.  824 
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 826 

Figure 13: Percent deviations in average ozone mixing ratio for four middle stratospheric layers, 827 

using data from three midlatitude stations.  Monthly anomalies have been smoothed with a four-828 

month running average. The overall station trend lines are shown.  829 
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 831 

Figure 14: As Figure 13, for the three Arctic stations. The overall station trend lines are shown.  832 
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 843 

 Figure 15:  Linear trends in ozone mixing ratio for the overall (48-year) period at the six Canadian 844 

sites with long-term ozonesonde records, for the surface and 11 layers equally spaced in log pressure 845 

(~3 km). Error bars show 95% (2) confidence limits. The troposphere and stratosphere have been 846 

explicitly separated: that is, integration of the 250-158 hPa layer starts either at 250 hPa or at the 847 

tropopause, if the latter is found above 250 hPa. Similarly, integration of the 250-158 hPa layer starts 848 

either at 250 hPa or at the tropopause, if the latter is found above 250 hPa. Trends using only ECC 849 

data (from 1980) are shown in red. Trends from 1980 using ECC data before corrections are applied 850 

are shown in green. 851 
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Figure 16:  As Figure 17, but for 1966-1996. Trends using only ECC data (from 1980) are shown in 853 

red. 854 
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 857 

Figure 17:  As Figure 17, but for 1997-2013.  858 

 859 


