Preprints
https://doi.org/10.5194/amtd-4-563-2011
https://doi.org/10.5194/amtd-4-563-2011

  21 Jan 2011

21 Jan 2011

Review status: this preprint was under review for the journal AMT but the revision was not accepted.

On the ability of pseudo-operational ground-based light detection and ranging (LIDAR) sensors to determine boundary-layer structure: intercomparison and comparison with in-situ radiosounding

C. Milroy1, G. Martucci1, S. Lolli2,4, S. Loaec2, L. Sauvage2, I. Xueref-Remy3, J. V. Lavrič3,*, P. Ciais3, and C. D. O'Dowd1 C. Milroy et al.
  • 1School of Physics and Centre for Climate and Air Pollution Studies, Ryan Institute, National University of Ireland, Galway, Ireland
  • 2Leosphere, 76 Rue Monceau, 75008 Paris, France
  • 3Laboratoire des Sciences du Climat et de l'Environnement (LSCE) Unité mixte IPSL-UVSQ-CNRS-CEA, Orme des Merisiers, 91191 Gif-Sur-Yvette Cedex, France
  • 4LMD, Laboratoire de Meteorologie Dynamique, Ecole Polytechnique, Palaiseau, France
  • *now at: Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, Germany

Abstract. Twenty-one cases of boundary-layer (BL) structure were retrieved by three co-located remote sensors, one lidar (Leosphere ALS300) and two ceilometers (Vaisala CL31, Jenoptik CHM15K). Data were collected during the ICOS field campaign held at the GAW Atmospheric Station of Mace Head, Ireland, from 8 to 28 June 2009. The study is a two-step investigation of the BL structure based (i) on the intercomparison of backscatter profiles from the three laser sensors and (ii) on the comparison of the backscatter profiles with twenty-three radiosoundings performed during the period of 8 to 15 June 2009. The Temporal Height-Tracking (THT) algorithm was applied to the three sensors' backscatter profiles to retrieve the decoupled structure of the BL over Mace Head. The results of the intercomparisons are expressed in terms of the mean correlation coefficients, mean bias (difference between two sensors' detections), mean sigma (the standard deviation of the bias) and the consistency, i.e. the percentage of cases where the detections of the intercompared sensors were closer than 200 m. The ALS300-CHM15K comparison provided the most consistent retrievals amongst the three comparisons with, respectively, the 86.5% and 77.2% of the lower and upper layer detections closer than 200 m and with correlation coefficients equal to 0.88 and 0.83 at the lower and upper layer, respectively.

The lidar and ceilometers-detected BL heights were then compared to the temperature profiles retrieved by radiosoundings. The most consistent retrievals at the lower layer are from the ALS300 with the 75% of detections closer than 200 m to the radiosoundings' first temperature inversion. Despite the lower signal-to-noise ratio and R-value compared to the ASL300 and CHM15K, the CL31 is more consistent with the radiosoundings retrievals at the upper layer with 62.5% of detections closer than 200 m to the radiosoundings' second temperature inversion. The ALS300 has larger pulse-averaged power compared to the two ceilometers and better ability in detecting fine aerosol layers within the BL. The comparison of remote and in-situ data proved both the veracity of the inherent link between temperature and aerosol backscatter profiles, and the existence of possible limitations in using aerosols as a tracer to detect the BL structure.

C. Milroy et al.

 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

C. Milroy et al.

C. Milroy et al.

Viewed

Total article views: 1,052 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
546 432 74 1,052 56 66
  • HTML: 546
  • PDF: 432
  • XML: 74
  • Total: 1,052
  • BibTeX: 56
  • EndNote: 66
Views and downloads (calculated since 01 Feb 2013)
Cumulative views and downloads (calculated since 01 Feb 2013)

Cited

Saved

Latest update: 05 May 2021