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Abstract 
This paper presents an alternative automated model, based on neural network 
techniques, to produce short-term and locally specific forecasts of significant instability 
for flight in the terminal area of Rio de Janeiro, Brazil. Twelve years of data were used 
for neural network training/testing and validation. Data are originally from four sources: 
1) hourly meteorological observations from surface meteorological stations at five 
airports distributed around the study area; 2) atmospheric profiles collected twice a day 
at the meteorological station at Galeão Airport; 3) rain rate data collected from a network 
of twenty-nine rain gauges in the study area; and 4) lightning data regularly collected by 
national detection networks. An investigation was undertaken regarding the capability of 
a neural network to produce early warning signs—or as a nowcasting tool—for 
significant instability events in the study area. The automated nowcasting model was 
validated using results from five categorical statistics, indicated in parentheses in 
forecasts of the first, second, and third hours, respectively—namely: proportion correct 
(0.99, 0.97, and 0.94), BIAS (1.10, 1.42, and 2.31), the probability of detection (0.79, 
0.78, and 0.67), false-alarm ratio (0.28, 0.45, and 0.73), and threat score (0.61, 0.47, 
and 0.25). Possible sources of error related to the validation procedure are presented 
and discussed. The validation showed that the proposed model (or neural network) can 
grab the physical content inside the dataset, and its performance is quite encouraging 
for the first and second hours to nowcast significant instability events in the study area.  
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Introduction  
 
Aviation is negatively or positively influenced by the atmospheric conditions at any place 
and time (Ahrens, 2008). In particular, the Terminal Area (TA) of an airport is the area 
where the aircraft are waiting for landing or take-off and, thus, is quite sensitive to 
weather conditions. The air traffic controllers and pilots require precise information about 
the weather conditions at the TA to make short-term decisions that fall into the time 
scale of nowcasting, which ranges from the interval of a few minutes up to 6 h. During 
the few last decades, various works associated with nowcasting—for example, Wilson 
(1966), Wilk and Gray (1970) and others—have initially proposed nowcasting 
approaches based on extrapolations of radar data to generate nowcasting of 
thunderstorms. To follow up this idea, the convective tracking approaches were 
improved by including the cell evolution in time and intensity using radar data (Dixon and 
Wiener 1993). Wilson et al. (1998) presented a review of the nowcasting techniques 
developed during the 1960s and 1970s. The advancement of parallel computing and 
data availability allowed a numerical weather model to assimilate via rapid update cycle 
(and, more recently, via rapid refresh method) mesoscale data such as satellite and/or 
radar data to nowcast convective systems. Several authors have addressed the latter in 
the last two decades or so—e.g., Xue et al. (2003), Sun and Wilson (2003), Schroeder 
et at. (2006), Liu et al. (2008) and others. Mueller et al. (2003) proposed a sophisticated 
system to nowcast (up to 1 h) thunderstorm locations based on a combination of surface 
meteorological, radar, satellite data and numerical modelling, which considers the storm 
stages. Mass (2012) provided a comprehensive review of nowcasting including current 
developments and future challenges. Considering the aviation application, Isaac et al. 
(2006), Isaac et al. (2011) and Isaac et al. (2012) presented a sequence of works that 
resulted in a refined nowcasting system for aviation that uses data from numerical 
models, surface observations, radar, satellite and a microwave radiometer to generate 
nowcasts for principal airports in Canada up to approximately 6 h. In contrast, in Brazil, 
a meteorologist currently uses his experience to integrate different in situ meteorological 
observations and/or atmospheric model outputs using conceptual models on how the 
atmosphere works to generate nowcasts at principal airports. In particular, the TA of Rio 
de Janeiro, the focus of this study, has five airports (see Figure 1) whose flights are 
significantly affected (by delays and trajectory changes), especially during the 
approximations for landing or take-off, by Significant Instability Events (SIE), which are 
normally associated with convective weather. Groisman et al. (2005) presented 
evidence that the incidence of convective weather has increased approximately 58% per 
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year in south-eastern Brazil—where the Rio de Janeiro TA is located—since the 1940s. 
Therefore, the objective here is to present an Automated Nowcast Model (ANM) to 
generate short-term and local-specific predictions of SIEs, based on neural network 
techniques, for the fight TA of Rio de Janeiro, Brazil.  
 

2. Meteorological datasets and study area   
 
This study used four datasets from 1 January 2007 to 31 December 2008, as follows: 
 

 TEMP is the meteorological code used to report profiles of atmospheric variables 
and is normally generated daily at 0000 UTC and 1200 UTC on all radiosonde 
stations, one of which, in this work, is located at Galeão´s Airport, whose 
international aviation code is SBGL, where SB and GL denote Brazil and Galeão, 
respectively (see Figure 1). The TEMP-coded dataset was obtained online from 
http://weather.uwyo.edu/upperair/sounding.html;  

 METAR and SPECI are meteorological codes employed to report hourly surface 
meteorological conditions and significant change (decline or improvement) in the 
weather condition, at any time from the full hour. Figure 1 shows the locations of 
five surface meteorological stations (represented by red icons) in the Rio de 
Janeiro metropolitan area. The SPECI data were used only for the model 
validation. The stations (or airports) are Galeão (SBGL), Santa Cruz (SBSC), 
Santos Dumont (SBRJ), Jacarepaguá (SBJR), and Afonsos (SBAF). The data 
were obtained at the URL address mentioned above;  

 rain rate (RR) is obtained from twenty-nine rain gauges (represented by yellow 
triangles in Figure 1) distributed over the Rio de Janeiro metropolitan area. The 
data were obtained from http://www.rio.rj.gov.br/alertario/ and collected by Alerta 
Rio’s System, which belongs the City Hall of Rio de Janeiro; and  

 lightning reports, regularly collected by the National Integrated Lightning 
Detection Network (RINDAT), characterize each occurrence by indicating 
location (latitude, longitude), intensity polarity (cloud to ground or ground to the 
cloud), and time (UTC with accuracy in milliseconds). ELETROBRAS FURNAS 
Company kindly made the data available.  

 
Table 1 summarizes all information on the datasets used for ANM training, testing and 
validation in this study. Figure 1 shows the study region and the flight terminal area of 
Rio de Janeiro. 
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3. Methodology and algorithm description 
 
Meteorologists have limited windows of time in which to integrate all available data and 
generate a nowcast, as stated by Mueller et al. (2003). Therefore, the idea is to create 
an automated nowcast model in which a neural network algorithm is used for data 
fusion, similar to the work performed by Cornman et al. (1998) for detecting and 
extrapolating weather fronts. At present, one may find applications of neural network in 
numerous fields of science, such as modelling, time series investigations, and image 
pattern recognition, owing to their capability to learn from input data (Haykin, 1999). 
Normally, stages of neural networks are denoted by a global function (Equation 1), as 
described by Bishop (2006)—for example: 
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where xi and yk are the input and output, respectively; (1), (2) and Wji, Wkj represent the 
input layer, hidden layer and the connection weights (that should determinate) between 
input and hidden layers and hidden and output layers, respectively; D and M are the 
number of inputs and number of neurons in the internal layer, respectively; and σ and h 
are linear and no linear transfer functions between the neural network layers, 
respectively. Thus, determination of the output via Equation 1 crucially depends on the 
values of the weights that are worked out, similarly as in a multiple linear regression 
using a set of inputs and outputs; however, instead, to minimize the distance as in 
nonlinear regression, the neural networks attempt to minimize the cost function. Given 
that the SIE forecast problem requires a categorical output, it was decided to use 
probabilistic neural networks, initially proposed by Specht (1990, 1991), which is based 
on radial-basis function (RBF), A RBF network consists of three layers: the input layer; 
the second layer (or hidden), apply a non-linear transformation, denoted as h that, here, 
is Gaussian function, of the input space to the hidden space. The third layer, the 
outgoing, is linear (σ), providing the network response. Further details about neural 
networks and their applications may be found in Pasini et al. (2001), Haykin (1999), 
Pasero and Moniaci (2004), Bremnes and Michaelide (2005), Bishop (2006), Haupt et 
al. (2009) and Hsieh (2009).  
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Figure 3 depicts a general flowchart for the proposed automated nowcasting model. It 
has four major steps: (1) data processing; (2) definitions of input and output variables; 
(3) training and testing; and (4) validation. These steps are described below. 
 
3.1 Step 1—Data processing:     
  
All datasets were sorted chronologically, and their statistical consistency was observed, 
resulting in 63,320 h of meteorological records. Based on weather conditions reported 
by METAR, each meteorological record was classified into two classes—“0” and “1”, 
representing nonexistence of important weather conditions (low impact to flight flow) and 
the existence of significant atmospheric instability (or SIE, as previously defined) for 
flights in the TA of Rio de Janeiro, respectively. Table 1 shows all weather conditions 
reported in terms of METAR code and their classification per class. 
  
  
3.2 Step 2—Input and output definition:  
 
ANM data fusion is based on a neural network, which must be sequentially trained, 
tested and subsequently validated to forecast the presence or absence of SIEs. The 
latter corresponds to the learning process of a neural network. The input and output 
variables play an important role in ANM data fusion and should be previously defined.  
 
3.2.1 Input variables  
 
These variables are the predictors of ANM and indicate the atmospheric stages of SIEs 
in the study area that are used by the ANM during its learning process. A meteorological 
record is composed of primary and derived variables that are extracted from METAR, 
TEMP, and RR and calculated using primary variables. The purpose of ANM is to 
nowcast SIEs and other weather conditions; therefore, all inputs (or predictors) should 
thermodynamically represent the presence or absence of SIE, which are embedded in 
the meteorological records utilized to train/test and validate the ANM. The latter should 
be able to classify or forecast weather conditions of classes numbered as “0” and “1”, 
and its performance is evaluated by cross-validation with observations as presented 
later. The criterion to select input (primary and derived) variables is based on a 
conceptual model of how the atmosphere works—particularly during SIE occurrence, 
which have typical atmospheric patterns. Several input variables are used—for example, 
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atmospheric instability indices, i.e., K-index (K) = (T850- T500)+Td850-(T700-Td500), where Tz 
and Tdz represent temperature and dew point, respectively, in Celsius degrees, and z is 
the given atmospheric pressure in hPa); Total Totals (TT) = T850+Td850- 2T500; Lapse 
Rate (LR), represented by LR = 1000(T500- T700)/ (GPH500- GPH700), where GPH denotes 
the geopotential height; and others defined in columns three and four of Table 1. At the 
beginning, many inputs were generated. However, with regard to the neural network 
training, it is necessary to adopt a method to prune collinear inputs that bring no new 
information and, thus, could reduce the network performance. Pasini and Ameli (2003) 
have investigated heuristic pruning methods. Here, autocorrelation was selected and 
enforced to remove collinearity of the input. Twelve variables then remained, divided into 
eight primary and four derived variables as listed in columns three and four of Table 1, 
respectively.  
 
3.2.2 Output variables 
 
The output is defined as weather conditions reported in METAR codes and divided into 
two classes, “0” and “1”, which represent the absence and presence of SIEs, 
respectively, as shown in Table 2. In other words, classes 0 and 1 indicate nonexistence 
of significant instability and existence of significant instability (i.e., weather condition of 
METAR code as T, TL, TRW-, TRW, TRW+) in the TA of Rio de Janeiro, respectively.      
 
Following Pasini (2015) and aiming to avoid the overfitting problem during the learning 
process of the neural network, which is represented by step 3, the meteorological 
records were divided into three subsets: training, testing and validation. Figure 4 (a) 
shows the initial training and testing datasets representing 70% of the original records 
(or 44,324) with 30% (or 18,996) for validation, as shown in Figure 4 (b).  
 
 
3.3 Step 3—Neural Network Training and Testing 
 
The internal number of neurons (previously defined as M) of probabilistic neural 
networks is here determined based on cascade-correlation algorithm suggested by 
Fahman and Lebiere (1990). Figure 2 shows generally an example of a cascade forward 
network for five inputs and one output. The training and testing are performed in an 
iterative cycle composed of a looping of two phases, which are executed using a specific 
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dataset (initially the one in Figure 4 (a), which could be artificially modified until the 
optimal dataset is reached, as described in step 4), and a constant number of inputs 
(defined as D is equal to twelve). The two phases are described as follows:   
   
i) It starts with a minimal (only one neuron) internal layer of the neural network 

(represented generally by Equation 1) and automatically adds new hidden neurons 
one at a time, in each round, finally resulting in a multilayer structure with the input 
connection frozen (represented by squares in Figure 2); and  

ii) The follow-on neural network is applied to the test dataset, and the error is 
calculated. There are then two options: first, return to (i) if the test error has not 
increased from the previous round and the number of neurons in the internal layers 
is less than 150; or second, to go step 4, which means that the final (or that could be 
an optimum) neural network configuration (or ANM) has been obtained.  

                   
3.4 Step 4—Validation: 
 
This step compares the SIE forecasts (output) of ANM with the true observations, which 
are assumed to have at least one of two conditions:  
 
a) weather conditions (class 1 of Table 2) reported by METAR or SPECI (corresponding 
the validation dataset in Figure 4 (b)); and/or  
 
b) lightning reported inside a 50-km radius centred at Galeão airport during a 1-h period. 
The lighting data are included in the validation because the weather conditions reported 
in METAR or SPECI represent an observation by the meteorologist at an instant of time; 
therefore, sometimes it does not correctly represent an entire one-hour period, which is 
the minimum time interval for an ANM forecast, and the lightning data will be 
continuously generated during the entire ANM forecast time and beyond the METAR 
observation, which depends on the meteorologist's observation skills. The lightning data 
allow the ANM forecast verification to be spread out to encompass the entire flight 
terminal area of Rio de Janeiro. Moreover, it is assumed in this work that the presence 
of lighting is related with SIE. Therefore, these two conditions will certainly permit a 
better ANM validation, which is accomplished via a two-dimensional contingency table. 
The calculation of five categorical statistics used to verify the frequency of correct and 
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incorrect forecasted values is performed as follows: 1) proportion correct (PC), which 
shows the frequency of the ANM forecasts that were correct (a perfect score equals 
one); 2) BIAS, which represents the ratio between the frequency of ANM estimated 
events and the frequency of ANM observed events (a perfect score equals one); 3) 
probability of detection (POD), which represents the probability of the occasions when 
the forecast event actually occurred (hits), and the scale varies from zero to one, where 
one indicates a perfect forecast; 4) false-alarm ratio (FAR), which indicates the fraction 
of ANM-predicted SIEs that did not occur (a perfect score equals zero); and 5) threat 
score (TS), which indicates how the ANM forecasts correspond to the observed SIEs (a 
perfect score equals one). In particular, the TS is relatively sensitive to the climatology of 
the studied event, tending to produce poorer scores for rare events, such as an SIE. 
Therefore, the model is considered to be optimal when it creates SIE nowcasting with 
scores as near perfect as possible for the five statistics described (Wilks, 2006).  
 
Finally, if the validation results of the ANM do not indicate satisfactory performance, a 
normal procedure is to rearrange the representativeness of the target class one in the 
training data (i.e., modifying the training/testing dataset) and then go to step 3 and 
repeat step 4 in Figure 3. Otherwise, the optimal model is reached. The ANM training 
strategy and results are discussed in the next section.  
  
  
4. Analysis and results  
 
To assess the performance of the nowcasting system proposed for the TA of Rio de 
Janeiro, the ANM output variables were divided into two classes as previously defined—
namely: class zero (no SIE) and class one (SIE). Figure 4 (a) and Figure 4 (b) depict the 
frequency of the classes in the initial (1st) training/testing and validation datasets, 
respectively, corresponding to 70% and 30% of the total number of meteorological 
records. It is observed in Figure 4 (a), that class frequencies are not proportionally 
distributed. In particular, class one (defined as SIE) is poorly represented, accounting for 
approximately two percent of all meteorological records. This increases the difficulty of 
the neural network learning process; for phenomenon knowledge, a better 
representation of target class one is needed in the training dataset—i.e., class one 
should have a higher weight than the other classes or at least a similar weight to another 
class in the training dataset—to facilitate better neural network training/testing. The 
following paragraphs summarize the strategy to overcome the low frequency of SIEs in 
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the sequence of preparation/testing executed in this work in the procedure to achieve 
the optimal model, as illustrated in Figure 3. 
 
4.1 Neural network training  
 
Neural network training is a time-consuming activity, and to overcome the mentioned 
problem, a common strategy is to alter the training dataset—for example, by taking the 
original data as a reference to artificially create another new training dataset by 
modifying the representation of the classes in the data population and testing the model 
performance to make an optimum and/or gradually reducing the input variables by 
evaluating a particular variable relevance (or contribution) for the output results. The 
latter was not performed in this work, and the input number was held constant and equal 
as previously explained in §3.2. In fact, there is no straightforward set of calculations to 
accomplish this goal. It is significant to observe that the validation dataset shown in 
Figure 4 (b) has similar class frequencies to the original dataset, shown in Figure 4 (a). 
The idea is to provide real scenarios of rare events during the validation process. Table 
3 presents the training scheme (or strategy) and attempts to convey the concept of 
successive training used in the present work. The training strategy is based on 
decreasing records of class 0 and keeping class 1 fixed in each training/testing executed 
by following the steps in Figure 3. The optimal ANM was obtained in the nth training 
corresponding to the dataset in Figure 4 (c). The resulting validation statistics were 
achieved by two options: first, by considering items a); and second, by considering items 
a) and b) of §3.4. The latter item (item b)—lightning reported inside a 50-km radius 
centred at SBGL airport during a 1-h period—represents an SIE. Table 3 shows 
categorical statistical verifications of the optimal model results. The ANM forecast 
performance slowly declines from the first to the second hour and declines more rapidly 
from the second to the third hour. By including the lightning data in the validation, the 
ANM results were improved, as shown by the first (L), second (L), and third (L) hours 
(highlighted in grey in Table 3). The comparison between the two validation datasets 
(with and without lightning data) shows that BIAS, POD, and FAR values improved by 
14%, 11%, and 12% (for the first, second, and third hours); 3%, 3%, and 6% (for the 
first, second, and third hours); and 13%, 13%, and 5% (for the first, second, and third 
hours), respectively. In particular, the BIAS values improved more than the other 
statistics because of the inclusion of the lightning data in the validation. In addition, 
although TS normally tends to produce poorer scores for rare events, its results have 
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also improved here with the inclusion of lightning data in the validation of optimal training 
as shown in Table 3, column thirteen. 
 
The best ANM result corresponds to the first hour. The BIAS is the lowest, equal to 1.10 
(which means that the results slightly overestimated the observations for the considered 
forecasts); even so, the readings for PC, POD, FAR, and TS are quite respectable, 
equal to 0.99, 0.79, 0.28, and 0.61, respectively. The effects of the ANM for the second 
hour are slightly less useful than those for the first hour forecast but are nonetheless 
satisfactory. However, the statistical values for the third hour forecast are poorer than 
those for the second hour. One cause of the ANM's overall performance degeneration is 
that a neural network is a statistical model rather than a physical one, which means that 
the physical aspects are not included. In summary, it is possible to state that an optimal 
ANM should be able to forecast SIEs in the study area for up to 2 h.   
 
 4.2. Possible sources of error in the ANM validation 
 
The ANM optimal model output is considered a hit when it corresponds to event 
observations, if at least one of two weather conditions in §3.4 is satisfied. In particular, 
the weather condition reported in the METAR or SPECI is obtained from a human 
observer and may have some inconsistencies. The latter is common in meteorological 
observations; thus, consciousness of such matters is important when interpreting results 
from METAR at a specific time. The ANM results are slightly biased as previously 
presented for first hour forecast; therefore, in an attempt to explain that BIAS, the study 
pursued an investigation of possible sources of error in the meteorological observations 
used to verify the model forecasts. First of all, with regard to the learning process, the 
training dataset was composed only of meteorological records with a unique true 
association between their output (as class 1) and input variables (represented somehow 
in the thermodynamic atmospheric pattern during the development of an SIE from the 
METAR records). In other words, the training used only meteorological records whose 
output was characterized as a true SIE and none. However, in the validation dataset, 
there are many meteorological records in which such a unique association (one-to-one 
relationship between input and output) is not always true; i.e., some meteorological 
records have a typical thermodynamic pattern of SIE (input), but the weather condition 
(output) does not correspond to an SIE (or prevailing actual weather situation). These 
records were used in the present study to verify ANM forecasts and have consequently 
produced the results in Table 3. A possible reason for false alarms and consequently 
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biased ANM results is that hourly METAR records represent quasi-instantaneous 
meteorological observations (which take approximately 10 min to generate and may 
carry inconsistencies); therefore, the weather condition (output) may be affected by a 
certain amount of subjectivity on the part of the meteorologist (see discussion below). 
These results have provided plenty of evidence that the validation parameters (i.e., 
weather condition report just mentioned in the METAR or SPECI in Table 2) are not 
totally appropriate for ANM validation because the METAR or SPECI are quasi-
instantaneous observations and thus do not cover the entire ANM forecast time. The 
lightning data permit the ANM forecast verification to be spread out to encompass the 
entire TA of Rio de Janeiro. The comparisons between ANM forecasts and lightning 
detection have improved all statistical values.  
 
4.3 Case Study 
 
To elucidate the foregoing discussion, this section shows the ANM results for an SIE 
that occurred from 1500 to 2300 (local time) on 18 March 2009. Figure 5 depicts a 
synoptic weather situation through an enhanced GOES-10 (channel 4) satellite image at 
1800 (local time), in which a cloud (or cloud complex) is classified, by an automatic 
stretch process, as a convective cell (which could certainly be associated with an SIE) if 
its top temperature is lower than minus 30°C. The red box roughly represents the TA of 
Rio de Janeiro, which is influenced by SIEs (located approximately at the centre of the 
red box) and where a complex convective cloud (with cloud top temperature equal to 
minus 70°C) is clearly observed in the east. On this day, the K, TT, and LR index values, 
calculated from the SBGL atmospheric profile, were equal to 33.64, 44.97, and 5.5, 
respectively, indicating that a typical atmospheric instability pattern was dominating the 
area. Table 4 presents a comparison between ANM forecasts (column four) and the 
weather observations made by the meteorologist and registered in the METAR (columns 
two and three) for the considered period. From this result, it seems that the ANM 
overestimated the possibility of an SIE (compare columns three and four). However, the 
problem of verification of the output of the ANM is difficult because the meteorologist's 
observation does not always give a more appropriate weather condition (or a prevailing 
condition) for comparison; therefore, biased results may be obtained from the ANM. 
Lightning has been coincidently detected (column five) for all ANM forecasts of SIEs 
during the time of this particular case study, which indicates an unstable atmospheric 
pattern (meaning true SIE) in the flight area of the airport influenced by the event. In 
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summary, the ANM forecasts usually capture the signs of an atmospheric instability 
pattern 
 
5. Conclusions  
 
In Brazil, the numerical prediction models have presently demonstrated certain 
difficulties in attempting to forecast local or short-term heavy rain, strong wind, and 
turbulence events that are normally associated with SIE occurrences. Hence, this work 
demonstrates an automated nowcasting model for short-term and local-specific 
forecasting of SIEs based on a neural network technique for the flight terminal area of 
Rio de Janeiro. The main findings of this study are as follows: 
 
a) the optimal ANM results of SIE forecasts for the first and second hours are 
encouraging because the categorical statistical values are quite acceptable. The 
proposed model has a very low computational cost, and it is possible to say that the 
ANM could alternatively forecast short-term strong atmospheric instability;  
 
b) the third hour ANM forecast has the highest BIAS; perhaps the main reason for the 
ANM performance degeneration in time is that the neural network model is purely 
statistical rather than physical, and its use should therefore be limited to short-term 
nowcasting, possibly up to a 2-h timeframe;  
 
c) there is visible evidence that the validation data contain a certain amount of 
uncertainty. A key consideration regarding the ANM results versus validation data and 
possible sources of error should be addressed; i.e., the use of METAR or SPECI 
weather conditions is affected by subjectivity on the part of the meteorologist and 
sometimes does not represent prevailing weather conditions. The results and case study 
showed that ANM forecasts might falsely be classified as hits; 
  
d) the inclusion of lightning data in the validation significantly improved the ANM statistic 
results and also provided evidence that weather conditions discussed in the previous 
item are not totally appropriate for ANM validation; and 
 
e) finally, the study may conclude that the optimal ANM developed here is clearly 
capable of predicting signs of a local atmospheric instability pattern in the TA of Rio de 
Janeiro.  
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Future studies are planned to include other data sources in the learning process, such 
as numerical models, meteorological satellites, RADAR, and/or SODAR wind profiles. 
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Table 1 - Datasets and meteorological variables used in the distinct stages of development of the neural network-based automated 
nowcasting model. It covers a period from 1 January of 2007 to 31 December 2009. 
 

 
 

Input: Primary 
variables 

Total number: 8 
Input: Derived variables 

Total number: 4 
Time series Frequency 

and 
data period 

 
Predictors purpose: characterization of atmospheric 

conditions  

Data 
percentage 

used for 
SNM 

training 

Data 
percentage 

used for 
SNM 

validation 

Validation variables 
 

Output 
variable 

METAR 
(data are from 
SBGL, SBSC, 
SBJR, SBAF 
and SBRJ)  

Hourly 
from 

1 January 1997 
to 31 December 

2008 

Dew point at surface Julian day 
 

 
 

Class 1 as in Table 
2 

TEMP  
(data are from 
SBGL) 

Daily at 0000 
and 1200 UTC 

from 
1 January 1997 
to 31 December 

2008 

Humidity at 850 and 
500 hPa 

 
Pression at 1000, 
850, 700, and 500 

hPa 
 

K, 
Vapour pressure at 1000, 

and 850 hPa 
, 

 
 
 
 

----- 

Rain rate (RR) 
per hour  
(data are from 
the 29 rain 
gauges) 

Every 15 
minutes from 

1 January 1997 
to 31 December 

2008 

RR for 1 hour  
 
 

----- 

 
 
 

 
 
 
 
 
 
 
 

70% 

 
 
 
 
 
 
 
 
 
 
 

30% 
 
 

 
----- 

Lightning(1) 
inside a radius 
of 50 km 
centred at 
SBGL 

 
Varies 

 
 

 
----- 

 
----- 

 
----- 

 
100 

 
1 (lightning) or 0 (no 

lightning)  

 
 
 
 
 
 
 
 
 Yes= class 
1) or No= 
class 0) 
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Table 2 – Weather condition classification in METAR and attributed ANM classes.  
Class METAR code Weather condition Class METAR code Weather condition 

H Haze R Moderate rain 
K Smog RF Moderate rain with 

fog 
F Fog R+ Heavy rain 
L- Light drizzle R+ F Heavy rain with fog 

L- F Light drizzle with 
fog RW Showers 

L Moderate drizzle 

0 
 
 

RW+ Heavy showers 
LF Moderate drizzle 

with fog T Thunderstorms 

L Heavy drizzle TL Thunderstorms with 
light drizzle 

R- Light rain TRW- Thunderstorms with 
showers 

R- H Light rain with 
haze TRW Thunderstorms with 

moderate showers 

0 

R- F Light rain with fog 

1 

TRW+ Thunderstorms with 
heavy showers 
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Table 3 – Strategy condition and final validation statistics of the optimal ANM. The ANM output equal to class one represents a true SIE (or yes) and class 
zero represents a false SIE (or no) forecast. The statistic values associated with the first (L), second (L), and third (L) are hours in which the ANM validation 
using the lightning data was included. 

 
  
   
  
   
 

 Training Strategy       Statistics for SIE and no 
SIE 

Training  
 (from 1st 

to nth) 

Training dataset and strategy Number of 
Inputs  

 
Output 
class  

 
Validation data 

Neural 
network 

configuration 
(Number of 

hidden 
neurons) 

Hour 
 

PC BIAS POD FAR TS 

1st 0.98 1,28 0.76 0.41 0.50 
123 1st (L) 0.99 1.10 0.79 0.28 0.61 

 
2nd 0.97 1.59 0.75 0.52 0.41 

138 2nd (L) 0.97 1.42 0.78 0.45 0.47 
3rd 0.94 2.64 0.61 0.77 0.20 

 
 
 
 

nth 
 

Optimum 
training 

Gradually modifies for each looping 
in Figure 3 by decreasing classes 0 

and keeping class 1 fixed  
 

12 
Yes or No 

(Yes= class 
1) or ( No= 

class 0) 
 

Yes or No means 
classes one 

(including lighting 
existence in the 
period of 1 h) or 
zero in Table 2, 

respectively  
134 3rd(L) 0.94 2.31 0.67 0.73 0.25 
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Table 4 - ANM forecasts versus meteorological observations on March 18, 2009. 

Local time 
Weather condition 
(METAR) 

 
Observed class  

SNM class forecasts Lightning detection 
15 H 0 0 no 
16 TRW- 1 1 yes 
17 R 0 1 yes 
18 R- 0 1 yes 
19 H 0 1 yes 
20 TRW- 1 1 yes 
21 R+ 0 1 yes 
22 T 1 1 yes 
23 TRW+ 1 1 yes 
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Figure 1 - Satellite image of Rio de Janeiro´s metropolitan area. Yellow triangles [red squares] indicate location of the twenty-nine rain 
gauges from Alerta Rio’s System that belongs the City Hall of Rio de Janeiro [five airport meteorological stations]. Source: Adapted from www.google.com.br/maps.   
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Figure 2 - A schematic view of a cascade forward network with five inputs. 
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  Figure 3 - Automated Nowcast Model flowchart. 
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  Figure 4 – Histograms of frequency accordingly to two classes “0” and “1” that represent no SIE and SIE, respectively: (a) and (b) show 
initial class distribution of training/testing and validation datasets that correspond to 70% (or 44,324) and 30% (or 18.996) of meteorological records, respectively. (c) similarly presents class distribution of meteorological recordings for optimal training.  
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 Figure 5- GOES-10 (channel 4) extracted and adapted from www.cptec.inpe.br that represents the synoptic weather situation at 1800 (local time) on 18 March 2009, where the top convective cloud temperatures are categorized by a temperature range from -30°C to -80°C. The red 
box roughly represents the study region.   


