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Reply to the comments by Referee #1 
------------------------------------------------------------------------------------------------- 
 
To Associate Editor and Referee #1, 
 

We appreciate you reading our paper carefully and giving valuable comments and suggestions again. We 
have considered your recommendations for revisions and made the necessary changes. The major points 
that we deal with in the revised manuscript are as follows: 
 

1. We have changed “V1.0” to “V1” throughout the text. The GOSAT project has released V01.00, 
V01.01, and V01.20 produces, but the CO2 products of all the three versions are exactly the same 
data. 

2. We have eliminated Figure 2 of the original manuscript not to defocus the scope of this paper that 
discusses UTLS CO2 data. We have described that the simultaneous retrieval of surface 
parameters did not affect retrieved CO2 concentrations in the UTLS regions, but could increase 
the number of normally retrieved CO2 data. 

3. Following the recommendations of the two Referees, we have investigated the effect of 
considering TIR CO2 averaging kernel functions on CO2 concentrations in the UTLS regions. For 
this purpose, we have done the two types of analysis. 
3-1. We have compared TIR and CONTRAIL CME CO2 data with and without TIR CO2 

averaging kernel functions over each of the nine airports, and showed the comparison 
results in Figure 4 of the revised manuscript. Here, we have created CO2 vertical profiles 
using CME ascending/descending CO2 data below the tropopause and stratospheric CO2 
concentrations taken from the Nonhydrostatic Icosahedral Atmospheric Model (NICAM)–
Transport Model (TM) (Niwa et al., 2011) that introduced CONTRAIL CO2 data to the 
inverse model (Niwa et al., 2012), and then applied TIR CO2 averaging kernel functions to 
the created profiles. 

3-2. Keeping the detailed evaluation of 2-1 in mind, we assumed a CO2 vertical profile on the 
basis of the combination of CONTRAIL CME level flight CO2 data (“CONTRAIL (raw)”) 
and CarbonTracker CT2013B monthly-mean CO2 profiles (Peters et al., 2007) at each of 
the CME level flight measurement locations, applied TIR CO2 averaging kernel functions 
to the assumed profiles, and then compared the CO2 data with averaging kernels 
(“CONTRAIL (AK)”) with TIR CO2 data in the UTLS regions. In Figure 5, 6, and 7 of the 
revised manuscript, we showed the comparison results of both the CONTRAIL (raw) and 
CONTRAIL (AK) data. 

We have explained the methods of the comparisons in Section 5, and showed the comparison 
results in Section 6 in the revised manuscript. 

4. We have eliminated Figure 5 of the original manuscript. This is because we have evaluated the 
effect of considering TIR CO2 averaging kernel functions on TIR and CONTRAIL CME CO2 
comparisons quantitatively in the revised manuscript. 

5. Following the suggestion of Referee #1, we have showed the comparison results for each latitude 
band, instead of showing the comparison results for each airline route, in Figure 7 of the revised 
manuscript. We have also modified Table 2 to show the bias values of TIR CO2 data against 
CONTRAIL (AK) CO2 data. 

6. We have eliminated Figure 10 of the original manuscript to avoid speculative discussion. 
 
Individual responses to the two Referees’ comments are listed below. 

 
 
Reply to Referee #1 
 

Any improvement in our ability to monitor CO2 from space is important. In particular, being able to use 
both spectral ranges of TANSO-FTS would increase the vertical understanding in atmospheric CO2. In that 
sense, it is important to validate precisely TANSO-FTS thermal infrared (TIR) CO2 data. The authors have 
greatly improved the paper since its initial submission. However, the overall goal of the paper is still some-
what confuse and major revisions are needed. 

The title of the paper is validation of GOSAT TIR data, but this is not what is done here. First, the paper 
deals with a serious update of the retrieval method itself, that has not been published before. Second, and 
more of a concern, the paper fails short on the validation part. 
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Reply: 

This paper has focused on UTLS CO2 concentrations to which the thermal infrared (TIR) 
sensor of TANSO-FTS has highest sensitivity. In order to validate the TIR UTLS CO2 data, we 
have compared them with more than 500,000 CONTRAIL CME level flight CO2 data obtained in 
a wide area shown in Figure 2 of the revised manuscript. As described above, we have utilized 
CarbonTracker CT2013B monthly-mean CO2 profiles to bridge the differences of vertical 
resolution between in-situ CONTRAIL CME and satellite TANSO-FTS TIR measurements, and 
compared them more quantitatively in the revised manuscript. As for the algorithm part, we have 
clearly explained the improvement of V1 algorithm from the previous algorithm of Saitoh et al. 
(JGR, 2009), and furthermore described the impact of the improvement regarding the 
simultaneous retrieval of surface parameters on the UTLS CO2 data in Section 4 of the revised 
manuscript. 

 
The major concern comes from the question of using or not averaging kernels (AK). Even if points are 

delivered by the retrieval process at various altitudes, the AK plotted in Fig. 1 prove that these points are 
in fact representative of a large and often similar part of the atmospheric column. Comparing only one 
retrieved point (at level 9, 10 or 11 as done here) with one aircraft measurement at the same altitude 
cannot be considered a validation. Even more when the authors claim that this exercise is aiming at 
providing the bias needed for studies of surface fluxes, since, in such studies, AK are taken into account. 
 

Reply: 
We agree with your comments. In the revised manuscript, we have used CarbonTracker 

CT2013B monthly-mean CO2 profiles (Peters et al., 2007) to assume a CO2 vertical profile at 
each of the CME level flight measurement locations. Then, we applied TIR CO2 averaging kernel 
functions to the assumed profiles to smooth them to the vertical resolution of TANSO-FTS TIR 
observations, and defined them as CONTRAIL (AK). In the original and revised manuscripts, we 
have compared the averages of TIR CO2 data in two or more retrieval layers (layers 9, 10, and 11, 
or layers 9 and 10, or layers 10 and 11), not in a single layer, with CONTRAIL CME data. In the 
revised manuscript, we have extracted CONTRAIL (AK) data that corresponded to the TIR 
retrieval layers where TIR CO2 data were compared with original CONTRAIL CME data 
(“CONTRAIL (raw)”), and compared their averages with the TIR CO2 averages in the several 
layers. 

 
In several sections, the authors do acknowledge the fact that they do not take AK into account, and part 

of the discussion is devoted to a small study aiming at evaluating the impact of not taking AK into account. 
But no quantitative result, and too many vague statement (‘relativeky small’, ‘slightly larger’, etc.) are 
given. I would argue that, for the paper to be accepted, the sections would need to be rearranged in order 
to: 
 
i)-evaluate the variability of CO2 profiles in the part of the atmosphere the 3 UTLS levels are representative 
of.  
ii)-evaluate the impact of taking into account or not AK, by using all CONTRAIL profiles, completed by 
ATM simulations of specific climatologies for the upper part. 
iii)-then focus on the 3 UTLS levels considered in Section 5. In this part, I am wondering how the results 
differ when not only the closest GOSAT level is used to compare with CONTRAIL, but when the 3 levels are 
used indistinctively to perform the comparison (Section 5.2). Such a study would give an insight on how 
different the CO2 retrieved at each level is. 
 

Reply: 
We appreciate your suggestions. First of all, we have compared the averages of TIR CO2 data 

in two and more retrieval layers (layers 9, 10, and 11, or layers 9 and 10, or layers 10 and 11) 
with CONTRAIL CME data, so the 1-σ values of the averages in Figures 5 and 6 of the revised 
manuscript show the variability of CO2 concentrations in these UTLS layers. In the revised 
manuscript, we have stated this point clearly. We have divided Section 6 of the revised 
manuscript into two parts. In the first part (ii), we have showed the comparisons between 
CONTRAIL (raw) and CONTRAIL (AK) data in terms of their differences of TIR CO2 data over 
the nine airports. In the comparison of this part, we have created CO2 vertical profiles using 
CONTRAIL CME ascending/descending CO2 data below the tropopause and stratospheric CO2 
concentrations taken from NICAM-TM simulations (Niwa et al., 2012), and applied TIR CO2 
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averaging kernel functions to the created profiles. In the second part (i & iii), we have done the 
comparisons among the averages of TIR, CONTRAIL (raw), and CONTRAIL (AK) CO2 data 
with their 1-σ values. The differences of the 1-σ values between the CONTRAIL (raw) and 
CONTRAIL (AK) averages could be a measure of the variability of CO2 concentrations in the 
UTLS regions corresponding to layers 9, 10 and 11, because the CONTRAIL (raw) data were 
obtained at a single altitude level, but CONTRAIL (AK) data merged CO2 data in these UTLS 
layers. The 1-σ values of TIR CO2 data were always larger than those of CONTRAIL (AK) CO2 
data, which means that TIR CO2 data had larger variability in these UTLS layers. 

 
For each of these points, actual values in ppm, and not vague statement, should be given. For CO2, 

tenths of ppm do matter! 
 

Reply: 
We agree with you. In the revised manuscript, we have discussed all the results quantitatively. 

We appreciate your comment. 
 

On another points, the tentative explanation of the biases seem unconclusive. Several aspects are briefly 
mentioned: internal calibration (but with no evidence of a correlation between the internal black body 
temperature and CO2 biases), choice of the state vector and spectral biases (surface parameters), and bias 
stemming from an improper retrieval of atmospheric temperature. The impact of adding or nor surface 
temperature and surface emissivity in the state vector should be the focus of one single subsection, and 
properly evaluated against CONTRAIL data. Also, the impact of a potential bias in retrieved CO2 stemming 
from a bias on the retrieved temperature should be carefully studied. In the thermal IR, the ability to 
decorellate temperature from CO2 is an essential part of the retrieval; this has to be checked. The retrieved 
temperature profiles should be compared to other temperature profiles (other L2, reanalysis), and checked 
for seasonal biases. 
 

Reply: 
We basically agree with your comments. We have regarded TANSO-FTS TIR L1B spectral 

uncertainty, a priori uncertainty, temperature uncertainty, and surface parameter uncertainty as a 
candidate of the main causes of TIR L2 CO2 bias against CONTRAIL CME CO2 data. First, 
retrieving surface parameters simultaneously instead of using initial surface parameters did not 
affect CO2 concentrations in the UTLS regions in the TIR V1 CO2 retrieval. Then, we compared 
simultaneously retrieved temperature profiles with a priori JMA GPV temperature profiles in the 
UTLS region, and did not find any difference between the two which could explain the largest 
TIR CO2 negative bias in the northern low and middle latitudes in spring and summer. We did not 
find any connection between their differences (Reference figure 1) and the magnitude of the TIR 
L2 CO2 negative bias. We agree that the quality of retrieved temperature profiles should be also 
evaluated by other datasets. In the UTLS regions, temperature variability is relatively large, and 
therefore comprehensive validation analysis of both the a priori and retrieved temperature 
profiles should be required using reliable and independent temperature data such as radiosonde 
data to draw a conclusion. In the revised manuscript, we have evaluated the effect of L1B spectral 
bias on retrieved CO2 concentrations, if the V161.160 spectra had the same bias as V130.130 
L1B spectra reported in Kataoka et al. (2014). Please see the first three paragraphs of Section 7 of 
the revised manuscript for further details. 

 

 
 

Reference figure 1. Differences between simultaneously retrieved and a priori JMA GPV 
temperatures in the UTLS regions in MAM, JJA, SON, and JF/DJF, shown in pink, red, light blue, 
and blue/gray lines, respectively. 
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Finally, the conclusions seem rather optimistic. Differences of 2 or more ppm, and latitudinal 

dependence biases are ‘show stoppers’ for any attempt at using these data for flux inversions. The authors 
should put in perspective the values obtained here with what is actually needed by the carbon cycle 
community. Also, the authors usually refer to as an improvement the fact that biases are reduced when 
going from the a priori to the retrieved value, but they do not discuss the change in shape of the latitudi-
nal/longitudinal variation which is more a concern than an overall bias. 
 

Reply: 
As described above, we have showed the comparison results for each latitude band, instead of 

showing the comparison results for each airline route, in Figure 7 of the revised manuscript, to 
show the latitudinal dependence of the bias of TIR CO2 data against CONTRAIL CME CO2 data. 
We have also modified Table 2 to show the bias of TIR CO2 data against CONTRAIL (AK) CO2 
data, so that it should be useful for users to correct the TIR CO2 data. 

 
Specific comments: 
 

A proper definition of bias, accuracy, precision should be given. The authors seem to use indistinctively 
one for the other. 
 

Reply: 
In the revised manuscript, we have clearly stated “TIR CO2 bias against CONTRAIL CME 

data.” As for the TANSO-FTS L1B spectra, we have changed “accuracies” to “biases” to show 
clearly that the L1B spectra have biases against radiance spectra observed with S-HIS reported in 
Kataoka et al. (2014). 

 
Section 4. Retrieval algorithm: 
-The actual bands or channels used in the retrieval should be given. 
 

Reply: 
We used all the channels included in the wavelength regions of 690–750 cm-1, 790–795 cm-1, 

930–990 cm-1, and 1040–1090 cm-1 in the V1 CO2 retrieval processing. We did not adopt any 
channel selection. In the revised manuscript, we have clearly stated this point. 

 
-AK obtained in both the tropical and extra-tropical regions should be given since DF seem to differ in both 
regions, and the altitude of the tropopause should substantially vary in both regions. 
 

Reply: 
Following your comments, we have presented the three cases of averaging kernel functions:  

low latitudes in summer, mid-latitudes in spring, and high latitudes in winter in Figure 1 of the 
revised manuscript. The degrees of freedom in the three cases were 2.22, 1.81, and 1.36, 
respectively. 

 
-Values chosen for the emissivity are missing in Section 4.2. 
 

Reply: 
The a priori and initial values for surface emissivity were calculated by linear regression 

analysis using the Advanced Space-borne Thermal Emission Reflection Radiometer (ASTER) 
Spectral Library (Baldridge et al., 2009) using land-cover classification, vegetation, and wind 
speed information. We had missed this information in the original manuscript. We appreciate 
your comment. 

 
-In Section 4.3, the authors state that ‘The existence of a relatively large spectral bias around the CO2 15 
µm absorption band in TANSO-FTS TIR L1B spectra (Kataoka et al., 2014) resulted in a decrease in the 
number of normally retrieved CO2 profiles’. Could the authors explain why? 
 

Reply: 
This is probably because TANSO-FTS L1B spectral bias in the CO2 15 µm absorption band 

was sometimes too large for the L2 retrieval calculation to converse in a limited iteration. 
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-The conclusions on the inclusion of surface emissivity in Section 4.3 and in Section 6 (P13013) seem 
reversed. Overall, does including the emissivity in the state vector matter or not? For the whole profiles, of 
for the UTLS part of the profile? 
 

Reply: 
Simultaneous retrieval of surface emissivity did not affect retrieved CO2 concentrations in the 

UTLS regions, and did not contribute to increasing the number of normally retrieved CO2 data. In 
the V1 algorithm, including surface emissivity in the state vectors did not matter in the TIR CO2 
retrieval and UTLS CO2 data. 

 
Concerning the figures, the captions are usually quite long and most of them are just repetition from the 

text. The y-scales of several of them should be more adapted to the values in order to highlight the 
discrepancies between the curves (for e.g., the y-axis for Fig. 6 and 7 could be 384:392). Figure 8 is 
particularly busy and hard to read; it could be split in 2. 
 

Reply: 
Following your suggestion, we have modified Figure 5 and Figure 6 of the revised manuscript 

(Figures 6 and 7 of the original manuscript). As described above, we have greatly modified 
Figure 7 of the revised manuscript (Figure 8 of the original manuscript), showing the comparison 
results for each latitude band, instead of showing the comparison results for each airline route. It 
should be easier for readers to see the differences. 
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Abstract 13 

The thermal infrared (TIR) band of the Thermal and Near Infrared Sensor for Carbon 14 

Observation (TANSO)–Fourier Transform Spectrometer (FTS) on board the Greenhouse 15 

Gases Observing Satellite (GOSAT) has been observing carbon dioxide (CO2) concentrations 16 

in several atmospheric layers in the thermal infrared (TIR) band since its launch. This study 17 

compared TANSO-FTS TIR V1.0V1 CO2 data and CO2 data obtained in the Comprehensive 18 

Observation Network for TRace gases by AIrLiner (CONTRAIL) project in the upper 19 

troposphere and lower stratosphere (UTLS), where the TIR band of TANSO-FTS is most 20 

sensitive to CO2 concentrations, to validate the quality of the TIR V1.0V1 UTLS CO2 data 21 

from 287 to 162 hPa. We first evaluated the impact of considering TIR CO2 averaging kernel 22 

functions on CO2 concentrations using CO2 profile data obtained by the CONTRAIL 23 

Continuous CO2 Measuring Equipment (CME), and found that the impact at around the CME 24 

level flight altitudes (~11 km) was on average less than 0.5 ppm in low latitudes and less than 25 

1 ppm in middle and high latitudes. From a comparison made during flights between Tokyo 26 

and Sydney, the averages of the TIR upper atmospheric CO2 data were within 0.1% of the 27 

averages of the CONTRAIL CME CO2 data with and without TIR CO2 averaging kernels for 28 

all seasons in the Southern Hemisphereagreed well with the averages of the data obtained by 29 
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the CONTRAIL Continuous CO2 Measuring Experiment (CME) within 0.1% for all of the 1 

seasons in the Southern Hemisphere. The results of a comparisons for all of the eight airline 2 

routes showed that the agreements of TIR and CME CO2 data were worse in spring and 3 

summer than in fall and winter in the Northern Hemisphere in the upper troposphere. While 4 

the differences between TIR and CME CO2 data were on average within 1 ppm in fall and 5 

winter, TIR CO2 data had a negative bias up to 2.4 ppm against CME CO2 data with TIR CO2 6 

averaging kernels in the northern low and middle latitudes in spring and summer.the 7 

agreement between the TIR and CONTRAIL CO2 data was within 0.5% on average in the 8 

Northern Hemisphere, which was better than the agreement between a priori and CONTRAIL 9 

CO2 data. The quality of TIR lower stratospheric CO2 data depends largely on the information 10 

content, and therefore has a seasonal dependence. In high latitudes, TIR V1.0 lower 11 

stratospheric CO2 data are only valid in the summer. The magnitude of bias in the TIR upper 12 

atmospheric CO2 data did not have a clear longitudinal dependence. The comparison results 13 

for flights in northern low and middle latitudes showed that the agreement between TIR and 14 

CONTRAIL CO2 data in the upper troposphere was worse in the spring and summer than in 15 

the fall and winter. This could be attributed to a larger negative bias in the upper atmospheric 16 

a priori CO2 data in the spring and summer and a seasonal dependence of spectral bias in 17 

TANSO-FTS TIR Level 1B (L1B) radiance data. The negative bias in the northern middle 18 

latitudes resulted in made the maximum of TIR CO2 concentrations being lower than that of 19 

CMEONTRAIL CO2 concentrations, which ledads to an underestimate of the amplitude of 20 

CO2 seasonal variation. 21 

 22 

1 Introduction 23 

Carbon dioxide (CO2) in the atmosphere is a well-known strong greenhouse gas (IPCC, 2013, 24 

and references therein), with concentrations that have been observed both in situ and by 25 

satellite sensors. Its long-term observation began in Mauna Loa, Hawaii, and the South Pole 26 

in the late 1950s (Keeling et al., 1976a, 1976b, 1996). Since then, comprehensive CO2 27 

observations in the atmosphere have been conducted worldwide in several observatories and 28 

tall towers (Bakwin et al., 1998), by aircraft flask sampling (e.g., Crevoisier et al., 2010), and 29 

via the AirCore sampling system (Karion et al., 2010) in the framework of researches by the 30 

National Oceanic and Atmospheric Administration (NOAA). Atmospheric CO2 31 

concentrations have gradually increased at a globally averaged annual rate of 1.7±0.5 ppm 32 
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from 1998 to 2011, although its growth rate has relatively large interannual variation (IPCC, 1 

2013). Upper atmospheric CO2 observations have been made in many areas by several 2 

projects using commercial airliners, such as the Comprehensive Observation Network for 3 

TRace gases by AIrLiner (CONTRAIL) project (Machida et al., 2008) and the Civil Aircraft 4 

for the Regular Investigation of the atmosphere Based on an Instrument Container 5 

(CARIBIC) project (Brenninkmeijer et a., 2007). Continuous long-term measurements of CO2 6 

made by several airplanes of Japan Airlines (JAL) in the CONTRAIL project have revealed 7 

details of its seasonal variation and interhemispheric transport in the upper atmosphere (Sawa 8 

et al., 2012) and interannual and long-term trends of its latitudinal gradients (Matsueda et al., 9 

2015). 10 

Atmospheric CO2 observations by satellite sensors are categorized into two types: those 11 

utilizing CO2 absorption bands in the shortwave infrared (SWIR) regions at around 1.6 and 12 

2.0 μm, and those in the thermal infrared (TIR) regions at around 4.6, 10, and 15 μm. The 13 

Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) 14 

on the Environmental Satellite (ENVISAT) first observed CO2 column-averaged dry-air mole 15 

fractions (XCO2) from spectra at 1.57 μm (Buchwitz et al., 2005; Barkley et al., 2006). The 16 

Thermal and Near Infrared Sensor for Carbon Observation (TANSO)–Fourier Transform 17 

Spectrometer (FTS) on board the Greenhouse Gases Observing Satellite (GOSAT), which 18 

was launched in 2009 (Yokota et al., 2009), has observed XCO2 with high precision by 19 

utilizing the 1.6 and/or 2.0 μm CO2 absorption bands (Yoshida et al., 2011, 2013; O’Dell et 20 

al., 2012; Butz et al., 2011; Cogan et al., 2012). The Orbiting Carbon Observatory 2 (OCO-2) 21 

was successfully launched in 2014, and started regular observations of XCO2 with high spatial 22 

resolution. Satellite CO2 observations at TIR absorption bands have a longer history 23 

beginning with the High-Resolution Infrared Sounder (HIRS) (Chédin et al., 2002, 2003, 24 

2005). The Atmospheric Infrared Sounder (AIRS) has achieved more accurate observations of 25 

middle and upper tropospheric CO2 concentrations (Crevoisier et al., 2004; Chahine et al., 26 

2005; Maddy et al., 2008; Strow and Hannon, 2008). The Tropospheric Emission 27 

Spectrometer (TES) has observedretrieved CO2 concentrations in several vertical layers with 28 

high accuracy by taking advantage of its high wavelength resolution (Kulawik et al., 2010, 29 

2013). The Infrared Atmospheric Sounding Interferometer (IASI) has observedderived upper 30 

atmospheric CO2 amounts fromfrom its TIR spectra (Crevoisier et al., 2009). TANSO-FTS 31 

also has a TIR band in addition to its three SWIR bands, and obtains vertical information of 32 

CO2 concentrations in addition to XCO2 in the same field of view (Saitoh et al., 2009). 33 
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Rayner and O’Brien (2001) and Pak and Prather (2001) showed the utility of global CO2 data 1 

obtained by satellite sensors for estimating its source and sink strength, and many studies of 2 

CO2 inversion have been conducted using a huge amount of satellite data since the 2000s. 3 

Chevallier et al. (2005) first used satellite CO2 data, observed with the Operational Vertical 4 

Sounder (TOVS), to estimate CO2 surface fluxes. They reported that a regional bias in 5 

satellite CO2 data hampers the outcomes. Nassar et al. (2011) demonstrated that the wide 6 

spatial coverage of satellite CO2 data is beneficial to CO2 surface flux inversion through the 7 

combined use of TES and surface flask CO2 data, particularly in regions where surface 8 

measurements are sparse. In addition to CO2 surface inversion results using TIR observations, 9 

global XCO2 data observed with the SWIR bands of TANSO-FTS have been actively used for 10 

estimating CO2 source and sink strength (Maksyutov et al., 2013; Saeki et al., 2013; 11 

Chevallier et al., 2014; Basu et al., 2013, 2014; Takagi et al., 2014). One of the important 12 

things to consider when incorporating satellite data in CO2 inversion is the accuracy of the 13 

data, as suggested by Basu et al. (2013). Uncertainties in satellite CO2 data should be assessed 14 

seasonally and regionally to determine the seasonal and regional characteristics of the satellite 15 

CO2 bias. 16 

The importance of upper atmospheric CO2 data in the inversion analysis of CO2 surface fluxes 17 

was discussed in Niwa et al. (2012). They used CONTRAIL CO2 data in conjunction with 18 

surface CO2 data to estimate surface flux, and demonstrated that adding middle and upper 19 

tropospheric data observed by the aircraft could greatly reduce the posteriori flux errors, 20 

particularly in tropical Asian regions. Middle and upper tropospheric and lower stratospheric 21 

CO2 concentrations and column amounts of CO2 can be simultaneously observed in the same 22 

field of view with TANSO-FTS on board GOSAT. Provided that the quality of upper 23 

atmospheric CO2 data simultaneously obtained with TANSO-FTS is proven to be comparable 24 

to that of TANSO-FTS XCO2 data (Yoshida et al., 2013; Inoue et al., 2013), the combined 25 

use of upper atmospheric CO2 and XCO2 data observed with TANSO-FTS could be a useful 26 

tool for estimating CO2 surface flux. 27 

GOSAT, which is the first satellite to be dedicated to greenhouse gas monitoring, was 28 

launched on January 23, 2009. As described above, the TIR band of TANSO-FTS on board 29 

GOSAT has been observing CO2 concentrations in several vertical layers in the TIR band. In 30 

this study, we focused on CO2 concentrations in the upper troposphere and lower stratosphere 31 

(UTLS), where the TIR band of TANSO-FTS is most sensitive. We validated these data by 32 
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comparison with upper atmospheric CO2 data obtained in a wide spatial coverage in the 1 

CONTRAIL project. Sections 2 and 3 explain the GOSAT and CONTRAIL measurements, 2 

respectively. Section 4 details the retrieval algorithm used in the latest version 1.0 (V1.0) CO2 3 

level 2 (L2) product of the TIR band of TANSO-FTS. Section 5 describes the methods of 4 

comparing TANSO-FTS TIR V1 L2 and CONTRAIL CO2 data. Sections 65 and 76 show and 5 

discuss the results of thea comparisons between between TANSO-FTS TIR V1.0 L2 and 6 

CONTRAIL CO2 data. Section 87 summarizes this study. 7 

 8 

2 GOSAT observations 9 

GOSAT is a joint satellite project of the National Institute for Environmental Studies (NIES), 10 

Ministry of the Environment (MOE), and Japan Aerospace Exploration Agency (JAXA) for 11 

the purpose of making global observations of greenhouse gases such as CO2 and CH4 12 

(Hamazaki et al., 2005; Yokota et al., 2009). It was launched on January 23, 2009, from the 13 

Tanegashima Space Center, and has continued its observations for more than six years. 14 

GOSAT is equipped with the TANSO-FTS for greenhouse gas monitoring and the TANSO-15 

Cloud and Aerosol Imager (CAI) to detect clouds and aerosols in the TANSO-FTS field of 16 

view (Kuze et al., 2009). TANSO-FTS consists of three bands in the SWIR region and one 17 

band in the TIR region. The SWIR bands observe Ccolumn amounts of greenhouse gases are 18 

observed in the SWIR bands and the TIR band observes vertical information of gas 19 

concentrations are obtained in the TIR band (Yoshida et al., 2011, 2013; Saitoh et al., 2009, 20 

2012; Ohyama et al., 2012, 2013). 21 

Kuze et al. (2012) provided a detailed description of the methods used for the processing and 22 

calibration of level 1B (L1B) spectral data from TANSO-FTS. They explained the algorithm 23 

for the version 150.151 (V150.151) L1B spectral data. The TIR V1.0V1 L2 CO2 product we 24 

focused on in this study was created from a later version, V161.160, of L1B spectral data. The 25 

following modifications were made to the algorithm from V150.151 to V161.160: improving 26 

the TIR radiometric calibration through the improvement of calibration parameters, turning 27 

off the sampling interval non-uniformity correction, modifying the spike noise criteria of the 28 

quality flag, and reevaluating the misalignment between the GOSAT satellite and TANSO-29 

FTS sensor. Kataoka et al. (2014) reported that the biaseaccuracies of TANSO-FTS TIR 30 

V130.130 L1B radiance spectra based on comparisons with the Scanning High-resolution 31 

Interferometer Sounder (S-HIS) spectra for warm scenes were 0.5 K at 800–900 cm-1 and 32 
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700–750 cm-1, 0.1 K at 980–1080 cm-1, and more than 2 K at 650–700 cm-1. Although the 1 

magnitude of the spectral bias evaluated on the basis of V130.130 L1B data would change in 2 

V161.160 L1B data, the issue of L1B spectral bias still remains. The spectral bias inherent in 3 

TIR L1B spectra would be mainly because of uncertainty of polarization correction. Another 4 

possible cause was discussed in Imasu et al. (2010). When retrieving CO2 concentrations from 5 

the TIR band of TANSO-FTS, the spectral bias that is predominant in CO2 absorption bands 6 

should be considered (Ohyama et al., 2013). 7 

 8 

3 CONTRAIL Continuous Measurement Equipment (CME) observations 9 

We used CO2 data obtained in the CONTRAIL project to validate the quality of TANSO-FTS 10 

TIR V1.0V1 L2 CO2 data. CONTRAIL is a project to observe atmospheric trace gases such 11 

as CO2 and CH4 using instruments installed on commercial aircraft operated by JAL. 12 

Observations of trace gases in this project began in 2005. Two types of measurement 13 

instruments, the Automatic Air Sampling Equipment (ASE) and the Continuous CO2 14 

Measuring Equipment (CME), have been installed on several JAL aircraft to measure trace 15 

gases over a wide area (Machida et al., 2008). 16 

This study used CO2 data obtained with CME on several airline routes from Narita Airport, 17 

Japan. CO2 observations with CME use a LI-COR LI-840 instrument that utilizes a 18 

nondispersive infrared absorption (NDIR) method (Machida et al., 2008). In the observations, 19 

two different standard gases, with CO2 concentration of 340 ppm and 390 ppm based on 20 

NIES09 scale, are regularly introduced into the NDIR for calibration. The accuracy of CME 21 

CO2 measurements is 0.2 ppm. See Machida et al. (2008), Matsueda et al. (2008), and 22 

Machida et al. (2011) for details of the CME CO2 observations and their accuracy and 23 

precision. 24 

 25 

4 Retrieval algorithm of TANSO-FTS TIR V1.0V1 CO2 data 26 

4.1 Basic retrieval settings 27 

Saitoh et al. (2009) provided an algorithm for retrieving CO2 concentrations from the TIR 28 

band of TANSO-FTS. The first version, V00.01, of the L2 CO2 product of the TIR band of 29 

TANSO-FTS was basically processed by the algorithm described in Saitoh et al. (2009). The 30 
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V1.0V1 L2 CO2 product that we focused on in this study also adopted a non-linear maximum 1 

a posteriori (MAP) method with linear mapping, as was the case for the V00.01 product. We 2 

utilized the following expressions in TIR CO2 retrieval: 3 
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where xa is an a priori vector, Sa is a covariance matrix of the a priori vector, Sε is a 5 

covariance matrix of measurement noise, Ki is a CO2 Jacobian matrix calculated using the ith 6 

retrieval vector ix̂ on full grids, )ˆ( ixF  is a forward spectrum vector based on ix̂ , y is a 7 

measurement spectrum vector, and 1+iẑ  is the i+1th retrieval vector defined on retrieval grids. 8 

W is a matrix that interpolates from retrieval grids onto full grids. W* is the generalized 9 

inverse matrix of W. 10 

The full grids are vertical layer grids for radiative transfer calculation, and the retrieval grids 11 

are defined as a subset of the full grids. In the V1.0V1 L2 CO2 retrieval algorithm, linear 12 

mapping between retrieval grids and full grids was also applied, but the number of full grid 13 

levels was 78 instead of 110 in the V00.01 algorithm. The determination of retrieval grids in 14 

the V1.0V1 algorithm basically followed the method of the V00.01 algorithm. It was based on 15 

the areas of a CO2 averaging kernel matrix in the tropics, but the retrieval grid levels were 16 

fixed for all of the retrieval processing, as presented in Table 1. Averaging kernel matrix A is 17 

defined (Rodgers, 2000) as 18 

GKWA = .                                                                            (2) 19 

      (2) 20 

Figure 1 shows typical averaging kernel functions of TIR V1.0V1 L2 CO2 retrieval in middle 21 

latitudes in summer. The degrees of freedom (DF) in theise cases (trace of the matrix A) 22 

werewas  (a) 2.22, (b) 1.81, and (c) 1.36, respectively2.09. The seasonally averaged DF 23 

values of TIR V1.0V1 CO2 data ranged from 1.12 to 2.35. In the low and middle latitudes 24 

between 35°N and 35°S, almost all the CO2 DF values were aroundexceeded 2.0 or more; this 25 

means that observations by the TIR band of TANSO-FTS can provide information on CO2 26 

concentrations in more than two vertical layers, one of which we focused on in this study. 27 
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A priori and initial values for CO2 concentrations were taken from the outputs of the NIES 1 

transport model (NIES-TM05) (Saeki et al., 2013). A priori and initial values for temperature 2 

and water vapor were obtained from Japan Meteorological Agency (JMA) Grid Point Value 3 

(GPV) data. Basically, the retrieval processing of TANSO-FTS was only conducted under 4 

clear-sky conditions, which was judged based on a cloud flag from TANSO-CAI in the 5 

daytime (Ishida and Nakajima, 2009; Ishida et al., 2011) and on a TANSO-FTS TIR spectrum 6 

in the nighttime. 7 

4.2 Improvements in theof TIR V1.0V1 CO2 algorithm 8 

The following conditions are the improvements made in the TANSO-FTS TIR V1.0V1 L2 9 

CO2 algorithm from the V00.01 algorithm. The V1.0V1 algorithm used the CO2 10 μm 10 

absorption band in addition to the CO2 absorption band at around 15 μm band; the wavelength 11 

regions of 690–750 cm-1, 790–795 cm-1, 930–990 cm-1, and 1040–1090 cm-1 were used in the 12 

CO2 retrieval. We did not apply any channel selection. In these wavelength regions, 13 

temperature, water vapor, and ozone concentrations were retrieved simultaneously with CO2 14 

concentration. Moreover, surface temperature and surface emissivity were simultaneously 15 

derived as a correction parameter of the spectral bias inherent in TANSO-FTS TIR V161.160 16 

L1B spectra at the above-mentioned CO2 absorption bands. We assumed that the spectral bias 17 

could be divided into two components: a wavelength-dependent bias whose amount varied 18 

depending on wavelength and a wavelength-independent bias whose amount was uniform in a 19 

certain wavelength region. We tried to correct such a wavelength-independent component of 20 

the spectral bias by adjusting the value of surface temperature. Similarly, a wavelength-21 

dependent component of the spectral bias was corrected by adjusting the value of surface 22 

emissivity in each wavelength channel. Therefore the matrices of K and Sa of expression (1) 23 

are as follows: 24 

)( sE_5sE_4sE_3sE_2sE_1sT_5sT_4sT_3sT_2sT_1TO3H2OCO2 k k k k k k k k k k K K K KK = ,  (3) 25 
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where KCO2, KH2O, KO3, and KT are Jacobian matrices of CO2, water vapor, ozone, and 2 

temperature on full grids, respectively, and SCO2, SH2O, SO3, and ST are a priori covariance 3 

matrices of CO2, water vapor, ozone, and temperature on full grids, respectively. The vectors 4 

ksT_1, ksT_2, ksT_3, ksT_4, and ksT_5 are the Jacobian vectors of surface temperature in the 5 

wavelength regions of 690–715 cm-1, 715–750 cm-1, 790–795 cm-1, 930–990 cm-1, and 1040–6 

1090 cm-1, respectively. The vectors ksE_1, ksE_2, ksE_3, ksE_4, and ksE_5 are the Jacobian 7 

vectors of surface emissivity in each of the five wavelength regions, respectively. The 8 

elements of the Jacobian vectors of surface parameters that were defined for each of the five 9 

wavelength regions were set to be zero in the other wavelength regions. The values SsT_1, 10 

SsT_2, SsT_3, SsT_4, and SsT_5 and SsE_1, SsE_2, SsE_3, SsE_4, and SsE_5 are a priori variances of 11 

surface temperature and surface emissivity in each of the five wavelength regions, 12 

respectively. Simultaneous retrieval of the surface parameters in the V1.0V1 algorithm was 13 

conducted just for the purpose of correcting the TIR V161.160 L1B spectral bias; it had no 14 

physical meaning. We estimated the surface parameters separately in each of the five 15 

wavelength regions to consider differences in the amount of spectral bias in each wavelength 16 

region. The matrices Sa for CO2, temperature, water vapor, and ozone were diagonal matrices 17 

with vertically fixed diagonal elements with a standard deviation of 2.5%, 3 K, 20%, and 30%, 18 

respectively. Here, a priori and initial values for ozone were obtained from the climatological 19 

data for each latitude bin for each month given by MacPeters et al. (2007). We assumed rather 20 
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large values as a priori variances of the surface parameters (a standard deviation of 10 K for 1 

surface temperature), which could allow more flexibility in the L1B spectral bias correction 2 

by the surface parameters. The a priori and initial values for surface emissivity were 3 

calculated by linear regression analysis using the Advanced Space-borne Thermal Emission 4 

Reflection Radiometer (ASTER) Spectral Library (Baldridge et al., 2009) using on the basis 5 

of land-cover classification, vegetation, and wind speed information. The a priori and initial 6 

values for surface temperature were estimated using radiance data in several channels around 7 

900 cm-1 of the TIR V161.160 L1B spectra. 8 

4.3 Effects of spectral bias on CO2 retrieval 9 

In the TIR V1.0V1 L2 algorithm, we estimated surface temperature and surface emissivity to 10 

correct the spectral bias inherent in the TANSO-FTS TIR L1B spectra (Kataoka et al., 2014). 11 

The existence of a relatively large spectral bias around the CO2 15 μm absorption band in 12 

TANSO-FTS TIR L1B spectra (Kataoka et al., 2014) resulted in a decrease in the number of 13 

normally retrieved CO2 profiles. This is probably because the TIR L1B spectral bias in the 14 

CO2 15 µm absorption band was sometimes too large for the L2 retrieval calculation to 15 

converse in a limited iteration. The correction of the TIR L1B spectral bias through the 16 

simultaneous retrieval of the surface parameters did not affect retrieved CO2 concentrations in 17 

the UTLS regions, which was the focus of this study, but it altered the number of normally 18 

retrieved CO2 profiles.Here, we evaluated the impact of the correction of the TIR L1B 19 

spectral bias through the simultaneous retrieval of the surface parameters on the TIR L2 CO2 20 

retrieval. Figure 2 shows comparisons between several types of TIR CO2 profiles retrieved by 21 

changing the treatment of the surface parameters in the retrieval and coincident CONTRAIL 22 

CME CO2 profiles over Narita airport. Criteria for the coincident pairs of a 100 km distance 23 

from Narita airport, a time difference in 2 hours, and a day difference within ±1 day yielded a 24 

total of 141 coincident profile pairs in 2010. In the comparisons, we applied averaging kernel 25 

functions of TIR CO2 data to corresponding CONTRAIL CME CO2 profiles, as follows 26 

(Rodgers and Connor, 2003): 27 

( )priori aCONTRAILpriori aCONTRAILobs xxAxx −+=− .     (5) 28 

Here, xCONTRAIL and xa priori are CONTRAIL CME and a priori CO2 profiles. Figure 2a shows 29 

a comparison of the V1.0 L2 CO2 product (i.e., the result of a comparison of CO2 retrievals 30 

based on TANSO-FTS TIR L1B spectra corrected through the simultaneous retrieval of both 31 
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surface temperature and surface emissivity). Figure 2b and 2c show the results of a 1 

comparison of CO2 retrievals that used TIR L1B spectra corrected only by surface 2 

temperature and surface emissivity, respectively. Figure 2d shows the result of a comparison 3 

of CO2 retrievals from uncorrected original TIR L1B spectra. The existence of a relatively 4 

large spectral bias around the CO2 15 μm absorption band in TANSO-FTS TIR L1B spectra 5 

(Kataoka et al., 2014) resulted in a decrease in the number of normally retrieved CO2 profiles. 6 

In the V1.0 case (Figure 2a), CO2 profiles were normally retrieved for 74 of the 114 7 

coincident pairs. The comparison between Figure 2a and 2c (Figure 2b and 2d) demonstrated 8 

Tthat the correction of the TIR L1B spectral bias through the simultaneous retrieval of surface 9 

temperature could increased the number of normally retrieved CO2 profiles (in this case, from 10 

48 to 74). This implies that a wavelength-independent component of the spectral bias in CO2 11 

absorption bands could be reduced by adjusting the value of surface temperature at the bands. 12 

In contrast, the comparisons between Figure 2a and 2b and Figure 2c and 2d showed that the 13 

spectral bias correction of the TIR L1B spectral bias through the simultaneous retrieval of 14 

surface emissivity  did not increase the number of normally retrieved CO2 profileshad a 15 

relatively small impact on TIR L2 CO2 retrieval. If the TIR L1B spectral bias has a 16 

wavelength dependence,  Nevertheless, surface emissivity , which has a wavelength 17 

dependence, couldan be effective for correcting such a wavelength-dependent biasthe 18 

wavelength-dependent L1B spectral bias. A more effective method of L1B spectral bias 19 

correction based on surface emissivity should be considered in the next version of the TIR L2 20 

CO2 retrieval algorithm, if a future version of the TIR L1B spectral data still has a bias. 21 

 22 

5 Comparison methodss of TANSO-FTS TIR V1.0 upper atmospheric CO2 23 

data with CME CO2 data 24 

5.1 Area comparisons 25 

Here, we used the level flight CO2 data of CONTRAIL CME observations in 2010 to validate 26 

the quality of UTLS CO2 data from the TANSO-FTS TIR V1.0V1 L2 CO2 product. The level 27 

flight data obtained fromin the following eight airline routes of the CONTRAIL CME 28 

observations were used in this study: Tokyo–Amsterdam (NRT–AMS) and Tokyo–Moscow 29 

(NRT–DME), Tokyo–Vancouver (NRT–VYR), Tokyo–Honolulu (NRT–HNL), Tokyo–30 

Bangkok (NRT–BKK), Tokyo–Singapore (NRT–SIN) and Tokyo–Jakarta (NRT–CGK), and 31 
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Tokyo–Sydney (NRT–SYD). We merged the level flight data of Tokyo–Amsterdam and 1 

Tokyo–Moscow into “Tokyo–Europe”, and the data of Tokyo–Singapore and Tokyo–Jakarta 2 

into “Tokyo–East Asia”., and the data of Tokyo–Singapore and Tokyo–Jakarta into “Tokyo–3 

East Asia”. Figure 23 shows the flight tracks of all of the CONTRAIL CME observations in 4 

2010 used in this study. As shown in the figure, we divided the CONTRAIL CME level flight 5 

data into 40 areas following Niwa et al. (2012), and compared them with TANSO-FTS TIR 6 

CO2 data in each area in each season. The level flight data in each area were averaged for 7 

each season (MAM, JJA, SON, and JF/DJF). The amount of level flight data varied 8 

depending on the area and season. The largest amount of data was obtained in area 15 over 9 

Narita Airport, where 4,694–9,306 data points were obtained. A relatively small amount of 10 

level flight data, 79–222 data points, was obtained in area 1 over Amsterdam. In all 40 areas, 11 

we collected sufficient level flight data to undertake comparison analysis based on the average 12 

values, except for seasons and regions with no flights. 13 

5.2 Comparisons of CME profiles with and without averaging kernels 14 

In comparisons of TIR V1 L2 CO2 data with the CONTRAIL CME level flight data, it is 15 

difficult to smooth the CME data by applying TIR CO2 averaging kernels, because CO2 16 

concentrations below and above the CME flight levels were not observed. Here, we evaluated 17 

the impact of considering averaging kernel functions on CO2 concentrations using the CME 18 

profile data. We regarded the CME data obtained during the ascent and descent flights over 19 

the nine airports as part of CO2 vertical profiles, and investigated differences between TIR 20 

and CME CO2 data with and without applying averaging kernel functions in the altitude 21 

regions around the CME level flight observations. We assumed the CME 22 

ascending/descending CO2 concentration at the uppermost altitude level to be constant up to 23 

the tropopause height, following the method proposed by Araki et al. (2010). We used 24 

stratospheric CO2 data taken from the Nonhydrostatic Icosahedral Atmospheric Model 25 

(NICAM)–Transport Model (TM) (Niwa et al., 2011; 2012) to create whole CO2 vertical 26 

profiles over the airports. The NICAM-TM CO2 data used here introduced CONTRAIL CO2 27 

data to the inverse model in addition to surface CO2 data, and therefore could simulate upper 28 

atmospheric CO2 concentrations well (Niwa et al., 2012). We determined the stratospheric 29 

CO2 profile by assuming the CO2 concentration gradients, calculated on the basis of the 30 

NICAM-TM CO2 data above the tropopause height. 31 
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To compare these CME CO2 profiles with TIR CO2 data, we calculated a weighted average of 1 

all the CME CO2 data included in each of the 28 retrieval grid layers with respect to altitude, 2 

and defined the CO2 data in the 28 layers as “CONTRAIL (raw)” data. Then, we selected TIR 3 

CO2 data that coincided with each of the CONTRAIL (raw) profiles. The criteria for the 4 

coincident pairs were a 300 km distance from Narita airport, and a 3-day difference of each 5 

other observation. We applied TIR CO2 averaging kernel functions to the corresponding 6 

CONTRAIL (raw) profile, as follows (Rodgers and Connor, 2003): 7 

( )priori arawCONTRAILpriori aAKCONTRAIL xxAxx −+= )()(   .              (5) 8 

Here, xCONTRAIL (raw) and xa priori are CONTRAIL (raw) and a priori CO2 profiles. We defined 9 

the CONTRAIL (raw) data with TIR CO2 averaging kernel functions as “CONTRAIL (AK)” 10 

data. 11 

5.3 Level flight comparisons 12 

In this study, we made comparisons between TIR and CONTRAIL CME level flight CO2 data 13 

in two ways. The first was a direct comparison with original CME CO2 data, i.e., CONTRAIL 14 

(raw) data. The second was a comparison with CONTRAIL (AK) data in the altitude regions 15 

around the CME level flight observations that were based on “assumed CO2 profiles” created 16 

at each of the measurement locations of all the CME level flight data. In the first comparison 17 

with CONTRAIL (raw) data, the CME level flight data in each of the 40 areas were averaged 18 

for each season (MAM, JJA, SON, and JF/DJF).  In all 40 areas, we collected an enough 19 

amount of level flight data to undertake a comparative analysis based on the average values, 20 

except for seasons and regions with no flights. The average altitude of all of the CONTRAIL 21 

CME level flight data used here was 11.245 km. The airline routes of Tokyo–Europe, Tokyo–22 

Vancouver, and Tokyo–Honolulu contained both tropospheric and stratospheric data in the 23 

areas along their routes; therefore, we calculated the average and standard deviation values 24 

separately. Here, we differentiated between the tropospheric and stratospheric level flight data 25 

on the basis of temperature lapse rates from the JMA GPV data that were interpolated to the 26 

CONTRAIL CME measurement locations. The average altitudes of the tropospheric and 27 

stratospheric level flight data from the airline route between Tokyo and Europe were 10.84 28 

km and 11.18 km, respectively. 29 

In the comparison with CONTRAIL (raw) data, Next, we selected TANSO-FTS TIR V1.0V1 30 

L2 CO2 data that were in the altitude range within ±1 km of the average altitude of the 31 
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CMEONTRAIL level flight data for each area for each season, and calculated their averages 1 

and standard deviations. Similarly, we calculated the averages and standard deviations of the 2 

corresponding a priori CO2 data for each area for each season. For the airline routes of 3 

Tokyo–Europe, Tokyo–Vancouver, and Tokyo–Honolulu, the averages and standard 4 

deviations of TIR V1.0V1 CO2 data and the corresponding a priori CO2 data were calculated 5 

separately for the tropospheric and stratospheric data. In this calculation, we first selected TIR 6 

V1.0V1 CO2 data that were collected in a range within ±1 km of the average altitudes of the 7 

CONTRAIL tropospheric and stratospheric CO2 data for each area. Then, we classified each 8 

of the selected TIR CO2 data points into tropospheric and stratospheric data on the basis of the 9 

temperature lapse rates from the JMA GPV data that were interpolated to the TANSO-FTS 10 

measurement locations, and calculated the seasonal averages and standard deviations for the 11 

reselected tropospheric and stratospheric TIR CO2 data. This procedure was required for two 12 

reasons:. (1)One was that a tropopause height at each TANSO-FTS measurement location 13 

should differ on a daily basis, and (2). The other was that because  TANSO-FTS TIR CO2 14 

data were selected within the range of 2 km, some tropospheric TIR CO2 data were selected 15 

on the basis of the CONTRAIL stratospheric level flight data, and vice versa. Figure 34 16 

shows the number of TANSO-FTS TIR CO2 data points that were finally selected in each 17 

retrieval layer for each of the airline routes. The TIR CO2 data used in the comparative 18 

analysis were mainly from layers 9 and layer 10 (from 287 to 196 hPa) for the tropospheric 19 

comparison and from layers 10 and layer 11 (from 237 to 162 hPa) for the stratospheric 20 

comparison. 21 

In the second comparison, we assumed a CO2 vertical profile on the basis of CONTRAIL 22 

(raw) data at each of the CONTRAIL CME level flight locations, and applied TIR CO2 23 

averaging kernel functions to the assumed profiles. For this purpose, realistic CO2 vertical 24 

profiles were required along the eight airline routes. In this study, we created a CO2 profile at 25 

each CME level flight measurement location from CarbonTracker CT2013B monthly-mean 26 

CO2 data (Peters et al., 2007). The CarbonTracker CT2013B CO2 data are available to the 27 

public, and therefore readers can refer to the dataset that we used as a CO2 climatological 28 

dataset. The method for creating a CO2 vertical profile from the CONTRAIL (raw) and 29 

CarbonTracker CT2013B data is as follows. We first averaged all of the CarbonTracker 30 

CT2013B monthly-mean data included in each of the 40 areas to create area-averaged 31 

CarbonTracker CT2013B profiles. Then, we shifted the area-averaged CarbonTracker 32 

CT2013B profile so that its concentration fit to each of the CONTRAIL (raw) data at CME 33 
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level flight altitude. Finally, we applied area-averaged TIR CO2 averaging kernel functions to 1 

each of the shifted area-averaged CO2 profiles, and created profiles of CONTRAIL (AK) at 2 

all the CME level flight measurement locations. 3 

We compared the CONTRAIL (AK) data with TIR CO2 data at the altitude regions around 4 

the CME level flight observations for each area in each season. We extracted CONTRAIL 5 

(AK) data that corresponded to the TIR retrieval layers where TIR CO2 data were compared 6 

to CONTRAIL (raw) data, and averaged them for each area for each season. For the airline 7 

routes of Tokyo–Europe, Tokyo–Vancouver, and Tokyo–Honolulu, we separately averaged 8 

CONTRAIL (AK) data created from tropospheric and stratospheric CONTRAIL (raw) data, 9 

and defined the averages as tropospheric and stratospheric CONTRAIL (AK) data, 10 

respectively. As shown in Figure 3, the CONTRAIL (AK) data used for the comparison 11 

during flights between Tokyo and Sydney consisted of CO2 concentrations in layers 9 and 10 12 

of the CONTRAIL (AK) profiles. For the flights between Tokyo and Europe, the CONTRAIL 13 

(AK) data used for the tropospheric and stratospheric comparisons were based on CO2 14 

concentrations in layers 9 and 10 and in layers 10 and 11 of CONTRAIL (AK) profiles, 15 

respectively. 16 

We did not apply TIR CO2 averaging kernels to CONTRAIL CME CO2 data in the following 17 

UTLS analysis. Because CO2 concentrations below and above the CONTRAIL CME flight 18 

levels were not observed except over airports, assuming a CO2 vertical profile for each of 19 

CONTRAIL CME level flight data points and applying averaging kernels to the assumed 20 

CONTRAIL CO2 profiles would increase the uncertainty in the CONTRAIL CO2 data. Here, 21 

we assess the effect of not applying averaging kernels to CONTRAIL CME level flight data. 22 

Figure 5a shows the means of the averaging kernels of each of the three layers 9, 10, and 11 23 

of all of the TANSO-FTS TIR CO2 profiles used in the comparisons in summer. In Figure 5, 24 

we show examples of area 40 in the airline route between Tokyo and Honolulu, where we had 25 

a large amount of data for comparison, and area 1 in the airline route between Tokyo and 26 

Amsterdam, where we had data for comparison both in the troposphere and stratosphere. 27 

Considering the half-value width of the averaging kernels in Figure 5a, the TANSO-FTS TIR 28 

CO2 retrieval results in layers 9–11 would be affected by CO2 concentrations from ~400 to 29 

~120–130 hPa. As shown in the CONTRAIL CME ascending/descending CO2 profiles in 30 

Figure 5b, the variability in the CO2 concentration from ~400 to ~200 hPa was relatively 31 

small in summer; the same was true in the other three seasons. This indicates that CO2 32 
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concentrations below layer 9 had a small impact on the TIR CO2 retrieval results in layers 9 1 

and 10, which suggests that the following results do not change much, even when considering 2 

the averaging kernels related to the layers below layer 9. Consequently, we determined not to 3 

apply TIR CO2 averaging kernels to CONTRAIL CME CO2 data in this study. However, 4 

because we did not have CONTRAIL CME CO2 data above ~200 hPa, we could not evaluate 5 

the impact of the CO2 concentration above ~200 hPa on TANSO-FTS TIR CO2 retrieval 6 

results in layers 9–11 on the basis of observation data. Thus, we should discuss again the 7 

effect of not applying averaging kernels to CONTRAIL CME data on the following 8 

comparison results in Section 6. 9 

5.2 Results of the comparisons 10 

6 Comparison results 11 

6.1 Impacts of averaging kernels on CME profiles 12 

Figure 4 shows comparisons of the differences between TANSO-FTS TIR and CONTRAIL 13 

(raw) CO2 data, and the differences between TIR and CONTRAIL (AK) CO2 data in low 14 

(BKK), middle (NRT and SYD), and high (DME) latitudes in layers 9, 10, and 11. In low 15 

latitudes, the differences between CONTRAIL (raw) and CONTRAIL (AK) were mostly less 16 

than 0.5 ppm in all seasons. This is because the tropopause heights there were much higher 17 

than the altitude levels of CONTRAIL CME level flight measurements, and CO2 18 

concentrations did not change much in the altitude regions where we compared TIR and 19 

CONTRAIL CME data. The same was true for other airports in low latitudes. While the 20 

differences between CONTRAIL (raw) and CONTRAIL (AK) were larger in middle and high 21 

latitudes than in low latitudes, they were in most cases less than 1 ppm in all seasons. In 22 

conclusion, the impact of applying the TIR CO2 averaging kernels on CONTRAIL CME CO2 23 

data at around the CME level flight altitudes (~11 km) was on average less than 0.5 ppm in 24 

low latitudes and less than 1 ppm in middle and high latitudes. 25 

6.2 Comparisons during level flight 26 

The airline route between Tokyo and Sydney covered a wide latitude range from the northern 27 

mid-latitudes (35°N) to southern mid-latitudes (34°S). Figure 56 shows the comparisons 28 

among CONTRAIL (raw), CONTRAIL (AK)CME level flight, TANSO-FTS TIR, and a 29 
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priori CO2 data during flights between Tokyo and Sydney in spring. In this case, we averaged 1 

CO2 data mainly from layers 9 and 10 of the TIR retrieval layer levels. The 1-σ values of the 2 

averages show the variability of CO2 concentrations in these UTLS layers. The average of the 3 

TIR CO2 data agreed better withto the averages of the CONTRAIL (raw) and (AK) CO2 data 4 

than the a priori CO2 data in all of the latitudes. The differences between CONTRAIL (raw) 5 

and CONTRAIL (AK) were approximately 0.5 ppm, which is consistent with the result 6 

shown in Figure 4, despite the fact that CONTRAIL (AK) data here were evaluated on the 7 

basis of CarbonTracker monthly-mean data. In the Southern Hemisphere, the average of the 8 

TIR CO2 data was within 0.1% of the average averages of the CONTRAIL  (raw) and 9 

CONTRAIL (AK) CO2 data. In the Northern Hemisphere, the average of the TIR CO2 data 10 

agreed with the averages of the CONTRAIL (raw) and CONTRAIL (AK) CO2 data to within 11 

0.5%, although their agreement wasbecame slightly worse there than incompared to the 12 

Southern Hemisphere. 13 

Along the airline route between Tokyo and Europe, both tropospheric and stratospheric CO2 14 

data were obtained in the CONTRAIL CME observations. Therefore, we were able to validate 15 

the quality of TANSO-FTS TIR CO2 data for this route both in the upper troposphere and 16 

lower stratosphere using the UTLS UTLS CMEONTRAIL CO2 data. Here, we averaged CO2 17 

data mainly from layers 9 and 10 for the upper tropospheric comparison and from layers 10 18 

and 11 for the lower stratospheric comparison. As shown in Figure 6, the differences between 19 

CONTRAIL (raw) and CONTRAIL (AK) were again approximately 0.5 ppm when 20 

CONTRAIL CME data were divided into the upper troposphere and lower stratosphere, 21 

which is consistent with the result shown in Figure 4. Figure 67b and 67c shows that the 22 

differences between the upper tropospheric and lower stratospheric CO2 concentrations of 23 

CONTRAIL CME data were approximately 2–3 ppm in the winter (maximum of 4.24 ppm in 24 

area 14). The upper tropospheric and lower stratospheric CO2 concentrations from TANSO-25 

FTS TIR V1.0V1 data also clearly differed clearly, while the upper tropospheric and lower 26 

stratospheric CO2 concentrations from a priori data were similar. The upper tropospheric TIR 27 

CO2 concentrations were in a fairly good agreement within 1 ppm with the corresponding 28 

CONTRAIL (raw) and CONTRAIL (AK)CME data (Figure 67b). In the lower stratosphere in 29 

winter (Figure 67c), the averages of the CONTRAIL (raw), CONTRAIL (AK)CME level 30 

flight, TANSO-FTS TIR, and a priori CO2 data were all within 0.5–1 ppm of each 31 

other.nearly identical. 32 
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Figure 78 shows the results of all of the comparisons among CONTRAIL (raw), CONTRAIL 1 

(AK)CME, TANSO-FTS TIR, and a priori CO2 data in the upper troposphere (left) and lower 2 

stratosphere (right) for each of the six (eight) airline routes for each season. We divided the 3 

data for all four datasets in each of the 40 areas into six latitude bands: 40°S–20°S (areas 30 4 

and 31), 20°S–0° (areas 21, 28, and 29), 0°–20°N (areas 16, 17, 20, 22, 23, 26, and 27), 5 

20°N–40°N (areas 15, 18, 19, 24, 25, and 37–40), 40°N–60°N (areas 1, 2, 14, and 32–36), and 6 

60°N–70°N (areas 3–13). As for the lower stratosphere, we showed the results at northern 7 

latitudes of 40°N where an adequate amount of data was obtained. The thick and dashed lines 8 

indicate the differences between CONTRAIL CME and TANSO-FTS TIR CO2 data (TIR ave. 9 

minus CONTRAIL ave.) and the differences between CONTRAIL CME and a priori CO2 10 

data (a priori ave. minus CONTRAIL ave.) for each of the areas along the airline routes. All 11 

of the results with more than three data points are presented. Overall, the thick black and gray 12 

lines (TIR ave. minus CONTRAIL (raw) ave. and TIR ave. minus CONTRAIL (AK) ave.) 13 

lines wereare closer to zero than the dashed linesgreen lines (a priori ave. minus CONTRAIL 14 

(raw) ave.),, which means that TIR CO2 data agreed better withto CONTRAIL CME CO2 data 15 

than a priori CO2 data. 16 

The left panels of Figure 7 show that the agreements between TIR and CONTRAIL (raw) and 17 

CONTRAIL (AK) CO2 average data were worse in spring and summer than in fall and winter 18 

in the Northern Hemisphere in the upper troposphere. The differences between TIR and 19 

CONTRAIL (raw) and CONTRAIL (AK) CO2 data were on average within 1 ppm in fall and 20 

winter in the northern troposphere. At 0°–40°N in summer, in contrast, the TIR and a priori 21 

CO2 average data were 2.3 ppm lower than the CONTRAIL (AK) CO2 average data. At 22 

20°N–40°N in spring, the differences between TIR and CONTRAIL (AK) CO2 average data 23 

were 2.4 ppm, although the TIR CO2 data had a better agreement with CONTRAIL CME CO2 24 

data than a priori CO2 data. On the other hand, the averages of the TIR CO2 data were within 25 

0-0.7 ppm of the averages of the CONTRAIL (AK) CO2 data in the Southern Hemisphere in 26 

all seasons, as in the comparison in spring shown in Figure 5. 27 

In the lower stratosphere, the agreements between the average TANSO-FTS TIR and 28 

CONTRAIL CME CO2 data did not have a smaller seasonality than in the upper troposphere. 29 

The averages of TIR and CONTRAIL (raw) and CONTRAIL (AK) CO2 data agreed with 30 

each other within 0.5% in all seasons.For the airline route between Tokyo and Europe (Figure 31 

8a), the agreement between tropospheric TANSO-FTS TIR and CONTRAIL CME CO2 32 
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average data seemed slightly better in winter, although comparisons among seasons in the 1 

troposphere were difficult because of the lack of CONTRAIL CME data in high latitudes in 2 

the spring and summer (Figure 8a1). In the stratosphere (Figure 8a2), the averages of TIR and 3 

CONTRAIL CO2 data agreed well with each other, and their differences were within ~0.5–1 4 

ppm in the spring, summer, and winter. The differences between the two averages were 5 

slightly larger in the fall (approximately 2 ppm). For the airline route between Tokyo and 6 

Vancouver (Figure 8b), the averages of the TIR CO2 data were more similar to the averages of 7 

the CONTRAIL CO2 data than the a priori CO2 data both in the upper troposphere and lower 8 

stratosphere in the fall and winter; the differences between the TIR and CONTRAIL CO2 9 

average data were approximately within 1 ppm. For the airline route between Tokyo and 10 

Honolulu (Figure 8c), the agreement between TIR and CONTRAIL CO2 average data did not 11 

show clear seasonal differences in the lower stratosphere (Figure 8c2), because of a small 12 

number of stratospheric data. In contrast, in the upper troposphere (Figure 8c1), the 13 

differences between the two were clearly larger in the spring and summer than in the fall and 14 

winter. In particular, both the differences between TIR and CONTRAIL CO2 data and 15 

between a priori and CONTRAIL CO2 data were larger in spring, as was the case for the 16 

results of the comparison for the airline route between Tokyo and Vancouver (Figure 8b1). 17 

Then, we focused on the results of the comparison between TANSO-FTS TIR and 18 

CONTRAIL CME upper tropospheric CO2 data obtained in northern low and middle latitudes. 19 

Figure 8d shows that the agreement between TIR and CONTRAIL CO2 average data was 20 

worse in the spring and summer than in the fall and winter for the airline route between 21 

Tokyo and Bangkok. The differences between TIR and CONTRAIL CO2 data exceeded the 1-22 

σ standard deviations of the averages of TIR CO2 data, and were larger than the differences 23 

between a priori and CONTRAIL CO2 data at 23–34°N (area 20) in the summer. Similarly, 24 

the agreement between the averages of TIR and CONTRAIL CO2 data was worse in the 25 

spring and summer than in the fall and winter for the airline route between Tokyo and East 26 

Asia (Figure 8e). 27 

For the airline route between Tokyo and Sydney (Figure 8f), the average of the TANSO-FTS 28 

TIR CO2 data was within 1 ppm of the average of the CONTRAIL CME CO2 data in the 29 

Southern Hemisphere in all of the seasons, as in the comparison in the spring shown in Figure 30 

6. However, in the Northern Hemisphere, the agreement between the two was not as strong in 31 

all of the seasons. In the comparisons in the northern summer, although the differences 32 
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between the average TIR and CONTRAIL CO2 data were less than 1% (3 ppm), there was a 1 

relatively large negative bias in the TIR CO2 data against the CONTRAIL CO2 data compared 2 

to the other seasons. In the upper troposphere in northern summer, TIR CO2 data showed a 3 

significantly good agreement with CONTRAIL CO2 data compared to a priori CO2 data in the 4 

Southern Hemisphere. However, in northern low and middle latitudes, TIR and a priori CO2 5 

data had a negative bias of up to 1% against CONTRAIL CO2 data. 6 

 7 

67 Discussion 8 

As shown in Figure 7, TANSO-FTS TIR V1 L2 CO2 data had a negative bias of 2.3–2.4 ppm 9 

against CONTRAIL CME CO2 data in the northern low and middle latitudes in spring and 10 

summer. Uncertainties in surface parameters and temperature profiles could affect CO2 11 

retrieval in thermal infrared spectral regions. As described above, retrieving surface 12 

parameters simultaneously instead of using initial surface parameters did not affect there was 13 

no clear difference in CO2 concentrations in the UTLS regions between the case of using 14 

initial surface parameters and the case of simultaneously retrieving surface parameters in the 15 

the TIR V1  V1 CO2 retrieval. We compared Here, we compared simultaneously retrieved 16 

temperature profiles withwith a priori JMA GPV temperature profiles used as a priori data in 17 

the UTLS region, and did not find any difference . The differences between the two which 18 

could explaindid not show any correlation with the largest TIR CO2 negative bias in the 19 

northern low and middle latitudes in spring and summer. In the UTLS regions, temperature 20 

variability. is relatively large, and therefore comprehensive validation analysis of both This 21 

suggests that the simultaneous retrieval of temperatures are unlikely a main cause of the TIR 22 

CO2 negative bias of 2.3–2.4 ppm in the northern low and middle latitudes in the spring and 23 

summer, although the a priori and retrieved temperature profiles should be requiredvalidated 24 

using reliable and independent temperature data such as radiosonde dataa.. 25 

Uncertainty in a priori data could result in uncertainty in retrieved CO2 data. Here, we 26 

arbitrarily decreased the a priori concentration by 1% in a test TIR CO2 retrieval, and then 27 

compared the retrieved CO2 concentrations with those retrieved using the original a priori 28 

data. In the northern low and middle latitudes in spring and summer where the DF values of 29 

TIR V1 CO2 data were around 1.8 and more, a 1% negative bias in a priori data could yield 30 

up to a 0.7% negative bias in retrieved CO2 concentrations in the altitude regions where we 31 

did comparisons between TIR and CONTRAIL CME data, although the magnitude of the bias 32 
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varied depending on retrievals. As shown by the green lines in Figure 7, a priori CO2 1 

concentrations were underestimated by 2–4 ppm in the northern low and middle latitudes in 2 

spring and summer. The test TIR CO2 retrieval demonstrated that the negative bias of a priori 3 

CO2 data against CONTRAIL CME data is a possible cause of the TIR CO2 negative bias in 4 

the UTLS regions in the northern low and middle latitudes in spring and summer. 5 

In general, the information content of CO2 observations made by TIR sensors is higher in 6 

middle and high latitudes in spring and summer than in fall and winter because of the thermal 7 

contrast in the atmosphere, with less seasonal dependence in low latitudes. Therefore, in 8 

spring and summer, retrieved CO2 data contain more measurement information and are less 9 

constrained by a priori data at all latitudes. However, as shown in Figure 7, the retrieved TIR 10 

CO2 data in the northern low and middle latitudes did not sufficiently reduce the negative bias 11 

of the a priori CO2 data in the UTLS regions in spring and summer. This implies the existence 12 

of factors that worsened CO2 retrieval results other than the a priori data, especially in spring 13 

and summer. Another possible factor that worsened CO2 retrieval results is the uncertainty in 14 

the calibration of TIR V161.160 L1B spectra. As reported in Kataoka et al. (2014), TANSO-15 

FTS TIR V130.130 L1B radiance spectra had a wavelength-dependent bias ranging from 0.1 16 

to 2 K. Although the characteristics of the spectral bias in V161.160 L1B data used in TIR V1 17 

L2 CO2 retrievals are still under investigation, we assumed the same degree of bias in 18 

V161.160 L1B spectra, and evaluated the effect of the L1B spectral bias on the TIR CO2 19 

retrieval using the following equation: 20 

specCO2CO2 dGd = .                                                                                                    (6) 21 

Here, GCO2 is a gain matrix for CO2 retrieval, dspec is a spectral bias vector based on the 22 

evaluation by Kataoka et al. (2014), and dCO2 is a vector of bias errors in retrieved CO2 23 

concentrations attributable to the spectral bias. The result showed that a wavelength-24 

dependent bias comparable to V130.130 L1B spectra could yield up to 0.3% and 0.5% 25 

uncertainties in retrieved CO2 concentration in the UTLS regions in the northern middle 26 

latitude in spring and in the northern low latitude in summer, respectively. Uncertainty in the 27 

radiometric calibration of TANSO-FTS L1B spectra causes the spectral bias inherent in TIR 28 

L1B spectra. The temperatures of the internal blackbody on board the TANSO-FTS 29 

instrument partly reflect the environmental thermal conditions inside the instrument. The 30 

temperatures of FTS-mechanics and aft-optics on the optical bench of the TANSO-FTS 31 
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instrument are precisely controlled at 23 °C. The difference in temperature between the 1 

environment inside the instrument and the optical bench could cause the uncertainty in the 2 

radiometric calibration of TANSO-FTS L1B spectra. Thus, the temperatures of the internal 3 

blackbody on board the TANSO-FTS instrument could be a parameter used to evaluate the 4 

TANSO-FTS TIR L1B spectral bias. 5 

Figure 89 shows the averages of the partial degree of freedom of TANSO-FTS TIR V1.0V1 6 

L2 CO2 data for each of the areas along the airline routes between Tokyo and Europe in the 7 

upper troposphere (a) and the lower stratosphere (b) for each season. The partial DF is defined 8 

as the diagonal elementtrace of a submatrix of the averaging kernelss corresponding to a 9 

partial column of TIR CO2 data  that were compared to CONTRAIL CME level flight data, 10 

which is equal to the averages of the 9th, 10th, or 11th diagonal element of matrix A. As shown 11 

in Figure 89, the average values of the partial DF of TIR lower stratospheric CO2 data were 12 

clearly lower than those of TIR upper tropospheric CO2 data for all of the fights between 13 

Tokyo and Europe. TIR upper tropospheric CO2 data were from layers 9 and 10, and TIR 14 

lower stratospheric CO2 data were from layers 10 and 11, as shown in Figure 34, which led to 15 

a clear difference in partial DF values between the TIR upper tropospheric and lower 16 

stratospheric CO2 data. The partial DF values of TIR upper tropospheric CO2 data were 0.13–17 

0.20 in all of the areas for all seasons. In contrast, the partial DF values of TIR lower 18 

stratospheric CO2 data in the spring, fall, and winter were ~0.05 in almost all of the areas, 19 

although they were as high as 0.1–0.14 in the summer. From the results shown in Figure 6c 20 

and Figure 8, we conclude that TIR CO2 retrieval results in the lower stratosphere in winter 21 

were constrained to the relatively good a priori CO2 data due to the low information content, 22 

and consequently had a good agreement with CONTRAIL CME CO2 data. The comparisons 23 

in the areas during the airline route between Tokyo and Europe were included in the 24 

comparison results of 60°N–70°N in the right panels of Figure 7. In this region, the average 25 

differences between a priori and CONTRAIL (raw) data were 1-2 ppm in summer and fall, 26 

while they were less than 0.5 ppm in spring and winter. In summer, TIR CO2 retrievals had a 27 

relatively high information content compared to the other seasons, which led to an agreement 28 

between TIR and CONTRAIL (raw) and CONTRAIL (AK) CO2 data of within 0.5 ppm. In 29 

fall, TIR CO2 retrieval results in the lower stratosphere were more constrained to the a priori 30 

CO2 data, and therefore had a negative bias of approximately 1-2 ppm against CONTRAIL 31 

(raw) and CONTRAIL (AK) CO2 data. In conclusion, the quality of TIR V1 CO2 data in the 32 

lower stratosphere depends largely on the information content compared to the upper 33 
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troposphere. In the case of high latitude measurements, TIR V1 lower stratospheric CO2 data 1 

are only valid in summer. 2 

The thick lines in Figure 8a2 show that the agreement of TIR and CONTRAIL CO2 data in 3 

the lower stratosphere was better in the spring, summer, and winter than in the fall. The 4 

dashed lines in Figure 8a2 also show that a priori CO2 data agreed better with CONTRAIL 5 

CME CO2 data in the lower stratosphere in the spring and winter than in the summer and fall. 6 

From the results shown in Figure 8a2 and Figure 9, we conclude that TIR CO2 retrieval 7 

results in the lower stratosphere in the spring and winter were constrained to the relatively 8 

good a priori CO2 data due to the low information content, and consequently had a good 9 

agreement with CONTRAIL CO2 data. In the fall, TIR CO2 retrieval results in the lower 10 

stratosphere were constrained to the relatively poor a priori CO2 data, and therefore had a 11 

negative bias of approximately 2 ppm against CONTRAIL CO2 data. In the summer, TIR CO2 12 

retrievals had a relatively high information content compared to the other seasons, which led 13 

to a good agreement between TIR and CONTRAIL CO2 data despite the relatively poor a 14 

priori CO2 data. In conclusion, the quality of TIR V1.0 CO2 data in the lower stratosphere 15 

depends largely on the information content compared to the upper troposphere. In the case of 16 

high latitude measurements, TIR V1.0 lower stratospheric CO2 data are only valid in the 17 

summer. 18 

As shown in Figure 8d, 8e, and 8f, the agreement between TANSO-FTS TIR and 19 

CONTRAIL CME CO2 data was worse in the spring and summer than in the fall and winter 20 

in northern low and middle latitudes. At these latitudes, TIR upper tropospheric CO2 data had 21 

a negative bias of up to ~1% against CONTRAIL upper tropospheric CO2 data. This 22 

characteristic was also seen in the data from flights between Tokyo and Honolulu where there 23 

was a large amount of upper tropospheric data available in all of the seasons (Figure 8c1). 24 

Overall, as shown in Figure 8, a priori CO2 data used in TIR V1.0 CO2 retrievals had a 25 

negative bias against CONTRAIL CO2 data. The a priori CO2 data in the spring and summer 26 

in Figure 8d, 8e, and 8f clearly had a larger negative bias against the corresponding 27 

CONTRAIL CO2 data. The results show that a priori CO2 data taken from NIES-TM 05 28 

underestimate the increase in the CO2 concentration in the upper atmosphere in spring and 29 

summer, which results in a larger negative bias of TIR V1.0 upper tropospheric CO2 data in 30 

the spring and summer than in the fall and winter in northern low and middle latitudes. 31 
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In general, information content of CO2 observations made by TIR sensors is higher in middle 1 

and high latitudes in the spring and summer than in the fall and winter because of thermal 2 

contrast in the atmosphere, with less seasonal dependence in low latitudes. Therefore, in the 3 

spring and summer, retrieved CO2 data contain more measurement information and are less 4 

constrained by a priori data in all latitudes. However, as shown in Figure 8, the retrieved TIR 5 

CO2 data in the Northern Hemisphere did not sufficiently reduce the negative bias of the a 6 

priori CO2 data in the spring and summer. The degree of improvement in the spring and 7 

summer was comparable to or worse than in the fall and winter. This implies the existence of 8 

factors that worsened CO2 retrieval results other than the poor a priori data in the spring and 9 

summer. One of the possible factors is uncertainty in JMA GPV temperature profiles used in 10 

TIR V1.0 L2 CO2 retrieval. If they have some seasonal bias, seasonally dependent bias in 11 

retrieved CO2 data would be produced. However, the TIR V1.0 algorithm simultaneously 12 

retrieved temperature profiles other than CO2, and therefore the effect of temperature 13 

uncertainty on retrieved CO2 data should be reduced. 14 

Another possible factor that worsened CO2 retrieval results is uncertainty in the calibration of 15 

TIR V161.160 L1B spectra. This means that the amount of TIR V161.160 L1B spectral bias 16 

has some seasonal dependence. Therefore, we investigated an appropriate parameter to 17 

evaluate the uncertainty in TANSO-FTS TIR L1B spectra. The temperatures of the internal 18 

blackbody on board the TANSO-FTS instrument partly reflect the environmental thermal 19 

condition inside the instrument. The temperatures of FTS-mechanics and aft-optics on the 20 

optical bench of the TANSO-FTS instrument are precisely controlled at 23 degrees Celsius. 21 

The difference in temperature between the environment inside the instrument and the optical 22 

bench would cause the uncertainty in radiometric calibration of TANSO-FTS L1B spectra. 23 

Thus, the temperatures of the internal blackbody on board the TANSO-FTS instrument could 24 

be a parameter to evaluate the TANSO-FTS TIR L1B spectral bias. 25 

Figure 10 is a scatter-plot of the average temperatures of the onboard internal blackbody and 26 

the average differences between TANSO-FTS TIR and CONTRAIL CME CO2 data shown in 27 

Figure 8 for each area for each season. The average temperatures of the on-board internal 28 

blackbody were lower in the spring and summer than in the fall and winter in all of the areas. 29 

It can be seen from Figure 10 that the internal blackbody temperatures in the summer 30 

(diamonds) were lower than those in the other seasons (crosses). As discussed above, a priori 31 

CO2 data had a larger negative bias against CONTRAIL CME CO2 data particularly in 32 



 25 

northern low and middle latitudes in the spring and summer, which led to a larger negative 1 

bias in retrieved TIR CO2 data at these latitudes. In addition, retrieved TIR CO2 data had a 2 

larger bias in summer when the internal blackbody temperatures were lower, even if the 3 

amount of negative bias in a priori CO2 data in summer was comparable to that in the other 4 

seasons, as shown in Figure 10. As stated above, the temperature of the onboard internal 5 

blackbody could be a candidate for evaluating the spectral bias. At this moment, however, 6 

there is no definite evidence of a clear correlation between the temperatures of the onboard 7 

internal blackbody and the bias in TANSO-FTS V161.160 L1B spectra that would 8 

subsequently cause the seasonally dependent bias in the TIR V1.0 L2 CO2 data, because the 9 

correlation between the average temperatures of the onboard internal blackbody and the 10 

average differences between TIR and CONTRAIL CO2 data is not very strong. 11 

The TANSO-FTS TIR V1.0 L2 CO2 algorithm simultaneously retrieves surface temperature 12 

and surface emissivity as a corrective parameter of the bias in TIR L1B spectra. Therefore, the 13 

uncertainty in these surface parameters would have a large impact on retrieved TIR CO2 14 

profiles. Figure 7d and 7e in Saitoh et al. (2009) show that the uncertainty of retrieved UTLS 15 

CO2 concentrations in layers 9–11 is much less than 1% when the surface parameters have 16 

1% uncertainty, although the uncertainty of CO2 concentrations at ~400 hPa reaches 3% for 17 

the same condition. We conclude that the uncertainty of the surface parameters has a 18 

relatively small impact on the TIR UTLS CO2 concentrations that were the focus of this study. 19 

The uncertainties in surface parameters and water vapor in lower atmosphere largely affect 20 

lower and middle tropospheric TIR CO2 data, and therefore should be discussed when 21 

validating the quality of TIR CO2 data in the lower and middle troposphere, which is beyond 22 

the scope of this paper. 23 

We compared TANSO-FTS TIR V1.0 L2 upper tropospheric and lower stratospheric CO2 24 

data that were mainly from layers 9 and 10 and from layers 10 and 11 with the corresponding 25 

CONTRAIL CME tropospheric and stratospheric CO2 data without applying the TIR CO2 26 

averaging kernels to the CONTRAIL CO2 data. As discussed above, CO2 concentrations 27 

below layer 9 have a small impact on TIR CO2 retrieval results in layers 9 and 10, because the 28 

variability in the CO2 concentration from ~400 to ~200 hPa was relatively small in all of the 29 

seasons. However, in layer 11, TIR CO2 retrieval results could be overestimated by the effect 30 

of the CO2 concentration below layer 9, if the atmosphere in layer 11 is stratospheric air with 31 

relatively low CO2 concentrations. On the other hand, TIR CO2 retrieval results in layers 9–11 32 
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could also be affected by CO2 concentration from ~200 to ~120–130 hPa, judging from the 1 

half-value width of the averaging kernels in Figure 5a. If the atmosphere from ~200 to ~120–2 

130 hPa is stratospheric air with low CO2 concentrations, retrieved TIR CO2 concentrations in 3 

layers 9–11 could be underestimated. In summary, retrieved TIR CO2 concentrations could be 4 

underestimated in layers 9–10, and face the conflicting possibility of being overestimated 5 

and/or underestimated in layer 11. However, because we did not have CO2 observation data 6 

below and above the CONTRAIL CME flight levels, we cannot reach a definite conclusion. 7 

As shown in Figure 8, TIR upper tropospheric CO2 data had a slightly negative bias against 8 

CONTRAIL CME CO2 data. In the comparison of the airline route of Tokyo–Sydney as 9 

shown in Figure 6, the differences between the averages of TIR CO2 data and the averages of 10 

CONTAIL CO2 data were slightly larger in the Northern Hemisphere (0.5%) than in the 11 

Southern Hemisphere (0.1%). The difference between upper tropospheric and lower 12 

stratospheric CO2 concentrations is larger in the Northern Hemisphere in spring (Sawa et al., 13 

2012), which would cause a slightly larger negative bias in the Northern Hemisphere than in 14 

the Southern Hemisphere. The effect of lower CO2 concentrations from ~200 to ~120–130 15 

hPa on TIR CO2 retrieval results in layers 9–10 could be one of the causes of a negative bias 16 

in retrieved CO2 data other than the negative bias of a priori CO2 data and the spectral bias of 17 

TIR V161.160 L1B spectra. 18 

We investigated the differences between TIR and CONTRAIL CO2 comparison results in 19 

layers 9–11 with and without applying averaging kernel functions although in limited areas 20 

over the nineseveral airports where CO2 vertical profiles were observed during ascent and 21 

descent. In the northern middle latitudes in spring (NRT in Figure 4), CONTRAIL (AK) was 22 

on average 0.2 and 1.2 ppm lower than CONTRAIL (raw) in layers 9 and 10. In contrast, the 23 

tendency was the opposite in the southern middle latitudes in spring (SYD in Figure 4); 24 

CONTRAIL (AK) was on average 1.1 and 0.4 ppm higher than CONTRAIL (raw) in layers 9 25 

and 10. This means that CO2 concentrations in layers 9 and 10 were more affected by 26 

stratospheric air with relatively low CO2 concentrations in the northern middle latitude in 27 

spring, when considering averaging kernels. This is consistent with the result of Sawa et al. 28 

(2012) showing that the difference between upper tropospheric and lower stratospheric CO2 29 

concentrations was larger in the Northern Hemisphere in spring. Following the method 30 

proposed by Araki et al. (2010), we used CONTRAIL ascending/descending CO2 data below 31 

a tropopause and stratospheric CO2 concentrations taken from the Nonhydrostatic Icosahedral 32 

Atmospheric Model (NICAM)–Transport Model (TM) (Niwa et al., 2011) to create CO2 33 
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profiles over airports. In northern middle latitudes in the spring (over NRT airport), 1 

considering averaging kernel functions by using Expression (5) decreased a negative bias in 2 

TIR CO2 data in layers 9 and 10 by ~1 ppm. On the other hand, the same tendency was not 3 

seen in southern middle latitudes in the spring (SYD) when considering averaging kernel 4 

functions. This is consistent with the above discussion related to Sawa et al. (2012). In the 5 

summer and fall in middle latitudes in both hemispheres, the effect of considering averaging 6 

kernel functions on TIR and CONTRAIL CO2 comparison results was negligible (less than 7 

~0.5 ppm), although CONTRAIL CO2 data in layers 9 and 10 with averaging kernel functions 8 

became slightly larger there. In low latitudes (BKK, SIN, and CGK), differences between TIR 9 

and CONTRAIL CO2 comparison results in layers 9 and 10 with and without considering 10 

averaging kernel functions were also negligible in every season. In northern high latitudes 11 

(AMS and YVR), bias of TIR lower stratospheric CO2 data against CONTRAIL CO2 data in 12 

layers 10 and 11 tended to diminish when considering averaging kernel functions, and the 13 

effect of considering averaging kernel functions on TIR and CONTRAIL upper tropospheric 14 

CO2 comparison results in layers 9 and 10 was again negligible. 15 

Using CONTRAIL CME level flight observations that covered wide spatial areas 16 

allowedmakes us to discuss thea longitudinal differences in the characteristics of TIR UTLS 17 

CO2 data. In the comparison results of the airline routes of Tokyo–Europe (Figure 6) and 18 

Tokyo–Vancouver (not shown here)shown in Figure 8a and 8b, the magnitudes of the 19 

differences between TIR and CONTRAIL (raw) and (AK) CO2 data did not have a clear 20 

longitudinal dependence. Table 2 summarizes the latitudinal dependence of the magnitudes of 21 

the differences between TIR and CONTRAIL (AK) CO2 data.were similar in every longitude 22 

in the fall and winter in the upper troposphere and in every season in the lower stratosphere, 23 

although there is little logic to discuss the longitudinal differences in the spring and summer 24 

in the upper troposphere because of a small number of the data. On the other hand, in the 25 

comparison results of Tokyo–Honolulu, differences between TIR and CONTRAIL CO2 data 26 

became larger toward ~165°W (195° in Figure 8c1) in the spring. This area is located at 25°N, 27 

and differences between TIR and CONTRAIL CO2 data were also large in area 20 (in the 28 

airline route of Tokyo–Bangkok), area 27 (Tokyo–East Asia), and area 28 (Tokyo–Sydney) 29 

located in the same latitude region, which implies that these biases depended on latitude, not 30 

on longitude. We conclude that the data quality of TIR V1.0 L2 UTLS CO2 data does not 31 

have a clear longitudinal dependence. Finally, we evaluated bias values of TIR V1.0 CO2 data 32 

against CONTRAIL CME CO2 data for each season for each of the latitude regions: 60–70°N 33 
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(areas 3–13), 40–60°N (areas 1, 2, 14, 35, 37, 41–43), 20–40°N (areas 15, 20, 21, 27, 28, 36, 1 

38–40), 0–20°N (areas 18, 22, 19, 25, 26, 29, 30), 0–20°S (areas 23, 31, 32), and 20–40°S 2 

(areas 33, 34). The bias values are the weighted averages of differences between TIR and 3 

CONTRAIL averaged CO2 data of the areas located in each latitude region with considering 4 

the number of TIR CO2 data in each of the areas. In the upper troposphere in 20–60°N, 5 

negative biases in TIR CO2 data against CONTRAIL CME CO2 data rangeding from 12.22 to 6 

2.47 ppm and from 1.2 to 1.6 ppm were seen in the spring and summer, respectively, when 7 

applying averaging kernels to the assumed CME CO2 profiles created based on 8 

CarbonTracker CT2013B monthly-mean profiles.as summarized in Table 2. Although the 9 

evaluation on the basis of NICAM-TM stratospheric CO2 concentrations in limited areas over 10 

several airports, considering averaging kernel functions decreased a negative bias in TIR CO2 11 

data by ~1 ppm in the spring and slightly increased a negative bias in the summer in northern 12 

middle latitudes. Thus, the following negative biases should be considered when 13 

incorporating TIR V1.0 upper tropospheric CO2 data in inverse models which usually 14 

consider averaging kernel functions: ~2.0 ppm in both spring and summer in 20–40°N, ~1.0 15 

ppm in spring and ~1.5 ppm in summer in 40–60°N. In northern low latitudes (0–20°N), the 16 

negative bias of 2.0 ppm should be taken into account in summer, as presented in Table 2. In 17 

the lower stratosphere in northern high latitudes, bias of TIR CO2 data against CONTRAIL 18 

CME CO2 data tended to diminish when considering averaging kernel functions. It is the 19 

negative biases in the northern low and middle latitudes that we should in particularmainly be 20 

concernedcare about when using TIR V1.0V1 L2 CO2 data in any scientific analysis. In the 21 

upper troposphere in the northern middle latitudes, CO2 concentrations reach the maximum 22 

from spring through early summer. The negative biases in TIR CO2 data resulted in there 23 

make the maximum of TIR CO2 concentrations being lower than thathat of the CONTRAIL 24 

CME CO2 concentrations, which ledads to an underestimate of the amplitude of the CO2 25 

seasonal variation when using TIR CO2 data without taking their negative biases into account. 26 

 27 

78 Summary 28 

In this study, we conducted a comprehensive validation of the UTLS CO2 concentrations from 29 

the GOSAT/TANSO-FTS TIR V1.0V1 L2 CO2 product. The TIR V1.0V1 L2 CO2 algorithm 30 

used both the CO2 10 μm and 15 μm absorption bands (690–-750 cm-1, 790–-795 cm-1, 930–-31 

990 cm-1, and 1040–-1090 cm-1), and simultaneously retrieved vertical profiles of CO2, water 32 



 29 

vapor, ozone, and temperature in these wavelength regions. Because the TANSO-FTS TIR 1 

V161.160 L1B radiance data used in the TIR V1.0V1 L2 CO2 retrieval had a spectral bias, we 2 

simultaneously derived surface temperature and surface emissivity in the same wavelength 3 

regions just as a corrective parameter, other than temperature and gas profiles, to correct the 4 

spectral bias. The simultaneous retrieval of surface temperature greatly increased the number 5 

of normally retrieved CO2 profiles. 6 

To validate the quality of TIR V1.0V1 upper atmospheric CO2 data, we compared them with 7 

the level flight CO2 data of the CONTRAIL CME observations along the following airline 8 

routes in 2010: Tokyo–Europe (Amsterdam and Moscow), Tokyo–Vancouver, Tokyo–9 

Honolulu, Tokyo–Bangkok, Tokyo–East Asia (Singapore and Jakarta), and Tokyo–Sydney. 10 

For the CONTRAIL data obtained during the northern high latitude flights, we made 11 

comparisons among CONTRAIL, TIR, and a priori CO2 data separately in the upper 12 

troposphere and in the lower stratosphere. The TIR upper tropospheric and lower 13 

stratospheric CO2 data that were compared were mainly from layers 9 and 10 (287–196 hPa) 14 

and from layers 10 and 11 (237–162 hPa), respectively. In this study, we evaluated the impact 15 

of considering TIR CO2 averaging kernel functions on CO2 concentrations using the CME 16 

profile data over the nine airports; the impact at around the CME level flight altitudes (~11 17 

km) was on average less than 0.5 ppm in low latitudes and less than 1 ppm in middle and high 18 

latitudes. 19 

In the Southern Hemisphere, the averages of TANSO-FTS TIR V1  upper atmospheric CO2 20 

data were within 0.1%  of the averages of CONTRAIL CO2 data with and without TIR CO2 21 

averaging kernels for all of the seasons, from the limited comparisons made during flights 22 

between Tokyo and Sydney, while . In the Northern Hemisphere, TIR CO2 data had a better 23 

agreement with CONTRAIL CO2 data than a priori CO2 data, with the agreement being on 24 

average within 0.5% in the Northern Hemisphere. TheThe northern high latitude comparisons 25 

suggest that the quality of TIR lower stratospheric CO2 data depends largely on the 26 

information content. In high latitudes, TIR V1.0 lower stratospheric CO2 data are only valid 27 

in the summer when their information content is highest. Overall, the agreements of TIR and 28 

CONTRAIL CME CO2 data were worse in spring and summer than in fall and winter in the 29 

Northern Hemisphere in the upper troposphere. TIR CO2 data had a negative bias up to 2.4 30 

ppm against CONTRAIL CO2 data with TIR CO2 averaging kernels in the northern low and 31 

middle latitudes in spring and summer. This is In the northern low and middle latitudes, the 32 



 30 

agreement between TIR and CONTRAIL CO2 data in the upper troposphere was worse in the 1 

spring and summer than that in the fall and winter, partly because of thea larger negative bias 2 

in the a priori CO2 data in the spring and summer than in the fall and winter. TheIn addition, a 3 

seasonal dependence of the spectral bias inherent to TANSO-FTS TIR L1B radiance data 4 

could cause a negative bias in retrieved CO2 concentrations, particularly in summer. TIR 5 

sensors can make more observations than SWIR sensors. When using the TIR UTLS CO2 6 

data,The combined use of TIR UTLS CO2 data and XCO2 data from the SWIR bands of 7 

TANSO-FTS can be useful for studies of CO2 surface flux inversion and atmospheric 8 

transport, provided that the seasonally and regionally dependent negative biases of the TIR 9 

V1.0V1 L2 CO2 data presented here should beare taken into account. 10 
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Table 1. Retrieval grid layers of GOSAT/TANSO-FTS TIR CO2 V1.0V1 data. 1 

Layer 
level 

Lower presure  
level (hPa) 

Upper pressure  
level (hPa) 

1 1165.91  857.70  

2 857.70  735.64  

3 735.64  630.96  

4 630.96  541.17  

5 541.17  464.16  

6 464.16  398.11  

7 398.11  341.45  

8 341.45  287.30  

9 287.30  237.14  

10 237.14  195.73  

11 195.73  161.56  

12 161.56  133.35  

13 133.35  110.07  

14 110.07  90.85  

15 90.85  74.99  

16 74.99  61.90  

17 61.90  51.09  

18 51.09  42.17  

19 42.17  34.81  

20 34.81  28.73  

21 28.73  23.71  

22 23.71  19.57  

23 19.57  16.16  

24 16.16  13.34  

25 13.34  10.00  

26 10.00  5.62  

27 5.62  1.00  

28 1.00  0.10  
2 
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Table 2. Bias values of GOSAT/TANSO-FTS TIR V1.0V1 CO2 data against CONTRAIL 1 

(AK) CME CO2 data for each season and each latitude region in the upper troposphere and 2 

lower stratosphere in the unit of ppm. Significant bias values larger than ±21.0 ppm are 3 

indicated by boldface. 4 

UT LS MAM JJA SON JF 

60–70°N -1.0 -0.8 -0.2 -0.5 -1.0 -1.1 0.3 -0.5 

40–60°N -1.7 0.3 -1.6 -1.3 -1.1 -0.9 -0.5 -0.5 

20–40°N -2.4  -2.3  -1.1  0.3  
0–20°N -1.2  -2.3  -0.5  0.5  
20°S–0 -0.1  -0.6  0.4  0.0  
40–20°S -0.2  -0.4  -0.7  -0.5  

 5 

 The evaluation of the bias values does not consider TIR CO2 averaging kernel functions. 6 

UT LS MAM JJA SON JF (DJF) 

60–70°N -0.8  0.3  0.2  -0.3  -0.6  -2.0  0.3  -0.1  

40–60°N -2.2  1.2  -1.2  -1.2  -0.7  -1.0  0.2  -0.4  

20–40°N -2.7    -1.6    -0.4    0.2    

0–20°N -0.8    -2.0    -0.2    0.8    

20°S–0 0.3    -0.2    0.5    0.4    

40–20°S 0.5    -0.1    -0.5    0.1    

7 
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Figure 1. Averaging kernel functions of GOSAT/TANSO-FTS TIR V1.0 CO2 retrieval in the 1 

28 retrieval grid layers shown in Table 1:. (a) low latitudes in summer, (b) mid-latitudes in 2 

spring, and (c) high latitudes in winter. Solid orange, yellow, and green lines indicate 3 

averaging kernel functions of each of the three layer levels 9, 10, and 11, respectively.. 4 

5 
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Figure 2. Differences between GOSAT/TANSO-FTS TIR retrieved CO2 profiles and the 3 

corresponding CONTRAIL CME ascending/descending data over Narita airport with 4 

considering TIR CO2 averaging kernel functions. Thin black lines show individual 5 

comparisons. Thick gray lines and horizontal bars show the means and 1-σ standard 6 

deviations of the comparisons. The upper right number of each panel indicates the number of 7 

all of the GOSAT/TANSO-FTS TIR CO2 profiles among the 141 pairs that were normally 8 

retrieved under each retrieval condition: (a) Ton & Eon, (b) Ton & Eoff, (c) Toff & Eon, and 9 

(d) Toff & Eoff. See the text for details of the retrieval conditions. 10 

11 
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Figure 23. Flight tracks of all of the CONTRAIL CME observations in 2010 used in this 4 

study. A number next to a box area indicates each area number. 5 

6 



 44 

1 

 2 

 3 

Figure 34. The number of GOSAT/TANSO-FTS TIR CO2 data points compared to the 4 

CONTRAIL CME level flight data for each retrieval grid layer level for each flight. The 5 

numbers of TIR CO2 data points in the troposphere (“T”) and stratosphere (“S”) are shown 6 

separately for the Tokyo–Europe (NRT_DME_AMS), Tokyo–Vancouver (NRT_YVR), and 7 

Tokyo–Honolulu (NRT_HNL) flight routes. 8 

9 
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Figure 4. Scatter plots of GOSAT/TANSO-FTS TIR and CONTRAIL (raw) CO2 differences 3 

and GOSAT/TANSO-FTS TIR and CONTRAIL (AK) CO2 differences in layers 9, 10, and 11 4 

for each season.Figure 5. (Left panel) Averaging kernel function of each of the three layer 5 

levels 9, 10, and 11, shown by solid, dashed, and dotted lines, respectively. Black and gray 6 

lines show the means of averaging kernel functions of all of the GOSAT/TANSO-FTS TIR 7 

CO2 profiles used in the comparisons made in areas 1 and 40 in summer (JJA), respectively. 8 

(Right panel) Mean profiles with 1-σ standard deviations of CONTRAIL CME 9 

ascending/descending CO2 data over Amsterdam (located in area 1) and Honolulu (located in 10 

area 40) airports in summer (JJA), shown by black and gray lines, respectively. 11 

12 
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Figure 56. Comparisons among CONTRAIL (raw), CONTRAIL (AK) CONTRAIL CME 1 

level flight, GOSAT/TANSO-FTS TIR, and a priori (NIES TM 05) CO2 data during flights 2 

between Tokyo and Sydney (NRT_SYD) in spring (MAM), shown by black, gray, red, and 3 

green lines, respectively. The means and their 1-σ standard deviations were calculated in each 4 

area during the flight for all fourthree datasets. 5 

6 
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Figure 67. Same as Figure 56, but for flights between Tokyo and Europe (NRT_DME_AMS) 4 

in winter (JF). (a) All of the data, (b) only data in the troposphere, and (c) only data in the 5 

stratosphere. See the text for the classification of tropospheric and stratospheric data. 6 

7 



 50 

1 



 51 

 1 

 2 



 52 

Figure 78. Differences between GOSAT/TANSO-FTS TIR and CONTRAIL (raw) averaged 1 

CO2 data (TIR ave. minus CONTRAIL (raw) ave.), TIR and CONTRAIL (AK) averaged CO2 2 

data (TIR ave. minus CONTRAIL (AK) ave.), and a priori (NIES TM 05) and CONTRAIL 3 

(raw) averaged CO2 data (a priori ave. minus CONTRAIL (raw) ave.) for each season for 4 

each latitude band (40°S–20°S, 20°S–0°, 0°–20°N, 20°N–40°N, 40°N–60°N, 60°N–70°N), 5 

shown by black, gray, and  green lines, respectively. Left and right panels show the 6 

differences in the upper troposphere and lower stratosphere, respectively. The 1-σ standard 7 

deviations of the latitudinal averages of TANSO-FTS TIR CO2 data are shown by vertical 8 

bars.Differences between GOSAT/TANSO-FTS TIR and CONTRAIL CME averaged CO2 9 

data (TIR ave. minus CONTRAIL ave.) and a priori (NIES TM 05) and CONTRAIL CME 10 

averaged CO2 data (a priori ave. minus CONTRAIL ave.) for each season and each area of all 11 

of the six flight routes, shown by thick and dashed lines, respectively: (a) Tokyo–Europe 12 

(NRT_DME_AMS), (b) Tokyo–Vancouver (NRT_YVR), (c) Tokyo–Honolulu (NRT_HNL), 13 

(d) Tokyo–Bangkok (NRT_BKK), (e) Tokyo–East Asia (NRT_SIN_CGK), and (f) Tokyo–14 

Sydney (NRT_SYD). The means of the differences were calculated for each of the areas in 15 

spring (MAM), summer (JJA), fall (SON), and winter (JF/DJF), as shown by the pink, red, 16 

light blue, and blue lines, respectively. The 1-σ standard deviations of the averages of 17 

TANSO-FTS TIR CO2 data are shown by vertical bars. For the airline routes of Tokyo–18 

Europe, Tokyo–Vancouver, and Tokyo–Honolulu, the results only for the tropospheric data 19 

(a1, b1, and c1) and only for the stratospheric data (a2, b2, and c2) are shown separately. Data 20 

in December 2010 were used only in the comparisons for the flight between Tokyo and 21 

Vancouver. 22 

23 
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Figure 89. Partial degree of freedom (DF) for GOSAT/TANSO-FTS TIR CO2 data in the 3 

upper troposphere (a) and the lower stratosphere (b) for each area of the flight between Tokyo 4 

and Europe (NRT_DME_AMS). The means and their 1-σ standard deviations of the partial 5 

DF data were calculated in spring (MAM), summer (JJA), fall (SON), and winter (JF), as 6 

shown by the pink, red, light blue, and blue lines, respectively. 7 

 8 

9 
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Figure 10. Correlations between the mean temperatures of the internal blackbody (BBT) on 3 

board the GOSAT/TANSO-FTS instrument and the differences between GOSAT/TANSO-4 

FTS TIR and CONTRAIL CME averaged CO2 data (TIR ave. minus CONTRAIL ave.) for 5 

each area of all flights for each of the four seasons. All of the data are categorized according 6 

to the differences between corresponding a priori (NIES TM 05) and CONTRAIL CME 7 

averaged CO2 data (a priori ave. minus CONTRAIL ave.): less than 1 ppm (light blue), 1–2 8 

ppm (green), 2–3 ppm (orange), 3–4 ppm (pink), and 4–5 ppm (red). Regression lines of the 9 

“1–2 ppm” dataset, the “2-3 ppm” dataset and all of the datasets are shown by green, orange, 10 

and black lines, respectively. The correlation coefficients of the green, orange, and black lines 11 

are -0.49, -0.56, and -0.41, respectively. 12 
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Abstract 13 

Thermal and Near Infrared Sensor for Carbon Observation (TANSO)–Fourier Transform 14 

Spectrometer (FTS) on board the Greenhouse Gases Observing Satellite (GOSAT) has been 15 

observing carbon dioxide (CO2) concentrations in several atmospheric layers in the thermal 16 

infrared (TIR) band since its launch. This study compared TANSO-FTS TIR V1 CO2 data and 17 

CO2 data obtained in the Comprehensive Observation Network for TRace gases by AIrLiner 18 

(CONTRAIL) project in the upper troposphere and lower stratosphere (UTLS), where the TIR 19 

band of TANSO-FTS is most sensitive to CO2 concentrations, to validate the quality of the 20 

TIR V1 UTLS CO2 data from 287 to 162 hPa. We first evaluated the impact of considering 21 

TIR CO2 averaging kernel functions on CO2 concentrations using CO2 profile data obtained 22 

by the CONTRAIL Continuous CO2 Measuring Equipment (CME), and found that the impact 23 

at around the CME level flight altitudes (~11 km) was on average less than 0.5 ppm in low 24 

latitudes and less than 1 ppm in middle and high latitudes. From a comparison made during 25 

flights between Tokyo and Sydney, the averages of the TIR upper atmospheric CO2 data were 26 

within 0.1% of the averages of the CONTRAIL CME CO2 data with and without TIR CO2 27 

averaging kernels for all seasons in the Southern Hemisphere. The results of comparisons for 28 

all of the eight airline routes showed that the agreements of TIR and CME CO2 data were 29 



 2 

worse in spring and summer than in fall and winter in the Northern Hemisphere in the upper 1 

troposphere. While the differences between TIR and CME CO2 data were on average within 1 2 

ppm in fall and winter, TIR CO2 data had a negative bias up to 2.4 ppm against CME CO2 3 

data with TIR CO2 averaging kernels in the northern low and middle latitudes in spring and 4 

summer. The negative bias in the northern middle latitudes resulted in the maximum of TIR 5 

CO2 concentrations being lower than that of CME CO2 concentrations, which led to an 6 

underestimate of the amplitude of CO2 seasonal variation. 7 

 8 

1 Introduction 9 

Carbon dioxide (CO2) in the atmosphere is a well-known strong greenhouse gas (IPCC, 2013, 10 

and references therein), with concentrations that have been observed both in situ and by 11 

satellite sensors. Its long-term observation began in Mauna Loa, Hawaii, and the South Pole 12 

in the late 1950s (Keeling et al., 1976a, 1976b, 1996). Since then, comprehensive CO2 13 

observations in the atmosphere have been conducted worldwide in several observatories and 14 

tall towers (Bakwin et al., 1998), by aircraft flask sampling (e.g., Crevoisier et al., 2010), and 15 

via the AirCore sampling system (Karion et al., 2010) in the framework of researches by the 16 

National Oceanic and Atmospheric Administration (NOAA). Atmospheric CO2 17 

concentrations have gradually increased at a globally averaged annual rate of 1.7±0.5 ppm 18 

from 1998 to 2011, although its growth rate has relatively large interannual variation (IPCC, 19 

2013). Upper atmospheric CO2 observations have been made in many areas by several 20 

projects using commercial airliners, such as the Comprehensive Observation Network for 21 

TRace gases by AIrLiner (CONTRAIL) project (Machida et al., 2008) and the Civil Aircraft 22 

for the Regular Investigation of the atmosphere Based on an Instrument Container 23 

(CARIBIC) project (Brenninkmeijer et a., 2007). Continuous long-term measurements of CO2 24 

made by several airplanes of Japan Airlines (JAL) in the CONTRAIL project have revealed 25 

details of its seasonal variation and interhemispheric transport in the upper atmosphere (Sawa 26 

et al., 2012) and interannual and long-term trends of its latitudinal gradients (Matsueda et al., 27 

2015). 28 

Atmospheric CO2 observations by satellite sensors are categorized into two types: those 29 

utilizing CO2 absorption bands in the shortwave infrared (SWIR) regions at around 1.6 and 30 

2.0 μm, and those in the thermal infrared (TIR) regions at around 4.6, 10, and 15 μm. The 31 

Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) 32 
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on the Environmental Satellite (ENVISAT) first observed CO2 column-averaged dry-air mole 1 

fractions (XCO2) from spectra at 1.57 μm (Buchwitz et al., 2005; Barkley et al., 2006). The 2 

Thermal and Near Infrared Sensor for Carbon Observation (TANSO)–Fourier Transform 3 

Spectrometer (FTS) on board the Greenhouse Gases Observing Satellite (GOSAT), which 4 

was launched in 2009 (Yokota et al., 2009), has observed XCO2 with high precision by 5 

utilizing the 1.6 and/or 2.0 μm CO2 absorption bands (Yoshida et al., 2011, 2013; O’Dell et 6 

al., 2012; Butz et al., 2011; Cogan et al., 2012). The Orbiting Carbon Observatory 2 (OCO-2) 7 

was successfully launched in 2014, and started regular observations of XCO2 with high spatial 8 

resolution. Satellite CO2 observations at TIR absorption bands have a longer history 9 

beginning with the High-Resolution Infrared Sounder (HIRS) (Chédin et al., 2002, 2003, 10 

2005). The Atmospheric Infrared Sounder (AIRS) has achieved more accurate observations of 11 

middle and upper tropospheric CO2 concentrations (Crevoisier et al., 2004; Chahine et al., 12 

2005; Maddy et al., 2008; Strow and Hannon, 2008). The Tropospheric Emission 13 

Spectrometer (TES) has observed CO2 concentrations in several vertical layers with high 14 

accuracy by taking advantage of its high wavelength resolution (Kulawik et al., 2010, 2013). 15 

The Infrared Atmospheric Sounding Interferometer (IASI) has observed upper atmospheric 16 

CO2 amounts from its TIR spectra (Crevoisier et al., 2009). TANSO-FTS also has a TIR band 17 

in addition to its three SWIR bands, and obtains vertical information of CO2 concentrations in 18 

addition to XCO2 in the same field of view (Saitoh et al., 2009). 19 

Rayner and O’Brien (2001) and Pak and Prather (2001) showed the utility of global CO2 data 20 

obtained by satellite sensors for estimating its source and sink strength, and many studies of 21 

CO2 inversion have been conducted using a huge amount of satellite data since the 2000s. 22 

Chevallier et al. (2005) first used satellite CO2 data, observed with the Operational Vertical 23 

Sounder (TOVS), to estimate CO2 surface fluxes. They reported that a regional bias in 24 

satellite CO2 data hampers the outcomes. Nassar et al. (2011) demonstrated that the wide 25 

spatial coverage of satellite CO2 data is beneficial to CO2 surface flux inversion through the 26 

combined use of TES and surface flask CO2 data, particularly in regions where surface 27 

measurements are sparse. In addition to CO2 surface inversion results using TIR observations, 28 

global XCO2 data observed with the SWIR bands of TANSO-FTS have been actively used for 29 

estimating CO2 source and sink strength (Maksyutov et al., 2013; Saeki et al., 2013; 30 

Chevallier et al., 2014; Basu et al., 2013, 2014; Takagi et al., 2014). One of the important 31 

things to consider when incorporating satellite data in CO2 inversion is the accuracy of the 32 

data, as suggested by Basu et al. (2013). Uncertainties in satellite CO2 data should be assessed 33 
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seasonally and regionally to determine the seasonal and regional characteristics of the satellite 1 

CO2 bias. 2 

The importance of upper atmospheric CO2 data in the inversion analysis of CO2 surface fluxes 3 

was discussed in Niwa et al. (2012). They used CONTRAIL CO2 data in conjunction with 4 

surface CO2 data to estimate surface flux, and demonstrated that adding middle and upper 5 

tropospheric data observed by the aircraft could greatly reduce the posteriori flux errors, 6 

particularly in tropical Asian regions. Middle and upper tropospheric and lower stratospheric 7 

CO2 concentrations and column amounts of CO2 can be simultaneously observed in the same 8 

field of view with TANSO-FTS on board GOSAT. Provided that the quality of upper 9 

atmospheric CO2 data simultaneously obtained with TANSO-FTS is proven to be comparable 10 

to that of TANSO-FTS XCO2 data (Yoshida et al., 2013; Inoue et al., 2013), the combined 11 

use of upper atmospheric CO2 and XCO2 data observed with TANSO-FTS could be a useful 12 

tool for estimating CO2 surface flux. 13 

GOSAT, which is the first satellite to be dedicated to greenhouse gas monitoring, was 14 

launched on January 23, 2009. As described above, TANSO-FTS on board GOSAT has been 15 

observing CO2 concentrations in several vertical layers in the TIR band. In this study, we 16 

focused on CO2 concentrations in the upper troposphere and lower stratosphere (UTLS), 17 

where the TIR band of TANSO-FTS is most sensitive. We validated these data by comparison 18 

with upper atmospheric CO2 data obtained in a wide spatial coverage in the CONTRAIL 19 

project. Sections 2 and 3 explain the GOSAT and CONTRAIL measurements, respectively. 20 

Section 4 details the retrieval algorithm used in the latest version 1 (V1) CO2 level 2 (L2) 21 

product of the TIR band of TANSO-FTS. Section 5 describes the methods of comparing 22 

TANSO-FTS TIR V1 L2 and CONTRAIL CO2 data. Sections 6 and 7 show and discuss the 23 

results of the comparisons between TIR and CONTRAIL CO2 data. Section 8 summarizes this 24 

study. 25 

 26 

2 GOSAT observations 27 

GOSAT is a joint satellite project of the National Institute for Environmental Studies (NIES), 28 

Ministry of the Environment (MOE), and Japan Aerospace Exploration Agency (JAXA) for 29 

the purpose of making global observations of greenhouse gases such as CO2 and CH4 30 

(Hamazaki et al., 2005; Yokota et al., 2009). It was launched on January 23, 2009, from the 31 

Tanegashima Space Center, and has continued its observations for more than six years. 32 
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GOSAT is equipped with the TANSO-FTS for greenhouse gas monitoring and the TANSO-1 

Cloud and Aerosol Imager (CAI) to detect clouds and aerosols in the TANSO-FTS field of 2 

view (Kuze et al., 2009). TANSO-FTS consists of three bands in the SWIR region and one 3 

band in the TIR region. Column amounts of greenhouse gases are observed in the SWIR 4 

bands and vertical information of gas concentrations are obtained in the TIR band (Yoshida et 5 

al., 2011, 2013; Saitoh et al., 2009, 2012; Ohyama et al., 2012, 2013). 6 

Kuze et al. (2012) provided a detailed description of the methods used for the processing and 7 

calibration of level 1B (L1B) spectral data from TANSO-FTS. They explained the algorithm 8 

for the version 150.151 (V150.151) L1B spectral data. The TIR V1 L2 CO2 product we 9 

focused on in this study was created from a later version, V161.160, of L1B spectral data. The 10 

following modifications were made to the algorithm from V150.151 to V161.160: improving 11 

the TIR radiometric calibration through the improvement of calibration parameters, turning 12 

off the sampling interval non-uniformity correction, modifying the spike noise criteria of the 13 

quality flag, and reevaluating the misalignment between the GOSAT satellite and TANSO-14 

FTS sensor. Kataoka et al. (2014) reported that the biases of TANSO-FTS TIR V130.130 15 

L1B radiance spectra based on comparisons with the Scanning High-resolution Interferometer 16 

Sounder (S-HIS) spectra for warm scenes were 0.5 K at 800–900 cm-1 and 700–750 cm-1, 0.1 17 

K at 980–1080 cm-1, and more than 2 K at 650–700 cm-1. Although the magnitude of the 18 

spectral bias evaluated on the basis of V130.130 L1B data would change in V161.160 L1B 19 

data, the issue of L1B spectral bias still remains. The spectral bias inherent in TIR L1B 20 

spectra would be mainly because of uncertainty of polarization correction. Another possible 21 

cause was discussed in Imasu et al. (2010). When retrieving CO2 concentrations from the TIR 22 

band of TANSO-FTS, the spectral bias that is predominant in CO2 absorption bands should be 23 

considered (Ohyama et al., 2013). 24 

 25 

3 CONTRAIL Continuous Measurement Equipment (CME) observations 26 

We used CO2 data obtained in the CONTRAIL project to validate the quality of TANSO-FTS 27 

TIR V1 L2 CO2 data. CONTRAIL is a project to observe atmospheric trace gases such as 28 

CO2 and CH4 using instruments installed on commercial aircraft operated by JAL. 29 

Observations of trace gases in this project began in 2005. Two types of measurement 30 

instruments, the Automatic Air Sampling Equipment (ASE) and the Continuous CO2 31 
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Measuring Equipment (CME), have been installed on several JAL aircraft to measure trace 1 

gases over a wide area (Machida et al., 2008). 2 

This study used CO2 data obtained with CME on several airline routes from Narita Airport, 3 

Japan. CO2 observations with CME use a LI-COR LI-840 instrument that utilizes a 4 

nondispersive infrared absorption (NDIR) method (Machida et al., 2008). In the observations, 5 

two different standard gases, with CO2 concentration of 340 ppm and 390 ppm based on 6 

NIES09 scale, are regularly introduced into the NDIR for calibration. The accuracy of CME 7 

CO2 measurements is 0.2 ppm. See Machida et al. (2008), Matsueda et al. (2008), and 8 

Machida et al. (2011) for details of the CME CO2 observations and their accuracy and 9 

precision. 10 

 11 

4 Retrieval algorithm of TANSO-FTS TIR V1 CO2 data 12 

4.1 Basic retrieval settings 13 

Saitoh et al. (2009) provided an algorithm for retrieving CO2 concentrations from the TIR 14 

band of TANSO-FTS. The first version, V00.01, of the L2 CO2 product of the TIR band of 15 

TANSO-FTS was basically processed by the algorithm described in Saitoh et al. (2009). The 16 

V1 L2 CO2 product that we focused on in this study also adopted a non-linear maximum a 17 

posteriori (MAP) method with linear mapping, as was the case for the V00.01 product. We 18 

utilized the following expressions in TIR CO2 retrieval: 19 
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where xa is an a priori vector, Sa is a covariance matrix of the a priori vector, Sε is a 21 

covariance matrix of measurement noise, Ki is a CO2 Jacobian matrix calculated using the ith 22 

retrieval vector ix̂ on full grids, )ˆ( ixF  is a forward spectrum vector based on ix̂ , y is a 23 

measurement spectrum vector, and 1+iẑ  is the i+1th retrieval vector defined on retrieval grids. 24 

W is a matrix that interpolates from retrieval grids onto full grids. W* is the generalized 25 

inverse matrix of W. 26 

The full grids are vertical layer grids for radiative transfer calculation, and the retrieval grids 27 

are defined as a subset of the full grids. In the V1 L2 CO2 retrieval algorithm, linear mapping 28 
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between retrieval grids and full grids was also applied, but the number of full grid levels was 1 

78 instead of 110 in the V00.01 algorithm. The determination of retrieval grids in the V1 2 

algorithm basically followed the method of the V00.01 algorithm. It was based on the areas of 3 

a CO2 averaging kernel matrix in the tropics, but the retrieval grid levels were fixed for all of 4 

the retrieval processing, as presented in Table 1. Averaging kernel matrix A is defined 5 

(Rodgers, 2000) as 6 

GKWA = .                                                                            (2) 7 

Figure 1 shows typical averaging kernel functions of TIR V1 L2 CO2 retrieval. The degrees of 8 

freedom (DF) in these cases (trace of the matrix A) were  (a) 2.22, (b) 1.81, and (c) 1.36, 9 

respectively. The seasonally averaged DF values of TIR V1 CO2 data ranged from 1.12 to 10 

2.35. In the low and middle latitudes between 35°N and 35°S, the CO2 DF values were around 11 

2.0 or more; this means that observations by the TIR band of TANSO-FTS can provide 12 

information on CO2 concentrations in more than two vertical layers, one of which we focused 13 

on in this study. 14 

A priori and initial values for CO2 concentrations were taken from the outputs of the NIES 15 

transport model (NIES-TM05) (Saeki et al., 2013). A priori and initial values for temperature 16 

and water vapor were obtained from Japan Meteorological Agency (JMA) Grid Point Value 17 

(GPV) data. Basically, the retrieval processing of TANSO-FTS was only conducted under 18 

clear-sky conditions, which was judged based on a cloud flag from TANSO-CAI in the 19 

daytime (Ishida and Nakajima, 2009; Ishida et al., 2011) and on a TANSO-FTS TIR spectrum 20 

in the nighttime. 21 

4.2 Improvements in the TIR V1 CO2 algorithm 22 

The following conditions are the improvements made in the TANSO-FTS TIR V1 L2 CO2 23 

algorithm from the V00.01 algorithm. The V1 algorithm used the CO2 10 μm absorption band 24 

in addition to the CO2 absorption band at around 15 μm band; the wavelength regions of 690–25 

750 cm-1, 790–795 cm-1, 930–990 cm-1, and 1040–1090 cm-1 were used in the CO2 retrieval. 26 

We did not apply any channel selection. In these wavelength regions, temperature, water 27 

vapor, and ozone concentrations were retrieved simultaneously with CO2 concentration. 28 

Moreover, surface temperature and surface emissivity were simultaneously derived as a 29 
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correction parameter of the spectral bias inherent in TANSO-FTS TIR V161.160 L1B spectra 1 

at the above-mentioned CO2 absorption bands. We assumed that the spectral bias could be 2 

divided into two components: a wavelength-dependent bias whose amount varied depending 3 

on wavelength and a wavelength-independent bias whose amount was uniform in a certain 4 

wavelength region. We tried to correct such a wavelength-independent component of the 5 

spectral bias by adjusting the value of surface temperature. Similarly, a wavelength-dependent 6 

component of the spectral bias was corrected by adjusting the value of surface emissivity in 7 

each wavelength channel. Therefore the matrices of K and Sa of expression (1) are as follows: 8 

)( sE_5sE_4sE_3sE_2sE_1sT_5sT_4sT_3sT_2sT_1TO3H2OCO2 k k k k k k k k k k K K K KK = ,  (3) 9 

sE_5

sE_4

sE_3

sE_2

sE_1

sT_5

sT_4

sT_3

sT_2

sT_1

S                                                                              
S                                                                        

S                                                                  
S                                                            

S                                                      
S                                                

S                                        
S                                    

                       S                              
S                        

                                         
              

       
    

0

0

S 
S

S
S

S

T

O3

H2O

CO2

a =

,             (4) 10 

where KCO2, KH2O, KO3, and KT are Jacobian matrices of CO2, water vapor, ozone, and 11 

temperature on full grids, respectively, and SCO2, SH2O, SO3, and ST are a priori covariance 12 

matrices of CO2, water vapor, ozone, and temperature on full grids, respectively. The vectors 13 

ksT_1, ksT_2, ksT_3, ksT_4, and ksT_5 are the Jacobian vectors of surface temperature in the 14 

wavelength regions of 690–715 cm-1, 715–750 cm-1, 790–795 cm-1, 930–990 cm-1, and 1040–15 

1090 cm-1, respectively. The vectors ksE_1, ksE_2, ksE_3, ksE_4, and ksE_5 are the Jacobian 16 

vectors of surface emissivity in each of the five wavelength regions, respectively. The 17 

elements of the Jacobian vectors of surface parameters that were defined for each of the five 18 

wavelength regions were set to be zero in the other wavelength regions. The values SsT_1, 19 
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SsT_2, SsT_3, SsT_4, and SsT_5 and SsE_1, SsE_2, SsE_3, SsE_4, and SsE_5 are a priori variances of 1 

surface temperature and surface emissivity in each of the five wavelength regions, 2 

respectively. Simultaneous retrieval of the surface parameters in the V1 algorithm was 3 

conducted just for the purpose of correcting the TIR V161.160 L1B spectral bias; it had no 4 

physical meaning. We estimated the surface parameters separately in each of the five 5 

wavelength regions to consider differences in the amount of spectral bias in each wavelength 6 

region. The matrices Sa for CO2, temperature, water vapor, and ozone were diagonal matrices 7 

with vertically fixed diagonal elements with a standard deviation of 2.5%, 3 K, 20%, and 30%, 8 

respectively. Here, a priori and initial values for ozone were obtained from the climatological 9 

data for each latitude bin for each month given by MacPeters et al. (2007). We assumed rather 10 

large values as a priori variances of the surface parameters (a standard deviation of 10 K for 11 

surface temperature), which could allow more flexibility in the L1B spectral bias correction 12 

by the surface parameters. The a priori and initial values for surface emissivity were 13 

calculated by linear regression analysis using the Advanced Space-borne Thermal Emission 14 

Reflection Radiometer (ASTER) Spectral Library (Baldridge et al., 2009) using land-cover 15 

classification, vegetation, and wind speed information. The a priori and initial values for 16 

surface temperature were estimated using radiance data in several channels around 900 cm-1 17 

of the TIR V161.160 L1B spectra. 18 

In the TIR V1 L2 algorithm, we estimated surface temperature and surface emissivity to 19 

correct the spectral bias inherent in the TANSO-FTS TIR L1B spectra (Kataoka et al., 2014). 20 

The existence of a relatively large spectral bias around the CO2 15 μm absorption band in 21 

TANSO-FTS TIR L1B spectra (Kataoka et al., 2014) resulted in a decrease in the number of 22 

normally retrieved CO2 profiles. This is probably because the TIR L1B spectral bias in the 23 

CO2 15 µm absorption band was sometimes too large for the L2 retrieval calculation to 24 

converse in a limited iteration. The correction of the TIR L1B spectral bias through the 25 

simultaneous retrieval of the surface parameters did not affect retrieved CO2 concentrations in 26 

the UTLS regions, which was the focus of this study, but it altered the number of normally 27 

retrieved CO2 profiles. The correction of the TIR L1B spectral bias through the simultaneous 28 

retrieval of surface temperature increased the number of normally retrieved CO2 profiles. This 29 

implies that a wavelength-independent component of the spectral bias in CO2 absorption 30 

bands could be reduced by adjusting the value of surface temperature at the bands. In contrast, 31 

the spectral bias correction through the simultaneous retrieval of surface emissivity did not 32 

increase the number of normally retrieved CO2 profiles. If the TIR L1B spectral bias has a 33 
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wavelength dependence, surface emissivity could be effective for correcting such a 1 

wavelength-dependent bias. A more effective method of L1B spectral bias correction based 2 

on surface emissivity should be considered in the next version of the TIR L2 CO2 retrieval 3 

algorithm, if a future version of the TIR L1B spectral data still has a bias. 4 

 5 

5 Comparison methods 6 

5.1 Area comparisons 7 

Here, we used the level flight CO2 data of CONTRAIL CME observations in 2010 to validate 8 

the quality of UTLS CO2 data from the TANSO-FTS TIR V1 L2 CO2 product. The level 9 

flight data obtained from the following eight airline routes of the CONTRAIL CME 10 

observations were used in this study: Tokyo–Amsterdam (NRT–AMS) and Tokyo–Moscow 11 

(NRT–DME), Tokyo–Vancouver (NRT–VYR), Tokyo–Honolulu (NRT–HNL), Tokyo–12 

Bangkok (NRT–BKK), Tokyo–Singapore (NRT–SIN) and Tokyo–Jakarta (NRT–CGK), and 13 

Tokyo–Sydney (NRT–SYD). We merged the level flight data of Tokyo–Amsterdam and 14 

Tokyo–Moscow into “Tokyo–Europe”, and the data of Tokyo–Singapore and Tokyo–Jakarta 15 

into “Tokyo–East Asia”. Figure 2 shows the flight tracks of all of the CONTRAIL CME 16 

observations in 2010 used in this study. As shown in the figure, we divided the CONTRAIL 17 

CME level flight data into 40 areas following Niwa et al. (2012), and compared them with 18 

TANSO-FTS TIR CO2 data in each area in each season. The amount of level flight data 19 

varied depending on the area and season. The largest amount of data was obtained in area 15 20 

over Narita Airport, where 4,694–9,306 data points were obtained. A relatively small amount 21 

of level flight data, 79–222 data points, was obtained in area 1 over Amsterdam. In all 40 22 

areas, we collected sufficient level flight data to undertake comparison analysis based on the 23 

average values, except for seasons and regions with no flights. 24 

5.2 Comparisons of CME profiles with and without averaging kernels 25 

In comparisons of TIR V1 L2 CO2 data with the CONTRAIL CME level flight data, it is 26 

difficult to smooth the CME data by applying TIR CO2 averaging kernels, because CO2 27 

concentrations below and above the CME flight levels were not observed. Here, we evaluated 28 

the impact of considering averaging kernel functions on CO2 concentrations using the CME 29 

profile data. We regarded the CME data obtained during the ascent and descent flights over 30 
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the nine airports as part of CO2 vertical profiles, and investigated differences between TIR 1 

and CME CO2 data with and without applying averaging kernel functions in the altitude 2 

regions around the CME level flight observations. We assumed the CME 3 

ascending/descending CO2 concentration at the uppermost altitude level to be constant up to 4 

the tropopause height, following the method proposed by Araki et al. (2010). We used 5 

stratospheric CO2 data taken from the Nonhydrostatic Icosahedral Atmospheric Model 6 

(NICAM)–Transport Model (TM) (Niwa et al., 2011; 2012) to create whole CO2 vertical 7 

profiles over the airports. The NICAM-TM CO2 data used here introduced CONTRAIL CO2 8 

data to the inverse model in addition to surface CO2 data, and therefore could simulate upper 9 

atmospheric CO2 concentrations well (Niwa et al., 2012). We determined the stratospheric 10 

CO2 profile by assuming the CO2 concentration gradients, calculated on the basis of the 11 

NICAM-TM CO2 data above the tropopause height. 12 

To compare these CME CO2 profiles with TIR CO2 data, we calculated a weighted average of 13 

all the CME CO2 data included in each of the 28 retrieval grid layers with respect to altitude, 14 

and defined the CO2 data in the 28 layers as “CONTRAIL (raw)” data. Then, we selected TIR 15 

CO2 data that coincided with each of the CONTRAIL (raw) profiles. The criteria for the 16 

coincident pairs were a 300 km distance from Narita airport, and a 3-day difference of each 17 

other observation. We applied TIR CO2 averaging kernel functions to the corresponding 18 

CONTRAIL (raw) profile, as follows (Rodgers and Connor, 2003): 19 

( )priori arawCONTRAILpriori aAKCONTRAIL xxAxx −+= )()(   .              (5) 20 

Here, xCONTRAIL (raw) and xa priori are CONTRAIL (raw) and a priori CO2 profiles. We defined 21 

the CONTRAIL (raw) data with TIR CO2 averaging kernel functions as “CONTRAIL (AK)” 22 

data. 23 

5.3 Level flight comparisons 24 

In this study, we made comparisons between TIR and CONTRAIL CME level flight CO2 data 25 

in two ways. The first was a direct comparison with original CME CO2 data, i.e., CONTRAIL 26 

(raw) data. The second was a comparison with CONTRAIL (AK) data in the altitude regions 27 

around the CME level flight observations that were based on “assumed CO2 profiles” created 28 

at each of the measurement locations of all the CME level flight data. In the first comparison 29 

with CONTRAIL (raw) data, the CME level flight data in each of the 40 areas were averaged 30 

for each season (MAM, JJA, SON, and JF/DJF). The average altitude of all of the CME level 31 
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flight data used here was 11.245 km. The airline routes of Tokyo–Europe, Tokyo–Vancouver, 1 

and Tokyo–Honolulu contained both tropospheric and stratospheric data in the areas along 2 

their routes; therefore, we calculated the average and standard deviation values separately. 3 

Here, we differentiated between the tropospheric and stratospheric level flight data on the 4 

basis of temperature lapse rates from the JMA GPV data that were interpolated to the 5 

CONTRAIL CME measurement locations. The average altitudes of the tropospheric and 6 

stratospheric level flight data from the airline route between Tokyo and Europe were 10.84 7 

km and 11.18 km, respectively. 8 

In the comparison with CONTRAIL (raw) data, we selected TANSO-FTS TIR V1 L2 CO2 9 

data that were in the altitude range within ±1 km of the average altitude of the CME level 10 

flight data for each area for each season, and calculated their averages and standard deviations. 11 

Similarly, we calculated the averages and standard deviations of the corresponding a priori 12 

CO2 data for each area for each season. For the airline routes of Tokyo–Europe, Tokyo–13 

Vancouver, and Tokyo–Honolulu, the averages and standard deviations of TIR V1 CO2 data 14 

and the corresponding a priori CO2 data were calculated separately for the tropospheric and 15 

stratospheric data. In this calculation, we first selected TIR V1 CO2 data that were collected in 16 

a range within ±1 km of the average altitudes of the CONTRAIL tropospheric and 17 

stratospheric CO2 data for each area. Then, we classified each of the selected TIR CO2 data 18 

points into tropospheric and stratospheric data on the basis of the temperature lapse rates from 19 

the JMA GPV data that were interpolated to the TANSO-FTS measurement locations, and 20 

calculated the seasonal averages and standard deviations for the reselected tropospheric and 21 

stratospheric TIR CO2 data. This procedure was required for two reasons: (1) tropopause 22 

height at each TANSO-FTS measurement location should differ on a daily basis, and (2) 23 

because TIR CO2 data were selected within the range of 2 km, some tropospheric TIR CO2 24 

data were selected on the basis of the CONTRAIL stratospheric level flight data, and vice 25 

versa. Figure 3 shows the number of TANSO-FTS TIR CO2 data points that were finally 26 

selected in each retrieval layer for each of the airline routes. The TIR CO2 data used in the 27 

comparative analysis were mainly from layers 9 and 10 (from 287 to 196 hPa) for the 28 

tropospheric comparison and from layers 10 and 11 (from 237 to 162 hPa) for the 29 

stratospheric comparison. 30 

In the second comparison, we assumed a CO2 vertical profile on the basis of CONTRAIL 31 

(raw) data at each of the CONTRAIL CME level flight locations, and applied TIR CO2 32 
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averaging kernel functions to the assumed profiles. For this purpose, realistic CO2 vertical 1 

profiles were required along the eight airline routes. In this study, we created a CO2 profile at 2 

each CME level flight measurement location from CarbonTracker CT2013B monthly-mean 3 

CO2 data (Peters et al., 2007). The CarbonTracker CT2013B CO2 data are available to the 4 

public, and therefore readers can refer to the dataset that we used as a CO2 climatological 5 

dataset. The method for creating a CO2 vertical profile from the CONTRAIL (raw) and 6 

CarbonTracker CT2013B data is as follows. We first averaged all of the CarbonTracker 7 

CT2013B monthly-mean data included in each of the 40 areas to create area-averaged 8 

CarbonTracker CT2013B profiles. Then, we shifted the area-averaged CarbonTracker 9 

CT2013B profile so that its concentration fit to each of the CONTRAIL (raw) data at CME 10 

level flight altitude. Finally, we applied area-averaged TIR CO2 averaging kernel functions to 11 

each of the shifted area-averaged CO2 profiles, and created profiles of CONTRAIL (AK) at 12 

all the CME level flight measurement locations. 13 

We compared the CONTRAIL (AK) data with TIR CO2 data at the altitude regions around 14 

the CME level flight observations for each area in each season. We extracted CONTRAIL 15 

(AK) data that corresponded to the TIR retrieval layers where TIR CO2 data were compared 16 

to CONTRAIL (raw) data, and averaged them for each area for each season. For the airline 17 

routes of Tokyo–Europe, Tokyo–Vancouver, and Tokyo–Honolulu, we separately averaged 18 

CONTRAIL (AK) data created from tropospheric and stratospheric CONTRAIL (raw) data, 19 

and defined the averages as tropospheric and stratospheric CONTRAIL (AK) data, 20 

respectively. As shown in Figure 3, the CONTRAIL (AK) data used for the comparison 21 

during flights between Tokyo and Sydney consisted of CO2 concentrations in layers 9 and 10 22 

of the CONTRAIL (AK) profiles. For the flights between Tokyo and Europe, the CONTRAIL 23 

(AK) data used for the tropospheric and stratospheric comparisons were based on CO2 24 

concentrations in layers 9 and 10 and in layers 10 and 11 of CONTRAIL (AK) profiles, 25 

respectively. 26 

 27 

6 Comparison results 28 

6.1 Impacts of averaging kernels on CME profiles 29 

Figure 4 shows comparisons of the differences between TANSO-FTS TIR and CONTRAIL 30 

(raw) CO2 data, and the differences between TIR and CONTRAIL (AK) CO2 data in low 31 
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(BKK), middle (NRT and SYD), and high (DME) latitudes in layers 9, 10, and 11. In low 1 

latitudes, the differences between CONTRAIL (raw) and CONTRAIL (AK) were mostly less 2 

than 0.5 ppm in all seasons. This is because the tropopause heights there were much higher 3 

than the altitude levels of CONTRAIL CME level flight measurements, and CO2 4 

concentrations did not change much in the altitude regions where we compared TIR and 5 

CONTRAIL CME data. The same was true for other airports in low latitudes. While the 6 

differences between CONTRAIL (raw) and CONTRAIL (AK) were larger in middle and high 7 

latitudes than in low latitudes, they were in most cases less than 1 ppm in all seasons. In 8 

conclusion, the impact of applying the TIR CO2 averaging kernels on CONTRAIL CME CO2 9 

data at around the CME level flight altitudes (~11 km) was on average less than 0.5 ppm in 10 

low latitudes and less than 1 ppm in middle and high latitudes. 11 

6.2 Comparisons during level flight 12 

The airline route between Tokyo and Sydney covered a wide latitude range from the northern 13 

mid-latitudes (35°N) to southern mid-latitudes (34°S). Figure 5 shows comparisons among 14 

CONTRAIL (raw), CONTRAIL (AK), TANSO-FTS TIR, and a priori CO2 data during 15 

flights between Tokyo and Sydney in spring. In this case, we averaged CO2 data mainly from 16 

layers 9 and 10 of the TIR retrieval layer levels. The 1-σ values of the averages show the 17 

variability of CO2 concentrations in these UTLS layers. The average of the TIR CO2 data 18 

agreed better with the averages of the CONTRAIL (raw) and (AK) CO2 data than the a priori 19 

CO2 data in all latitudes. The differences between CONTRAIL (raw) and CONTRAIL (AK) 20 

were approximately 0.5 ppm, which is consistent with the result shown in Figure 4, despite 21 

the fact that CONTRAIL (AK) data here were evaluated on the basis of CarbonTracker 22 

monthly-mean data. In the Southern Hemisphere, the average of the TIR CO2 data was within 23 

0.1% of the averages of the CONTRAIL (raw) and CONTRAIL (AK) CO2 data. In the 24 

Northern Hemisphere, the average of the TIR CO2 data agreed with the averages of the 25 

CONTRAIL (raw) and CONTRAIL (AK) CO2 data to within 0.5%, although the agreement 26 

was slightly worse there than in the Southern Hemisphere. 27 

Along the airline route between Tokyo and Europe, both tropospheric and stratospheric CO2 28 

data were obtained in the CONTRAIL CME observations. Therefore, we were able to validate 29 

the quality of TANSO-FTS TIR CO2 data for this route both in the upper troposphere and 30 

lower stratosphere using the UTLS CME CO2 data. Here, we averaged CO2 data mainly from 31 

layers 9 and 10 for the upper tropospheric comparison and from layers 10 and 11 for the 32 
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lower stratospheric comparison. As shown in Figure 6, the differences between CONTRAIL 1 

(raw) and CONTRAIL (AK) were again approximately 0.5 ppm when CONTRAIL CME data 2 

were divided into the upper troposphere and lower stratosphere, which is consistent with the 3 

result shown in Figure 4. Figure 6b and 6c shows that the differences between the upper 4 

tropospheric and lower stratospheric CO2 concentrations of CONTRAIL CME data were 5 

approximately 2–3 ppm in winter (maximum of 4.24 ppm in area 14). The upper tropospheric 6 

and lower stratospheric CO2 concentrations from TANSO-FTS TIR V1 data also clearly 7 

differed, while the upper tropospheric and lower stratospheric CO2 concentrations from a 8 

priori data were similar. The upper tropospheric TIR CO2 concentrations were in a good 9 

agreement within 1 ppm with the corresponding CONTRAIL (raw) and CONTRAIL (AK) 10 

data (Figure 6b). In the lower stratosphere in winter (Figure 6c), the averages of the 11 

CONTRAIL (raw), CONTRAIL (AK), TANSO-FTS TIR, and a priori CO2 data were all 12 

within 0.5–1 ppm of each other. 13 

Figure 7 shows the results of all of the comparisons among CONTRAIL (raw), CONTRAIL 14 

(AK), TANSO-FTS TIR, and a priori CO2 data in the upper troposphere (left) and lower 15 

stratosphere (right) for each season. We divided the data for all four datasets in each of the 40 16 

areas into six latitude bands: 40°S–20°S (areas 30 and 31), 20°S–0° (areas 21, 28, and 29), 17 

0°–20°N (areas 16, 17, 20, 22, 23, 26, and 27), 20°N–40°N (areas 15, 18, 19, 24, 25, and 37–18 

40), 40°N–60°N (areas 1, 2, 14, and 32–36), and 60°N–70°N (areas 3–13). As for the lower 19 

stratosphere, we showed the results at northern latitudes of 40°N where an adequate amount 20 

of data was obtained. Overall, the  black and gray lines (TIR ave. minus CONTRAIL (raw) 21 

ave. and TIR ave. minus CONTRAIL (AK) ave.) were closer to zero than the green lines (a 22 

priori ave. minus CONTRAIL (raw) ave.), which means that TIR CO2 data agreed better with 23 

CONTRAIL CME CO2 data than a priori CO2 data. 24 

The left panels of Figure 7 show that the agreements between TIR and CONTRAIL (raw) and 25 

CONTRAIL (AK) CO2 average data were worse in spring and summer than in fall and winter 26 

in the Northern Hemisphere in the upper troposphere. The differences between TIR and 27 

CONTRAIL (raw) and CONTRAIL (AK) CO2 data were on average within 1 ppm in fall and 28 

winter in the northern troposphere. At 0°–40°N in summer, in contrast, the TIR and a priori 29 

CO2 average data were 2.3 ppm lower than the CONTRAIL (AK) CO2 average data. At 30 

20°N–40°N in spring, the differences between TIR and CONTRAIL (AK) CO2 average data 31 

were 2.4 ppm, although the TIR CO2 data had a better agreement with CONTRAIL CME CO2 32 
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data than a priori CO2 data. On the other hand, the averages of the TIR CO2 data were within 1 

0-0.7 ppm of the averages of the CONTRAIL (AK) CO2 data in the Southern Hemisphere in 2 

all seasons, as in the comparison in spring shown in Figure 5. 3 

In the lower stratosphere, the agreements between the average TANSO-FTS TIR and 4 

CONTRAIL CME CO2 data did not have a smaller seasonality than in the upper troposphere. 5 

The averages of TIR and CONTRAIL (raw) and CONTRAIL (AK) CO2 data agreed with 6 

each other within 0.5% in all seasons. 7 

 8 

7 Discussion 9 

As shown in Figure 7, TANSO-FTS TIR V1 L2 CO2 data had a negative bias of 2.3–2.4 ppm 10 

against CONTRAIL CME CO2 data in the northern low and middle latitudes in spring and 11 

summer. Uncertainties in surface parameters and temperature profiles could affect CO2 12 

retrieval in thermal infrared spectral regions. As described above, retrieving surface 13 

parameters simultaneously instead of using initial surface parameters did not affect CO2 14 

concentrations in the UTLS regions in the TIR V1 CO2 retrieval. We compared 15 

simultaneously retrieved temperature profiles with a priori JMA GPV temperature profiles in 16 

the UTLS region, and did not find any difference between the two which could explain the 17 

largest TIR CO2 negative bias in the northern low and middle latitudes in spring and summer. 18 

In the UTLS regions, temperature variability is relatively large, and therefore comprehensive 19 

validation analysis of both the a priori and retrieved temperature profiles should be required 20 

using reliable and independent temperature data such as radiosonde data. 21 

Uncertainty in a priori data could result in uncertainty in retrieved CO2 data. Here, we 22 

arbitrarily decreased the a priori concentration by 1% in a test TIR CO2 retrieval, and then 23 

compared the retrieved CO2 concentrations with those retrieved using the original a priori 24 

data. In the northern low and middle latitudes in spring and summer where the DF values of 25 

TIR V1 CO2 data were around 1.8 and more, a 1% negative bias in a priori data could yield 26 

up to a 0.7% negative bias in retrieved CO2 concentrations in the altitude regions where we 27 

did comparisons between TIR and CONTRAIL CME data, although the magnitude of the bias 28 

varied depending on retrievals. As shown by the green lines in Figure 7, a priori CO2 29 

concentrations were underestimated by 2–4 ppm in the northern low and middle latitudes in 30 

spring and summer. The test TIR CO2 retrieval demonstrated that the negative bias of a priori 31 
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CO2 data against CONTRAIL CME data is a possible cause of the TIR CO2 negative bias in 1 

the UTLS regions in the northern low and middle latitudes in spring and summer. 2 

In general, the information content of CO2 observations made by TIR sensors is higher in 3 

middle and high latitudes in spring and summer than in fall and winter because of the thermal 4 

contrast in the atmosphere, with less seasonal dependence in low latitudes. Therefore, in 5 

spring and summer, retrieved CO2 data contain more measurement information and are less 6 

constrained by a priori data at all latitudes. However, as shown in Figure 7, the retrieved TIR 7 

CO2 data in the northern low and middle latitudes did not sufficiently reduce the negative bias 8 

of the a priori CO2 data in the UTLS regions in spring and summer. This implies the existence 9 

of factors that worsened CO2 retrieval results other than the a priori data, especially in spring 10 

and summer. Another possible factor that worsened CO2 retrieval results is the uncertainty in 11 

the calibration of TIR V161.160 L1B spectra. As reported in Kataoka et al. (2014), TANSO-12 

FTS TIR V130.130 L1B radiance spectra had a wavelength-dependent bias ranging from 0.1 13 

to 2 K. Although the characteristics of the spectral bias in V161.160 L1B data used in TIR V1 14 

L2 CO2 retrievals are still under investigation, we assumed the same degree of bias in 15 

V161.160 L1B spectra, and evaluated the effect of the L1B spectral bias on the TIR CO2 16 

retrieval using the following equation: 17 

specCO2CO2 dGd = .                                                                                                    (6) 18 

Here, GCO2 is a gain matrix for CO2 retrieval, dspec is a spectral bias vector based on the 19 

evaluation by Kataoka et al. (2014), and dCO2 is a vector of bias errors in retrieved CO2 20 

concentrations attributable to the spectral bias. The result showed that a wavelength-21 

dependent bias comparable to V130.130 L1B spectra could yield up to 0.3% and 0.5% 22 

uncertainties in retrieved CO2 concentration in the UTLS regions in the northern middle 23 

latitude in spring and in the northern low latitude in summer, respectively. Uncertainty in the 24 

radiometric calibration of TANSO-FTS L1B spectra causes the spectral bias inherent in TIR 25 

L1B spectra. The temperatures of the internal blackbody on board the TANSO-FTS 26 

instrument partly reflect the environmental thermal conditions inside the instrument. The 27 

temperatures of FTS-mechanics and aft-optics on the optical bench of the TANSO-FTS 28 

instrument are precisely controlled at 23 °C. The difference in temperature between the 29 

environment inside the instrument and the optical bench could cause the uncertainty in the 30 

radiometric calibration of TANSO-FTS L1B spectra. Thus, the temperatures of the internal 31 
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blackbody on board the TANSO-FTS instrument could be a parameter used to evaluate the 1 

TANSO-FTS TIR L1B spectral bias. 2 

Figure 8 shows the averages of the partial degree of freedom of TANSO-FTS TIR V1 L2 CO2 3 

data for each of the areas along the airline routes between Tokyo and Europe in the upper 4 

troposphere (a) and the lower stratosphere (b) for each season. The partial DF is defined as the 5 

diagonal element of the averaging kernels corresponding to TIR CO2 data that were compared 6 

to CONTRAIL CME level flight data, which is equal to the 9th, 10th, or 11th diagonal element 7 

of matrix A. As shown in Figure 8, the average values of the partial DF of TIR lower 8 

stratospheric CO2 data were clearly lower than those of TIR upper tropospheric CO2 data for 9 

all of the fights between Tokyo and Europe. TIR upper tropospheric CO2 data were from 10 

layers 9 and 10, and TIR lower stratospheric CO2 data were from layers 10 and 11, as shown 11 

in Figure 3, which led to a clear difference in partial DF values between the TIR upper 12 

tropospheric and lower stratospheric CO2 data. The partial DF values of TIR upper 13 

tropospheric CO2 data were 0.13–0.20 in all of the areas for all seasons. In contrast, the partial 14 

DF values of TIR lower stratospheric CO2 data in spring, fall, and winter were ~0.05 in 15 

almost all of the areas, although they were as high as 0.1–0.14 in summer. From the results 16 

shown in Figure 6c and Figure 8, we conclude that TIR CO2 retrieval results in the lower 17 

stratosphere in winter were constrained to the relatively good a priori CO2 data due to the low 18 

information content, and consequently had a good agreement with CONTRAIL CME CO2 19 

data. The comparisons in the areas during the airline route between Tokyo and Europe were 20 

included in the comparison results of 60°N–70°N in the right panels of Figure 7. In this region, 21 

the average differences between a priori and CONTRAIL (raw) data were 1-2 ppm in summer 22 

and fall, while they were less than 0.5 ppm in spring and winter. In summer, TIR CO2 23 

retrievals had a relatively high information content compared to the other seasons, which led 24 

to an agreement between TIR and CONTRAIL (raw) and CONTRAIL (AK) CO2 data of 25 

within 0.5 ppm. In fall, TIR CO2 retrieval results in the lower stratosphere were more 26 

constrained to the a priori CO2 data, and therefore had a negative bias of approximately 1-2 27 

ppm against CONTRAIL (raw) and CONTRAIL (AK) CO2 data. In conclusion, the quality of 28 

TIR V1 CO2 data in the lower stratosphere depends largely on the information content 29 

compared to the upper troposphere. In the case of high latitude measurements, TIR V1 lower 30 

stratospheric CO2 data are only valid in summer. 31 
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We investigated the differences between TIR and CONTRAIL CO2 comparison results in 1 

layers 9–11 with and without applying averaging kernel functions over the nine airports 2 

where CO2 vertical profiles were observed during ascent and descent. In the northern middle 3 

latitudes in spring (NRT in Figure 4), CONTRAIL (AK) was on average 0.2 and 1.2 ppm 4 

lower than CONTRAIL (raw) in layers 9 and 10. In contrast, the tendency was the opposite in 5 

the southern middle latitudes in spring (SYD in Figure 4); CONTRAIL (AK) was on average 6 

1.1 and 0.4 ppm higher than CONTRAIL (raw) in layers 9 and 10. This means that CO2 7 

concentrations in layers 9 and 10 were more affected by stratospheric air with relatively low 8 

CO2 concentrations in the northern middle latitude in spring, when considering averaging 9 

kernels. This is consistent with the result of Sawa et al. (2012) showing that the difference 10 

between upper tropospheric and lower stratospheric CO2 concentrations was larger in the 11 

Northern Hemisphere in spring. 12 

Using CONTRAIL CME level flight observations that covered wide spatial areas allowed us 13 

to discuss the longitudinal differences in the characteristics of TIR UTLS CO2 data. In the 14 

comparison results of the airline routes of Tokyo–Europe (Figure 6) and Tokyo–Vancouver 15 

(not shown here), the magnitudes of the differences between TIR and CONTRAIL (raw) and 16 

(AK) CO2 data did not have a clear longitudinal dependence. Table 2 summarizes the 17 

latitudinal dependence of the magnitudes of the differences between TIR and CONTRAIL 18 

(AK) CO2 data. In the upper troposphere in 0–60°N, negative biases in TIR CO2 data against 19 

CONTRAIL CME CO2 data ranged from 1.2 to 2.4 ppm in spring and summer, when 20 

applying averaging kernels to the assumed CME CO2 profiles created based on 21 

CarbonTracker CT2013B monthly-mean profiles. It is the negative biases in the northern low 22 

and middle latitudes that we should in particular be concerned about when using TIR V1 L2 23 

CO2 data in any scientific analysis. In the upper troposphere in the northern middle latitudes, 24 

CO2 concentrations reach the maximum from spring through early summer. The negative 25 

biases in TIR CO2 data resulted in the maximum TIR CO2 concentrations being lower than 26 

that of the CONTRAIL CME CO2 concentrations, which led to an underestimate of the 27 

amplitude of the CO2 seasonal variation when using TIR CO2 data without taking their 28 

negative biases into account. 29 

 30 
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8 Summary 1 

In this study, we conducted a comprehensive validation of the UTLS CO2 concentrations from 2 

the GOSAT/TANSO-FTS TIR V1 L2 CO2 product. The TIR V1 L2 CO2 algorithm used both 3 

the CO2 10 μm and 15 μm absorption bands (690–750 cm-1, 790–795 cm-1, 930–990 cm-1, and 4 

1040–1090 cm-1), and simultaneously retrieved vertical profiles of CO2, water vapor, ozone, 5 

and temperature in these wavelength regions. Because the TANSO-FTS TIR V161.160 L1B 6 

radiance data used in the TIR V1 L2 CO2 retrieval had a spectral bias, we simultaneously 7 

derived surface temperature and surface emissivity in the same wavelength regions as a 8 

corrective parameter, other than temperature and gas profiles, to correct the spectral bias. The 9 

simultaneous retrieval of surface temperature greatly increased the number of normally 10 

retrieved CO2 profiles. 11 

To validate the quality of TIR V1 upper atmospheric CO2 data, we compared them with the 12 

level flight CO2 data of CONTRAIL CME observations along the following airline routes in 13 

2010: Tokyo–Europe (Amsterdam and Moscow), Tokyo–Vancouver, Tokyo–Honolulu, 14 

Tokyo–Bangkok, Tokyo–East Asia (Singapore and Jakarta), and Tokyo–Sydney. For the 15 

CONTRAIL data obtained during the northern high latitude flights, we made comparisons 16 

among CONTRAIL, TIR, and a priori CO2 data separately in the upper troposphere and in the 17 

lower stratosphere. The TIR upper tropospheric and lower stratospheric CO2 data that were 18 

compared were mainly from layers 9 and 10 (287–196 hPa) and from layers 10 and 11 (237–19 

162 hPa), respectively. In this study, we evaluated the impact of considering TIR CO2 20 

averaging kernel functions on CO2 concentrations using the CME profile data over the nine 21 

airports; the impact at around the CME level flight altitudes (~11 km) was on average less 22 

than 0.5 ppm in low latitudes and less than 1 ppm in middle and high latitudes. 23 

In the Southern Hemisphere, the averages of TANSO-FTS TIR V1 upper atmospheric CO2 24 

data were within 0.1% of the averages of CONTRAIL CO2 data with and without TIR CO2 25 

averaging kernels for all seasons, from the limited comparisons made during flights between 26 

Tokyo and Sydney, while TIR CO2 data had a better agreement with CONTRAIL CO2 data 27 

than a priori CO2 data, with the agreement being on average within 0.5% in the Northern 28 

Hemisphere. The northern high latitude comparisons suggest that the quality of TIR lower 29 

stratospheric CO2 data depends largely on the information content. In high latitudes, TIR 30 

lower stratospheric CO2 data are only valid in summer when their information content is 31 

highest. Overall, the agreements of TIR and CONTRAIL CME CO2 data were worse in spring 32 



 21 

and summer than in fall and winter in the Northern Hemisphere in the upper troposphere. TIR 1 

CO2 data had a negative bias up to 2.4 ppm against CONTRAIL CO2 data with TIR CO2 2 

averaging kernels in the northern low and middle latitudes in spring and summer. This is 3 

partly because of the larger negative bias in the a priori CO2 data. The spectral bias inherent to 4 

TANSO-FTS TIR L1B radiance data could cause a negative bias in retrieved CO2 5 

concentrations, particularly in summer. TIR sensors can make more observations than SWIR 6 

sensors. When using the TIR UTLS CO2 data, the seasonally and regionally dependent 7 

negative biases of the TIR V1 L2 CO2 data presented here should be taken into account. 8 
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Table 1. Retrieval grid layers of GOSAT/TANSO-FTS TIR CO2 V1 data. 1 

Layer 
level 

Lower presure  
level (hPa) 

Upper pressure  
level (hPa) 

1 1165.91  857.70  

2 857.70  735.64  

3 735.64  630.96  

4 630.96  541.17  

5 541.17  464.16  

6 464.16  398.11  

7 398.11  341.45  

8 341.45  287.30  

9 287.30  237.14  

10 237.14  195.73  

11 195.73  161.56  

12 161.56  133.35  

13 133.35  110.07  

14 110.07  90.85  

15 90.85  74.99  

16 74.99  61.90  

17 61.90  51.09  

18 51.09  42.17  

19 42.17  34.81  

20 34.81  28.73  

21 28.73  23.71  

22 23.71  19.57  

23 19.57  16.16  

24 16.16  13.34  

25 13.34  10.00  

26 10.00  5.62  

27 5.62  1.00  

28 1.00  0.10  
2 
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Table 2. Bias values of GOSAT/TANSO-FTS TIR V1 CO2 data against CONTRAIL (AK) 1 

CO2 data for each season and each latitude region in the upper troposphere and lower 2 

stratosphere in the unit of ppm. Significant bias values larger than ±2 ppm are indicated by 3 

boldface. 4 

UT LS MAM JJA SON JF 

60–70°N -1.0 -0.8 -0.2 -0.5 -1.0 -1.1 0.3 -0.5 

40–60°N -1.7 0.3 -1.6 -1.3 -1.1 -0.9 -0.5 -0.5 

20–40°N -2.4  -2.3  -1.1  0.3  
0–20°N -1.2  -2.3  -0.5  0.5  
20°S–0 -0.1  -0.6  0.4  0.0  
40–20°S -0.2  -0.4  -0.7  -0.5  

 5 

6 
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 1 

 2 

 3 

Figure 1. Averaging kernel functions of GOSAT/TANSO-FTS TIR V1 CO2 retrieval in the 28 4 

retrieval grid layers shown in Table 1: (a) low latitudes in summer, (b) mid-latitudes in spring, 5 

and (c) high latitudes in winter. Solid orange, yellow, and green lines indicate averaging 6 

kernel functions of each of the three layer levels 9, 10, and 11, respectively. 7 

8 
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 1 

 2 

Figure 2. Flight tracks of all of the CONTRAIL CME observations in 2010 used in this study. 3 

A number next to a box area indicates each area number. 4 

5 



 33 

 1 

 2 

Figure 3. The number of GOSAT/TANSO-FTS TIR CO2 data points compared to the 3 

CONTRAIL CME level flight data for each retrieval grid layer level for each flight. The 4 

numbers of TIR CO2 data points in the troposphere (“T”) and stratosphere (“S”) are shown 5 

separately for the Tokyo–Europe (NRT_DME_AMS), Tokyo–Vancouver (NRT_YVR), and 6 

Tokyo–Honolulu (NRT_HNL) flight routes. 7 

8 
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 1 

 2 

Figure 4. Scatter plots of GOSAT/TANSO-FTS TIR and CONTRAIL (raw) CO2 differences 3 

and GOSAT/TANSO-FTS TIR and CONTRAIL (AK) CO2 differences in layers 9, 10, and 11 4 

for each season. 5 

6 
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1 
  2 

 3 

Figure 5. Comparisons among CONTRAIL (raw), CONTRAIL (AK), GOSAT/TANSO-FTS 4 

TIR, and a priori (NIES TM 05) CO2 data during flights between Tokyo and Sydney 5 

(NRT_SYD) in spring (MAM), shown by black, gray, red, and green lines, respectively. The 6 

means and their 1-σ standard deviations were calculated in each area during the flight for all 7 

four datasets. 8 

9 



 36 

 1 

 2 

Figure 6. Same as Figure 5, but for flights between Tokyo and Europe (NRT_DME_AMS) in 3 

winter (JF). (a) All of the data, (b) only data in the troposphere, and (c) only data in the 4 

stratosphere. See the text for the classification of tropospheric and stratospheric data. 5 

6 
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Figure 7. Differences between GOSAT/TANSO-FTS TIR and CONTRAIL (raw) averaged 1 

CO2 data (TIR ave. minus CONTRAIL (raw) ave.), TIR and CONTRAIL (AK) averaged CO2 2 

data (TIR ave. minus CONTRAIL (AK) ave.), and a priori (NIES TM 05) and CONTRAIL 3 

(raw) averaged CO2 data (a priori ave. minus CONTRAIL (raw) ave.) for each season for 4 

each latitude band (40°S–20°S, 20°S–0°, 0°–20°N, 20°N–40°N, 40°N–60°N, 60°N–70°N), 5 

shown by black, gray, and  green lines, respectively. Left and right panels show the 6 

differences in the upper troposphere and lower stratosphere, respectively. The 1-σ standard 7 

deviations of the latitudinal averages of TANSO-FTS TIR CO2 data are shown by vertical 8 

bars. 9 

10 
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Figure 8. Partial degree of freedom (DF) for GOSAT/TANSO-FTS TIR CO2 data in the upper 3 

troposphere (a) and the lower stratosphere (b) for each area of the flight between Tokyo and 4 

Europe (NRT_DME_AMS). The means and their 1-σ standard deviations of the partial DF 5 

data were calculated in spring (MAM), summer (JJA), fall (SON), and winter (JF), as shown 6 

by the pink, red, light blue, and blue lines, respectively. 7 

 8 
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