the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
An assessment of cloud top thermodynamic phase products obtained from A-Train passive and active sensors
S. Zeng
J. Riedi
C. Cornet
F. Thieuleux
Abstract. The A-Train observations provide an unprecedented opportunity for the production of high quality dataset describing cloud properties. We illustrate in this study the use of one year of coincident POLDER (Polarization and Directionality of the Earth Reflectance), MODIS (MODerate Resolution Imaging Spectroradiometer) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations to establish a reference dataset for the description of cloud top thermodynamic phase at global scale. We present the results of an extensive comparison between POLDER and MODIS cloud top phase products and discuss those in view of cloud vertical structure and optical properties derived simultaneously from collocated CALIOP active measurements. These results allow to identify and quantify potential biases present in the 3 considered dataset. Among those, we discuss the impacts of observation geometry, thin cirrus in multilayered and single layered cloud systems, supercooled liquid droplets, aerosols, fractional cloud cover and snow/ice or bright surfaces on global statistics of cloud phase derived from POLDER and MODIS passive measurements. Based on these analysis we define criteria for the selection of high confidence cloud phase retrievals which in turn can serve for the establishment of a reference cloud phase product. This high confidence joint product derived from POLDER/PARASOL and MODIS/Aqua can be used in the future as a benchmark for the evaluation of other cloud climatologies, for the assessment of cloud phase representation in models and the development of better cloud phase parametrization in the general circulation models (GCMs).
- Preprint
(1511 KB) - Metadata XML
- BibTeX
- EndNote
S. Zeng et al.


-
RC C3227: 'Review of: ”An assessment of cloud top thermodynamic phase products obtained from A-Train passive and active sensors” by Zeng et al.', Anonymous Referee #1, 06 Nov 2013
-
AC C4371: 'Response to reviewer comments #1', Jérôme Riedi, 13 Feb 2014
-
AC C4371: 'Response to reviewer comments #1', Jérôme Riedi, 13 Feb 2014
-
RC C3338: 'Reviewer comment attached', Anonymous Referee #2, 16 Nov 2013
-
AC C4372: 'Response to reviewer comments #2', Jérôme Riedi, 13 Feb 2014
-
AC C4372: 'Response to reviewer comments #2', Jérôme Riedi, 13 Feb 2014


-
RC C3227: 'Review of: ”An assessment of cloud top thermodynamic phase products obtained from A-Train passive and active sensors” by Zeng et al.', Anonymous Referee #1, 06 Nov 2013
-
AC C4371: 'Response to reviewer comments #1', Jérôme Riedi, 13 Feb 2014
-
AC C4371: 'Response to reviewer comments #1', Jérôme Riedi, 13 Feb 2014
-
RC C3338: 'Reviewer comment attached', Anonymous Referee #2, 16 Nov 2013
-
AC C4372: 'Response to reviewer comments #2', Jérôme Riedi, 13 Feb 2014
-
AC C4372: 'Response to reviewer comments #2', Jérôme Riedi, 13 Feb 2014
S. Zeng et al.
S. Zeng et al.
Viewed
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,001 | 597 | 107 | 1,705 | 92 | 97 |
- HTML: 1,001
- PDF: 597
- XML: 107
- Total: 1,705
- BibTeX: 92
- EndNote: 97
Cited
6 citations as recorded by crossref.
- Cloud thermodynamic phase detection using a directional polarimetric camera (DPC) H. Shang et al. 10.1016/j.jqsrt.2020.107179
- Cloud heterogeneity on cloud and aerosol above cloud properties retrieved from simulated total and polarized reflectances C. Cornet et al. 10.5194/amt-11-3627-2018
- Comparison of Global and Seasonal Characteristics of Cloud Phase and Horizontal Ice Plates Derived from CALIPSO with MODIS and ECMWF M. Hirakata et al. 10.1175/JTECH-D-13-00245.1
- Characterizing Vertical Stratification of the Cloud Thermodynamic Phase With a Combined Use of CALIPSO Lidar and MODIS SWIR Measurements T. Nagao & K. Suzuki 10.1029/2022JD036826
- Improved cloud phase retrieval approaches for China's FY-3A/VIRR multi-channel data using Artificial Neural Networks C. Yang & J. Guo 10.1016/j.ijleo.2015.11.084
- Impacts of Asian dust on the determination of cloud thermodynamic phase from satellite observations H. Jin et al. 10.1088/1748-9326/10/3/034006