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Abstract

Organic carbon (OC) and elemental carbon (EC) are major components of atmospheric
particulate matter (PM), which has been associated with increased morbidity and mortality,
climate change and reduced visibility. Typically OC and EC concentrations are measured
using thermal optical methods such as thermal optical reflectance (TOR) from samples col-5

lected on quartz filters. In this work, we estimate TOR OC and EC using Fourier transform
infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE Teflon) filters us-
ing partial least square regression (PLSR) calibrated to TOR OC and EC measurements
for a wide range of samples. The proposed method can be integrated with analysis of rou-
tinely collected PTFE filter samples that, in addition to OC and EC concentrations, can10

concurrently provide information regarding the functional group composition of the organic
aerosol. We have used the FT-IR absorbance spectra and TOR OC and EC concentrations
collected in the Interagency Monitoring of PROtected Visual Environment (IMPROVE) net-
work (USA). We used 526 samples collected in 2011 at seven sites to calibrate the models,
and more than 2000 samples collected in 2013 at 17 sites to test the models. Samples from15

six sites are present both in the calibration and test sets. The calibrations produce accurate
predictions both for samples collected at the same six sites present in the calibration set
(R2 = 0.97 and R2 = 0.95 for OC and EC respectively), and for samples from nine of the
11 sites not included in the calibration set (R2 = 0.96 and R2 = 0.91 for OC and EC re-
spectively). Samples collected at the other two sites require a different calibration model to20

achieve accurate predictions. We also propose a method to anticipate the prediction error:
we calculate the squared Mahalanobis distance in the feature space (scores determined by
PLSR) between new spectra and spectra in the calibration set. The squared Mahalanobis
distance provides a crude method for assessing the magnitude of mean error when applying
a calibration model to a new set of samples.25
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1 Introduction

Organic carbon (OC) and elemental carbon (EC) are major components of atmospheric
particulate matter (PM), which has been associated with increased morbidity and mortality
(Janssen et al., 2011; Anderson et al., 2012), climate change (Yu et al., 2006; Bond et al.,
2013) and reduced visibility (Watson, 2002; Hand et al., 2012). The major sources of EC5

are incomplete burning of fossil fuels and pyrolysis of biological material during combustion
(Bond et al., 2007; Szidat et al., 2009). OC may be either directly emitted from sources,
(e.g. incomplete combustion of organic materials) or produced from chemical reactions in-
volving organic carbon gases (Jacobson et al., 2000). Therefore, OC and EC are monitored
over long periods of time by large monitoring networks such as: the Interagency Monitor-10

ing of PROtected Visual Environments network (IMPROVE, Hand et al., 2012; Malm et al.,
1994) in rural areas in the US; the Chemical Speciation Network/Speciation Trends Network
(CSN/STN, Flanagan et al., 2006) in urban and suburban areas in the US; the European
Monitoring and Evaluation Programme (EMEP, Tørseth et al., 2012) in Europe.

Typically OC and EC concentrations are measured using thermal methods such as15

thermal-optical reflectance (TOR, Chow et al., 2007; NIOSH 5040, Birch and Cary, 1996;
EUSAAR-2, Cavalli et al., 2010) from samples collected on quartz filters. OC and EC are
operationally defined by the temperature gradient and gaseous environment in which car-
bon evolves from the sample. An optical method such as reflectance or transmittance is
used to correct for pyrolysis of the organic material (Cavalli et al., 2010; Chow et al., 2007).20

However, TOR measurements are destructive and relatively expensive.
To reduce the operating costs of large air quality monitoring networks, Dillner and Taka-

hama (2015a, b) proposed using Fourier transform infrared spectroscopy (FT-IR) as an
alternative for quantification of OC and EC. This analysis technique is inexpensive, non-
destructive, and rapid. It uses PTFE samples, which are commonly used in PM monitoring25

networks for gravimetric mass and elemental analysis. Moreover, many quantities of inter-
est (e.g. organic functional groups, OM and OM/OC) can be quantified from the same FT-IR
spectra (Ruthenburg et al., 2014; Takahama et al., 2013; Russell, 2003).
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In this work, we further evaluate the use of FT-IR as an alternate method for quantifi-
cation of TOR OC and EC by extending the work of Dillner and Takahama (2015a, b) to
a different year and different sites. We used FT-IR absorbance spectra and TOR OC and
TOR EC measurements collected in the IMPROVE network. In the previous works, the au-
thors used PTFE samples collected at seven sites in 2011. The filters were collected every5

third day; two-thirds of samples were used to calibrate the models and the remaining to test
the calibration models. We used the same calibration dataset (collected in 2011) used by
(Dillner and Takahama, 2015a, b), and we extended the previous analysis by: (i) evaluat-
ing the models using test samples collected at the same sites of the calibration dataset but
a different year (2013); (ii) evaluating the models using test samples collected at 11 different10

sites and different year (2013) of the calibration dataset; (iii) proposing a statistical method
to anticipate the prediction errors for each site.

To predict OC and EC values, we used partial least square regression (PLSR, Sect. 2.3).
PLSR is a common method to develop calibration models for different compounds (Madari
et al., 2005; Weakley et al., 2014; Vongsvivut et al., 2012). Moreover, we also propose15

a statistical modelling technique to anticipate the estimation error and the goodness of
the estimation (Sect. 2.4). We use the squared Mahalanobis distance (Mahalanobis, 1936;
Cios et al., 1998) in the feature space (scores of the PLSR; Barker and Rayens, 2003) to
discriminate between sites that likely have predictions outside the predefined error range
(presumably because their features are not well modelled with the available dataset).20

2 Methods

2.1 IMPROVE network samples

In this work, we used samples from the IMPROVE network collected in 2011 and 2013
(Table 1 and Fig. 1). We divided these samples in four datasets (Table 1). Calibration 2011
is composed of 526 PTFE ambient samples collected at seven sites in the US in 201125

(filled and empty squares symbols in Fig. 1) plus 36 laboratory blank samples. This dataset
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is the same calibration set used by Dillner and Takahama (2015a, b) including Sect. S3
in the Supplement of Dillner and Takahama (2015b). Test 2011 is composed of 269 PTFE
ambient samples (plus 18 PTFE laboratory blank samples) collected at the same sites
and the same year (2011) of the calibration dataset (filled and empty squares symbols in
Fig. 1). This dataset is the same test set used by Dillner and Takahama (2015a, b). Test5

2013 is composed of 949 PTFE ambient samples (plus 50 PTFE laboratory blank samples)
collected at six sites that are the same sites but different year (2013) of the calibration
dataset (filled squares symbols in Fig. 1). Test 2013 additional (Addl) is composed of 1290
PTFE ambient samples (plus the same 50 PTFE laboratory blank samples of the Test 2013
dataset) collected at 11 different sites and different year (2013) of the calibration dataset10

(black triangles in Fig. 1). Four of the eleven additional sites are urban sites, some of the
samples experienced significant smoke impact and some were collected at an IMPROVE
site in South Korea (with high sample loadings).

The IMPROVE network collects samples every third day from midnight to midnight (local
time) at a nominal flow rate of 22.8 L min−1, which yields a nominal volume of 32.8 m3 and15

produces samples of particles smaller than 2.5 µm in diameter (PM2.5). The FT-IR analysis
is applied to 25 mm PTFE samples (Teflon, Pall Gelman – 3.53 cm2 sample area) that are
analyzed for gravimetric mass, elements and light absorption in the IMPROVE network.
Quartz filters collected in parallel to the PTFE samples are analyzed by TOR using the
IMPROVE A protocol to obtain OC and EC mass in the IMPROVE network (Chow et al.,20

2007). The OC and EC values are also adjusted to account for flow differences between the
quartz and PTFE samples. IMPROVE samples lacking either flow records for PTFE filters
or TOR measurements are excluded.

2.2 FT-IR analysis: spectra acquisition

We analyzed a total of 3034 PTFE ambient samples and 104 PTFE laboratory blank sam-25

ples using a Tensor 27 Fourier transform infrared (FT-IR) spectrometer (Bruker Optics, Bil-
lerica, MA) equipped with a liquid-nitrogen-cooled wide-band mercury cadmium telluride
detector. The samples are analyzed using transmission FT-IR in air that has low levels of
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water vapor and CO2 using an empty sample compartment as the reference (a more de-
tailed description is in Dillner and Takahama, 2015a). The filter samples are not treated
prior to FT-IR analysis except that values interpolated during the zero-filling process are
removed. These spectra contain 2784 wavenumbers.

2.3 Building the calibration models5

We used the calibration models developed by Dillner and Takahama (2015a, b) to predict
TOR OC and EC in the 2013 data sets. For each site, the samples collected in 2011 are
ordered by date and every third sample is removed and included in the Test 2011 dataset.
The remaining samples are placed in the Calibration 2011 dataset.

Briefly, the calibraton models were developed using Partial Least Squares Regression10

(PLSR, Wold et al., 1983; Geladi and Kowalski, 1986) using the kernel PLS algorithm,
implemented by the PLS library (Mevik and Wehrens, 2007) of the R statistical package (R
Core Team, 2014). The goal is to predict a set of coefficients b from a matrix of spectra X
for observation y (OC or EC), with residuals e:

y = Xb+ e (1)15

PLSR circumvents issues that arise when collinearity exists among variables in X
(strong correlation of absorbances across wavenumbers) and when the number of vari-
ables (wavenumbers) in the spectra matrix X exceeds the number of observation (rows of
X). PLSR performs a bilinear decomposition of both X and y: the matrix of spectra (X) is
decomposed into a product of orthogonal factors (loadings, P) and their respective contri-20

butions (scores, T). Observed variations in the OC or EC mass are reconstructed through
a combination of these factors (T) and a set of weights simultaneously (q) developed to
relate features to the dependent and independent variables – scores and loadings describe
the covariance between X and y.

X = TP>+E (2)25

y = Tq>+f (3)
6
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The two sets of factors are related through a weighting matrix W to reconstruct the set of
regression coefficient b:

b= W
(
P>W

)−1
q> (4)

Candidate models for calibration are generated by varying the number of factors used to
represent the matrix of spectra. To select the number of factors we used K = 10 fold cross5

validation (CV, Hastie et al., 2009; Arlot and Celisse, 2010) on the calibration 2011 dataset
(Sect. 2.1). We used the minimum root mean square error (RMSEP) to select the model
with least prediction error.

For the calibration of the FT-IR spectra to TOR EC, in order to eliminate bias in the
calibration and improve prediction capability for low EC samples (EC< 2.4 µg), we used10

the hybrid calibration approach described in (Dillner and Takahama, 2015b). We used two
calibration models: the first uses samples in the calibration set that are in the lowest one-
third of the EC mass range to predict samples in the test set that are also in the lowest
one-third of the EC mass range; the second one for the remaining samples. Localization of
the calibration (with respect to concentration) is a commonly used method to improve the15

performance of the calibration, often at the more difficult to measure low end of the range.

2.4 Anticipating prediction errors

For samples collected during different periods or different locations, it is useful to know
whether the present calibration model is appropriate for a new sample or a new set of
samples. Using features present in FT-IR spectra, we propose a method to anticipate the20

prediction error in OC or EC concentrations prior to applying the calibration model. The pur-
pose of such an approach is to determine whether a particular calibration model is suitable
for a new set of samples without requiring an assessment of prediction accuracy using TOR
OC and EC measurements a posteriori. The feature space is a low-dimensional projection
of the absorbance spectra that has been associated with prediction capability for TOR OC25

and EC, and is determined by the factor scores determined by PLSR (Eqs. 2 and 3). We
7
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calculate the centroid (µ) and the covariance (Σ) of the calibration samples projected in the
feature space:

µ= (µ1,µ2, . . . ,µk)> , µj =
1

n

n∑
i=1

tij ∀j = 1, . . . ,k (5)

Σ = cov(ti,tj) , i= 1 . . . ,n j = 1 . . . ,k (6)

where k is the number of factors used to represent the matrix of spectra; n is the number5

of PTFE samples included in the Calibration 2011 dataset; t are the columns of the scores
matrix.

For each calibration sample, we calculate the squared Mahalanobis distance (D2
M) be-

tween the sample itself and the centroid of the calibration set, taking into account the co-
variance matrix to normalize the distance according to the magnitude of dispersion in each10

dimension.

D2
M,i = (ti−µ)>Σ−1 (ti−µ) , i= 1, . . . ,n (7)

We then project absorbance spectra of the test set (Table 1) in the feature space, and
calculate the D2

M between each test sample and the centroid (µ) of the calibration set.
We present our evaluation for two cases. In the first case, we calculate theD2

M and errors15

for the calibration and test sets according to sampling site, and calculated the meanD2
M and

mean absolute error for each site. In the second case, we considered the D2
M and absolute

error for each sample, without aggregation. We considered acceptable predictions, the ones
that have errors within the magnitude of the 2011 dataset, and unacceptable predictions
those for which the errors are greater. As boundaries for the discrimination, in the first20

case, we used the greatest mean D2
M plus one standard error (SE) and the greatest mean

absolute error plus one SE found in the Test 2011 set. In the second case, we used the
greatest D2

M and the absolute error found in the Test 2011 set (except for one sample that
we considered an outlier, Fig. S3 in the Supplement).

The samples collected in 2013 are divided into four classifications, which can be visual-25

ized by membership in one of four quadrants in a plot of absolute error vs. D2
M (Figs. 5 and

8
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11). True negative (TN) samples (or sites) are those for which the D2
M (or mean D2

M) and
absolute error (or mean absolute error) fall in the third (bottom left) quadrant. For TN sam-
ples, the D2

M gives a reliable indication that the prediction error is within magnitude of 2011
samples. True positive (TP) samples (or sites) are those that lie in the first (upper right)
quadrant; the D2

M provides a reliable indication that the prediction error is greater than the5

magnitude of 2011 samples. False negative (FN) samples (or sites) lie in the second (upper
left) quadrant; the D2

M is not indicative of the increased errors above the 2011 predictions.
False positive (FP) samples (or sites) are those that lie in the fourth (bottom right) quadrant;
sample spectra have significantly higher D2

Ms but do not have increased prediction errors
over 2011 predictions.10

2.5 Model evaluation

We evaluated the calibration models (trained with the calibration 2011 dataset, Sect. 2.3)
on the three datasets described in Sect. 2.1. The quality of each calibration is evaluated
by calculating four performance metrics: bias, error, normalized error and the coefficient
of determination (R2) of the linear regression fit of the predicted FT-IR OC and FT-IR EC15

to measured TOR OC and EC. FT-IR OC and EC are the OC and EC predicted from the
FT-IR spectra and the PLSR calibration model. The bias is the median difference between
measured (TOR) and predicted (FT-IR) for the test set. Error is the median absolute bias.
The normalized error for a single prediction is the error divided by the TOR value. The
median normalized error is reported to provide an aggregated estimate. The performance20

metrics are also calculated for the collocated TOR observations and compared to those of
the FT-IR OC and FT-IR EC to TOR OC and TOR EC regression. The minimum detection
limit (MDL) and precision of the FT-IR and TOR methods are calculated and compared. The
MDL of the FT-IR method is 3 times the standard deviation of the laboratory blank samples
in the test sets (Sect. 2.1). The MDL for the TOR method is 3 times the standard deviation25

of 514 blank samples (Desert Research Institute, 2012). Precision for both FTIR and TOR
is calculated using 14 parallel samples in the dataset Test 2011 at the Phoenix site; 240
parallel samples in the dataset Test 2013 at the Phoenix and Proctor Maple R. F. sites; and

9
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115 parallel samples in the dataset Test 2013 Addl at the Yosemite site. For evaluation of the
FT-IR predictions against TOR reference values, we used 621 measurements collected in
2013 from seven IMPROVE sites with collocated TOR measurements (Everglades, Florida;
Hercules Glade, Missouri; Hoover, California; Medicine Lake, Montana; Phoenix, Arizona;
Saguaro West, Arizona; Seney, Virginia).5

3 Results and Discussion

In this section, we first evaluate and discuss the performance of the models by comparing
the predicted with the observed TOR OC (Sect. 3.1) and TOR EC (Sect. 3.3) measurements
for ambient samples collected at the four datasets described in Sect. 2.1. Then, in Sects. 3.2
and 3.4 we describe the results of the prediction error anticipation for the FT-IR OC and FT-10

IR EC respectively.

3.1 Prediction of TOR OC from FT-IR spectra

The comparison between predicted FT-IR OC and measured TOR OC for the datasets
described in Sect. 2.1 is shown in Figure 2. The first row refers to the Calibration 2011
and Test 2011 dataset. In this work, the results obtained with the Test 2011 are used for15

comparison with the results obtained with the Test 2013 and Test 2013 Addl datasets. The
detailed description and discussion of the Test 2011 results can be found in (Dillner and
Takahama, 2015a).

In the case of predictions based on ambient sample collected at the same sites of the
calibration dataset but in a different year (Test 2013 dataset, bottom left panel in Fig. 2), we20

observe that the performance metrics show good agreement between measured (TOR OC)
and predicted OC values (FT-IR OC). Moreover, comparing these metrics with the ones
obtained with the Test 2011 dataset, we note that the R2 is better in the former, and the
bias, error and normalized error are slightly worse in the former. However, these differences
are not substantial, and we can conclude that the predictions made with the Test 201125

and Test 2013 datasets are similar. A T test at the confidence level of 95 % between the
10
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Test 2011 and Test 2013 predictions, and one between their absolute errors confirmed this
observation. From Fig. 3 (performance of the collocated TOR OC measurements), we ob-
serve that the metrics are similar to the ones obtained with the Test 2011 dataset. The bias
(0.09 µg m−3), error (0.12 µg m−3) and normalized error (18 %) of the Test 2013 dataset are
slightly worse than the ones obtained with the collocated TOR OC (0 µg m−3, 0.06 µg m−35

and 11 % respectively). However, these differences are not substantial as shown in Table 2,
which compares the MDLs and precisions of FT-IR OC predictions and TOR OC measure-
ments. Table 2 shows that both the MDL and precision of the Test 2013 are in the same
range of the TOR OC and slightly better than the ones obtained with the Test 2011 dataset.
It is also interesting to note that in the Test 2013 dataset there are two samples notably10

above the maximum values used in the calibration dataset, and the model is still able to
predict them accurately. This observation agrees with the results found by Dillner and Taka-
hama (2015a) (Non-uniform A case), in which the authors used samples with TOR OC in
the lowest two-thirds of the TOR OC range to predict samples with TOR OC in the highest
one-third of the TOR OC range, and the highest one-third of samples were well predicted.15

The bottom right panel in Fig. 2 shows the performance of the calibration model for sam-
ples collected at different sites and different year (Test 2013 Addl dataset) than the samples
used for calibration. The bias, error and normalized error (0.06 µg m−3, 0.13 µg m−3 and
14 %) are in between the one found for the Test 2011 and Test 2013 datasets. However,
the scatterplot and the R2 metric show worse agreement between measured TOR OC and20

predicted FT-IR OC values (R2 = 0.89), than the ones obtained with the Test 2011 and
Test 2013 datasets (R2 = 0.94 and 0.97 respectively). The scatter plot also shows that the
model tends to overestimate the OC values. A T test at the confidence level of 95 % be-
tween the Test 2013 and Test 2013 Addl predictions, and one between their absolute errors
shows a statistical difference between the results obtained with the two datasets. These25

results can be explained by the consideration that the sites where the samples of the Test
2013 Addl were collected may have different composition and loadings of OC than the ones
used in the calibration dataset. Therefore, the calibration model does not have enough in-
formation to model the different features of these sites. However, the MDL and precision

11
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are similar to the one obtained with the collocated TOR dataset, indicating that low concen-
trations are more likely to be precise than high concentrations. This could be explained by
the fact that the majority of the ambient samples used for calibration were collected at rural
sites (76 % from six sites), and the ones collected at the urban site (Phoenix) may have
different features (composition and mass range) from the ones collected in the Test 20135

Addl dataset, many of which are urban or highly polluted (Birmingham (Alabama), Fresno
(California), Puget Sound (Seattle, Washington) and South Korea).

This observation is supported by the results in Fig. 4. In this case, the calibration and
the test datasets are composed of the ambient samples collected at the rural sites of each
dataset. The performance metrics show accurate agreement between measured (TOR OC)10

and predicted OC values (FT-IR OC) for all the datasets. Moreover, it is worth noting that in
the Test 2013 and Test 2013 Addl there are samples that are above 200 µg (probably due
to fire events). Even though these samples are outside the calibration range, the model is
still able to predict them with reasonable accuracy (with a tendency of overestimation).

On the basis of these results, we can conclude that: (i) it is possible to use PTFE ambient15

samples, to calibrate a model that predicts accurately TOR OC values from PTFE ambient
samples collected at the same sites (both rural and urban) in the same or different years of
the ones used for the calibration; (ii) it is possible to use PTFE ambient samples, collected at
rural sites, to calibrate a model that predicts accurately TOR OC values from PTFE ambient
samples collected at different rural sites and in different years of the ones used for the20

calibration.

3.2 Anticipation of the prediction error: FT-IR OC

As shown in Fig. 5, the D2
Ms are smaller in the calibration set than in the test set because

the latent variables comprising the feature space were defined using the former. Moreover,
the D2

Ms increase for the test samples that have different features from the ones used in25

calibration. Figure 5 shows the aggregated (per site) mean D2
M against the mean absolute

error for each dataset. In accordance with the results shown in Sect. 3.1, the Test 2011
and Test 2013 sites present D2

Ms similar to the ones found in the calibration dataset (all

12
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sites lie in TN sector). On the other hand, the Test 2013 Addl dataset contains two sites
(10 represents the South Korea site and 11 represents the Fresno site, Table 1) which have
both mean D2

M and mean absolute errors above the boundaries used for discrimination
of unacceptable prediction errors (TP sector). This diagnostic indicates that the two sites
may contain different sources and chemical composition that are not well represented in5

the Calibration 2011 dataset.
The scatter plot and the performance metrics of the Test 2013 Addl without the samples

collected at the two sites anticipated (and confirmed) to have high errors are shown in
Fig. 6. The R2 metric notably improves from 0.89 to 0.96, and the remaining evaluation
statistics are also improved. Moreover, a T test at the confidence level of 95 % between the10

predictions and one between their absolute errors shows a statistical difference between
the results obtained with the two datasets.

The evaluation of predictions using a calibration model constructed from only the Korea
and Fresno sites is shown in Fig. 7. The calibration set uses two-thirds of the ambient
samples (we followed the same methodology that we have used to prepare the Calibration15

2011 dataset) collected in 2013 at the two sites and one third for test. The results show that
with the appropriate calibration samples, we can achieve accurate predictions of TOR OC
values (bias =−0.03 µg m−3, error = 0.16 µg m−3, normalized error = 10 % and R2 = 0.96)
also in these two sites. For comparison, Fig. S1 shows the evaluation of predictions at the
Korean and Fresno sites using the Calibration 2011 dataset (bias = 0.28 µg m−3, error =20

0.43 µg m−3, normalized error = 25 % and R2 = 0.79). A T test at the confidence level of
95 % between the predictions and one between their absolute errors shows a statistically
significant reduction in mean errors for predictions using the new calibration (Fig. 7) and
those using the base case calibration (Fig. S1). Therefore, we can conclude that sites with
samples that are on average dissimilar to those in the calibration are shown to benefit from25

the construction of a separate calibration model.
The results of the D2

M against the absolute error for each sample (without any aggre-
gation) are reported in Tab. 3. In the Supplement, we show the plots of the D2

M distances
against the absolute errors for each site (Figs. S2–S5). For each dataset, Table 3 reports
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both the percentage of samples falling in the FN, FP, TN and TP sectors and the perfor-
mance metrics of the models that exclude unacceptable predictions (samples falling in the
FP and TP sectors). The Test 2013 dataset presents a low percentage (0.4 %) of erroneous
classifications (samples falling in the FN and FP sectors), and the performance metrics are
in line with what we found in Fig. 2.5

The Test 2013 Addl contains 3.2 % of well classified unacceptable predictions TP. Most
of these unacceptable predictions are due to samples collected at the Korean (1.9 %) and
Fresno (0.9 %) sites (0.4 % from other 3 sites, Fig. S5). Moreover, the Test 2013 Addl con-
tains 2.3 % of erroneous classifications falling in either FP or FN sectors (1.1 % is from the
Korean samples, 0.4 % from Fresno samples and 0.8 % from other 7 sites, Fig. S5). The10

R2 metric improves from 0.89 to 0.92 with respect to the results found in Fig. 2. The bias,
error and normalized error are similar. However, because 1.7 % of samples are in the FN
sector (and we consider them acceptable), this explains the lower prediction performance in
comparison to the case in which all the Korean and Fresno samples are excluded (Fig. 6).

This analysis suggests that spectral signals projected into the feature space of a par-15

ticular PLS calibration model contain useful information for anticipating the magnitude of
prediction errors. The ability to anticipate the quality of predictions based on spectra fea-
tures is relevant for strategic collection of calibration samples and selection of available
samples from which a calibration model can be constructed. We expect that the capabil-
ity for discrimination at the level of individual samples can be improved in future studies.20

The D2
M is a strong classifier in the case that the scores T are normally distributed in

the multivariate (MV, in this case 47 dimensions) feature space. Indeed, the D2
M (Eq. 7)

is the exponential term of the MV Normal (MVN) distribution and represents the distance
between each point and the mean of the MVN distribution. Assessing the assumption of
multivariate normality is a challenging process because different methods may provide dif-25

ferent results under different assumptions and conditions (Mecklin and Mundfrom, 2005).
Both the Henze–Zirkler (Henze and Zirkler, 1990) and Mardia MV Normality test (Mardia,
1970) on the calibration scores lead to a rejection of the null hypothesis (at 95 % confidence
level) that the scores are Normally distributed. It is plausible to conceive of spectral prepro-
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cessing methods to improve the MVN assumption, or invoke different similarity metrics that
do not require a specific distribution of points in the feature space. However, even while
the assumption of MVN is not fulfilled, we report that the mean D2

M provides indication of
samples dissimilar to those comprising the calibration set when aggregated at the site level.

3.3 Prediction of TOR EC from FT-IR spectra5

In this section, we extend the analysis done in Sects. 3.1 and 3.2 to the case of TOR EC
measurements. For this case, as described in Sect. 2.3, we use the hybrid model proposed
by Dillner and Takahama (2015b).

The comparison between predicted FT-IR EC and measured TOR EC for the datasets
described in Sect. 2.1 is shown in Fig. 8. The first row refers to the Calibration 2011 and Test10

2011 dataset. In this work, the results obtained with the Test 2011 are used for comparison
with the results obtained with the Test 2013 and Test 2013 Addl datasets. The detailed
description and discussion of the results obtained with the Test 2011 dataset can be found
in (Dillner and Takahama, 2015b).

In the case of predictions based on ambient sample collected at the same sites of the15

calibration dataset but different year (Test 2013 dataset, bottom left panel in Fig. 8), we
observe that the performance metrics show good agreement between measured (TOR EC)
and predicted EC values (FT-IR EC). Moreover, it shows similar performance to the pre-
diction based on ambient samples collected at the same sites and year of the calibration
(Test 2011). A T test at the confidence level of 95 % between the Test 2011 and Test 201320

predictions, and one between their absolute errors confirmed this observation. The results
are similar to FT-IR OC (Sect. 3.1).

From Fig. 9 (performance of the collocated TOR EC measurements), we observe that
the metrics are similar to the ones obtained with the Test 2011 and Test 2013 datasets. The
normalized error is higher for FT-IR EC (21 and 24 % for Test 2011 and Test 2013 respec-25

tively) than for collocated TOR EC measurements (14 %). Table 4 compares the MDLs and
precisions of FT-IR EC predictions and TOR EC measurements and it shows that the MDL
is very similar to TOR EC and the precision is better than (less than half) of TOR EC.
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The bottom right panel in Fig. 8 shows the performance of the calibration model for sam-
ples collected at different sites and different year (Test 2013 Addl dataset) of the samples
used for calibration. We observe that the performance metrics show worse agreement be-
tween measured TOR EC and predicted EC values (FT-IR EC), than the ones obtained with
the Test 2011 and Test 2013 datasets. A T test at the confidence level of 95 % between5

the Test 2013 and Test 2013 Addl predictions, and one between the absolute errors show
a statistical difference between the results obtained with the two datasets.

For the case of OC, we found that the model, based on rural sites only, predicts accurately
TOR OC values from PTFE ambient samples collected at different rural sites and different
years of the ones used for the calibration (Sect. 3.1). For the case of EC, the models trained10

only with the rural sites (Fig. 10) have lower R2 (0.88, 0.90 and 0.87 respectively for the
three test sets) than the ones that use the entire calibration set (0.96, 0.95 and 0.87, Fig. 8).
However, looking at the plots in Fig. 10 we observe that the predicted FT-IR EC values
do not differ substantially from the TOR EC values, and the worse performance metric is
explained by the low concentrations measured at the rural sites: R2 decreases (the total15

sum of squares tends to zero) when the measurements are close to zero.

3.4 Anticipation of the prediction error: FT-IR EC

The aggregated (per site) mean D2
M against the mean absolute error for each dataset is

shown in Fig. 11. Similar to the results shown in Sect. 3.3, the Test 2011 (except for site 5)
and Test 2013 sites present D2

M similar to the ones found in the calibration dataset (all the20

sites lie in TN sector). Unlike the OC case (Sect. 3.2), the Birmingham site (number 8) is
misclassified (it lies in the FN sector). Moreover, the site 11 (Fresno) has a mean D2

M close
to the boundary, but it lies in the TP sector. The Korean site (10) has both mean D2

M and
mean absolute errors above the boundaries used for discrimination between acceptable
and unacceptable predictions (TP sector). Figure 12 shows the scatter plot and the perfor-25

mance metrics of the Test 2013 Addl without the samples collected at the two sites we have
classified not acceptable (Fresno and Korea). We note that the predictions are less spread
and the R2 metric improve from 0.87 to 0.91. The remaining metrics are almost identical
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(Fig. 8 for comparison). Moreover, a T test at the confidence level of 95 % between the
predictions, and one between their absolute errors shows a statistical difference between
the results obtained with the two datasets.

The evaluation of predictions using a calibration model constructed from only the Korea
and Fresno sites is shown in Fig. 13. The calibration set uses two-thirds of the ambient sam-5

ples (we followed the same methodology that we have used to prepare the Calibration 2011
dataset proposed by Dillner and Takahama, 2015a, b) collected in 2013 at the two sites and
one third for test. The results show that with the appropriate dataset, also in Fresno we can
achieve accurate predictions of EC values (R2 = 0.93, bias = 0 µg m−3, error = 0.06 µg m−3

and normalized error = 11 %). The performance metrics at the Korean site (R2 = 0.66,10

bias =−0.07 µg m−3, error = 0.11 µg m−3 and normalized error = 18 %) are not as good
as Fresno and are mostly due to one sample. The predictions for all other samples are
more accurate. By removing the one erroneous sample, R2 increases from 0.66 to 0.84.
For comparison, Fig. S7 shows the evaluation of predictions at the Korean and Fresno sites
using the Calibration 2011 dataset (R2 = 0.85, bias = 0.05 µg m−3, error = 0.10 µg m−3 and15

normalized error = 22 % and R2 = 0.60, bias = 0.13 µg m−3, error = 0.17 µg m−3 and nor-
malized error = 33 % at Fresno and Korea site respectively). A T test at the confidence
level of 95 % between the predictions and one between their absolute errors shows a statis-
tically significant reduction in mean errors for predictions using the new calibration (Fig. 13)
and those using the base case calibration (Fig. S7). Therefore, we can conclude that sites20

with samples that are on average dissimilar to those in the calibration are shown to benefit
from the construction of a separate calibration model.

The results of the D2
M (and absolute error) for each sample (without any aggregation) are

reported in Tab. 5, and in the Supplement we show the corresponding figures (Figs. S8–
S11). For each dataset, Table 5 reports both the percentage of samples falling in the FN, FP,25

TN and TP sectors and the performance metrics of the models that exclude unacceptable
samples (those falling in the FP and TP sectors). The Test 2013 dataset presents a low
percentage (0.5 %) of erroneous classifications (samples falling in the FN and FP sectors),
and the performance metrics, for the test sets with unacceptable samples excluded, are
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in line with what we found when all samples are included (Fig. 8). The Test 2013 Addl
contains 1 % of well classified unacceptable predictions TP. Mostly of these unacceptable
predictions are due to samples collected at the Korean site (0.7 %, Fresno, 0.2 %, Hoover,
0.1 %, Fig. S11). Moreover, the Test 2013 Addl presents 2.8 % of erroneous classifications
(Korea, 1.2 %, Fresno, 0.7 %, four sites, 0.9 %, Fig. S11). The R2 metric, for the test sets5

with unacceptable samples excluded, improves from 0.87 to 0.92 with respect to the results
found when all samples are included (Fig. 8). The bias, error and normalized error are
similar.

We note that for this work, the boundaries are chosen heuristically (maximum D2
M and

absolute error found in the 2011 dataset (Sect. 2.4)), and they tend to classify the great10

majority of the samples (96.3 %) in the Test 2013 Addl dataset as well predicted (TN). The
choice of different boundaries, spectral preprocessing, or distance metric (as discussed for
OC in Sect. 3.2), may lead to a less generous classification and an improved discrimination
between acceptable and unacceptable predictions, with particular care to minimize FN clas-
sifications. However, as for OC, the analysis of EC suggests that spectral signals projected15

into the feature space of a particular PLS calibration model contain useful information for
anticipating the magnitude of prediction errors, and using the D2

M we still obtain useful re-
sults as tested by the performance metrics in Fig. 12 and Table 5. The anticipation error
for the FT-IR EC predictions is less accurate than the one found in the OC case (the Birm-
ingham site was misclassified for EC but not for OC), but we expect that the capability for20

discrimination can be improved in future work for the same reasons given in Sect. 3.2.

4 Conclusions

In this work, we have used FT-IR spectra of particles collected on ambient PTFE filters
(without spectral preprocessing) to predict the concentrations of TOR OC and EC using
partial least square regression. We extended the work of Dillner and Takahama (2015a, b)25

by (i) evaluating the models using test samples collected at the same sites as the calibration
dataset but a different year (2013); (ii) evaluating the models using test samples collected
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at 11 different sites and a different year (2013) than the calibration dataset; (iii) proposing
a statistical method to anticipate the prediction errors for each site.

Our results show that ambient samples collected at the same sites in the same or differ-
ent years as the ones used for the calibration accurately predicts TOR OC and EC values
(0.94≤R2 ≤ 0.97 for FT-IR OC and 0.95≤R2 ≤ 0.96 for FT-IR EC). Moreover, the preci-5

sions and the MDLs of the FT-IR OC and FT-IR EC are in the same order of the precision
and MDL of the measurements reported by the TOR methods. We further determine that
using samples collected at rural sites to calibrate a model for OC improves the predic-
tion at different rural locations and in different years as the ones used for the calibration
(R2 = 0.97). This result is likely due to similar loadings and OC sources at these sites. In10

contrast, due to the low EC concentrations (EC≤ 60 µg) recorded at the rural sites, the EC
predictions are less accurate (R2 = 0.87) because of the lower signal to noise ratio.

We further demonstrate that spectral features contain information that can be used to
anticipate prediction errors for OC and EC using a particular calibration model. In our as-
sessment using the squared Mahalanobis distance in the feature space of PLSR, sites with15

samples which are on average dissimilar to those in the calibration set are identified and
shown to benefit from the construction of separate calibration models. Building separate
calibration models leads to improvements in R2 from 0.79 to 0.96 for the OC evaluation,
and from 0.60 to 0.66 and from 0.85 to 0.93 for EC at Korea and Fresno site, respectively.
These improvements are statistically significant as determined by a test of significance in20

the mean absolute errors. We posit possible that this assessment can be improved with
spectral preprocessing or additional statistical algorithms; at present time this work illus-
trates a framework that may guide strategic calibration model development and calibration
sample collection.

Therefore, we conclude that FT-IR spectra of aerosol samples collected on PTFE filters25

can be calibrated to TOR measurements (using partial least-squares regression) to provide
robust predictions of TOR OC and EC concentrations. The calibration models based on
samples collected in selected sites can be used in subsequent years and at locations that,
on average, have similar features to those in the calibration set. Moreover, identification of
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sites that are, on average, dissimilar to those in the calibration set provides an opportunity
to develop dedicated calibration models specific to samples from these sites.

The Supplement related to this article is available online at
doi:10.5194/amtd-0-1-2016-supplement.
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Table 1. IMPROVE network sites and number of samples in each dataset described in Sect. 2.1.

Site ID Location Type Calibration 2011 Test 2011 Test 2013 Test 2013 Addl

1 Mesa Verde Rural 79 40 112 0
2 Olympic Rural 79 40 118 0
3 Phoenix Urban 61 31 120 0
3B Phoenix Urban 64 33 120 0
4 Proctor Maple R. F. Rural 70 35 122 0
4B Proctor Maple R. F. Rural 0 0 121 0
5 Sac and Fox Rural 35 18 0 0
6 St. Marks Rural 68 35 115 0
7 Trapper Creek Rural 70 36 121 0
8 Birmingham Urban 0 0 0 115
9 Bliss SP Rural 0 0 0 85
10 South Korea Urban 0 0 0 79
11 Fresno Urban 0 0 0 116
12 Gr. Smoky Mt. NP Rural 0 0 0 117
13 Hoover Rural 0 0 0 86
14 Okefenokee NWR Rural 0 0 0 117
15 Puget Sound Urban 0 0 0 121
16 Cape Romain NWR Rural 0 0 0 113
17 Tallgrass Rural 0 0 0 110
18 Yosemite Rural 0 0 0 115
18B Yosemite Rural 0 0 0 116

Total 526 269 949 1290
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Table 2. MDL and precision for FT-IR OC and TOR OC.

TOR OC FT-IR OC FT-IR OC FT-IR OC FT-IR OC
Calibration 2011 Test 2011 Test 2013 Test 2013 Addl

MDL (µg m−3)a 0.05 013 0.16 0.10 0.10
% below MDL 1.5 2.5 6.0 3.3 0.6
Precision (µg m−3)a 0.14 0.08 0.13 0.07 0.14
Mean blank (µg) NRb −0.18± 1.4 −0.41± 1.8 1.78± 1.1 1.78± 1.1

a Concentration units of µgm−3 for MDL and precision are based on the IMPROVE volume of 32.8m3. b Not reported.
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Table 3. FT-IR OC, anticipation of the prediction error per sample. Percentage of ambient samples
falling in the FN (false negative), FP (false positive), TN (true negative) and TP (true positive) sectors.
Performance metrics of the models that exclude predictions of samples that fall in the FP and TP
sectors.

Performance metrics
Data set FN FP TN TP Bias Error Norm. Error R2

(µg m−3)∗ (µg m−3)∗

Test 2011 0 % 0 % 99.6 % 0.4 % 0.01 0.08 11 % 0.96
Test 2013 0.2 % 0.2 % 99.5 % 0.1 % 0.09 0.12 18 % 0.96
Test 2013 Addl 1.7 % 0.6 % 94.5 % 3.2 % 0.05 0.12 14 % 0.92

∗ Concentration units of µgm−3 for Bias and Error are based on the IMPROVE volume of 32.8m3.
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Table 4. MDL and precision for FT-IR EC and TOR EC.

TOR EC FT-IR EC FT-IR EC FT-IR EC FT-IR EC
Calibration 2011 Test 2011 Test 2013 Test 2013 Addl

MDL (µg m−3)a 0.01b 0.02 0.02 0.01 0.01
% below MDL 3 0 1 0 0
Precision (µg m−3)a 0.11 0.04 0.04 0.03 0.04
Mean blank (µg) NRc 0.02± 0.17 0.06± 0.17 0.06± 0.14 0.06± 0.14

a Concentration units of µgm−3 for MDL and precision are based on the IMPROVE volume of 32.8m3. b Value reported for
network (0.44 µg) in concentration units. c Not reported.
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Table 5. FT-IR EC, anticipation of the prediction error per sample. Percentage of ambient samples
falling in the FN (false negative), FP (false positive), TN (true negative) and TP (true positive) sectors.
Performance metrics of the models that exclude predictions of samples that fall in the FP and TP
sectors.

Performance metrics
Data set FN FP TN TP Bias Error Norm. Error R2

(µg m−3)∗ (µg m−3)∗

Test 2011 0 % 0 % 100 % 0 % 0 0.02 20 % 0.97
Test 2013 0.3 % 0.2 % 99.5 % 0 % 0 0.03 24 % 0.96
Test 2013 Addl 0.5 % 2.3 % 96.2 % 1 % 0.02 0.04 24 % 0.92

∗ Concentration units of µgm−3 for Bias and Error are based on the IMPROVE volume of 32.8m3.
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Figure 1. IMPROVE network sites.
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Figure 2. Scatterplots and performance metrics between FT-IR OC and TOR OC for the four
datasets described in Sect. 2.1. Concentration units of µg m−3 for bias and error are based on
the IMPROVE nominal volume of 32.8 m3.
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Figure 3. Scatterplot and performance metrics between between the measurements of the col-
located TOR OC. Concentration units of µg m−3 for bias and error are based on the IMPROVE
nominal volume of 32.8 m3.
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Figure 4. Scatterplots and performance metrics between FT-IR OC and TOR OC for the rural sites
of the four datasets described in Sect. 2.1. Concentration units of µg m−3 for bias and error are
based on the IMPROVE nominal volume of 32.8 m3.
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Figure 5. FT-IR OC. Anticipation of the prediction error. Mean squared Mahalanobis distance (be-
tween the scores of each dataset described in Sect. 2.1 and the centroid of the calibration dataset)
against mean absolute error (between TOR OC and FT-IR OC). The measurements are are aggre-
gated per site. Each site is denoted with the Site ID used in Table 1.
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Figure 6. Scatterplot and performance metrics between FT-IR OC and TOR OC for the Test 2013
Addl datasets (Sect. 2.1) without the ambient samples of collected at Fresno and Korean sites.
Concentration units of µg m−3 for bias and error are based on the IMPROVE nominal volume of
32.8 m3.
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Figure 7. Scatterplot and performance metrics between FT-IR OC and TOR OC of the Korea and
Fresno sites (Site ID 10 and 11 respectively). A new calibration set, based on two-thirds of the
ambient samples collected at these two sites in 2013 is used for a dedicated model. Concentration
units of µg m−3 for bias and error are based on the IMPROVE nominal volume of 32.8 m3.
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Figure 8. Scatterplots and performance metrics between FT-IR EC and TOR EC for the four datasets
described in Sect. 2.1. Concentration units of µg m−3 for bias and error are based on the IMPROVE
nominal volume of 32.8 m3.
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Figure 9. Scatterplot and performance metrics between between the measurements of the collo-
cated TOR EC. Concentration units of µg m−3 for bias and error are based on the IMPROVE nominal
volume of 32.8 m3.
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Figure 10. Scatterplots and performance metrics between FT-IR EC and TOR EC for the rural sites
of the four datasets described in Sect. 2.1. Concentration units of µg m−3 for bias and error are
based on the IMPROVE nominal volume of 32.8 m3.
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Figure 11. FT-IR EC. Anticipation of the prediction error. Mean squared Mahalanobis distance (be-
tween the scores of each dataset described in Sect. 2.1 and the centroid of the calibration dataset)
against mean absolute error (between TOR OC and FT-IR OC). The measurements are are aggre-
gated per site. Each site is denoted with the Site ID used in Table 1.
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Figure 12. Scatterplot and performance metrics between FT-IR OC and TOR OC for the Test 2013
Addl datasets (Sect. 2.1) without the ambient samples of collected at Fresno and Korean sites.
Concentration units of µg m−3 for bias and error are based on the IMPROVE nominal volume of
32.8 m3.
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Figure 13. Scatterplot and performance metrics between FT-IR EC and TOR EC of the Korea and
Fresno sites (Site ID 10 and 11 respectively). A new calibration set, based on two-thirds of the
ambient samples collected at these two sites in 2013 is used for a dedicated model. Concentration
units of µg m−3 for bias and error are based on the IMPROVE nominal volume of 32.8 m3.
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