S. Zeng1,* , J. Riedi1 , F. Parol1 , C. Cornet1 , and F. Thieuleux1
S. Zeng et al.
S. Zeng1,* , J. Riedi1 , F. Parol1 , C. Cornet1 , and F. Thieuleux1
1 Laboratoire d'Optique Atmosphérique, UMR8518, CNRS – Université de Lille 1, Sciences et Technologies, Lille, France * now at: NASA Langley Research Center, Hampton, Virginia, USA
1 Laboratoire d'Optique Atmosphérique, UMR8518, CNRS – Université de Lille 1, Sciences et Technologies, Lille, France * now at: NASA Langley Research Center, Hampton, Virginia, USA
Hide author details
Received: 02 Sep 2013 – Discussion started: 12 Sep 2013
The A-Train observations provide an unprecedented opportunity for the production of high quality dataset describing cloud properties. We illustrate in this study the use of one year of coincident POLDER (Polarization and Directionality of the Earth Reflectance), MODIS (MODerate Resolution Imaging Spectroradiometer) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations to establish a reference dataset for the description of cloud top thermodynamic phase at global scale. We present the results of an extensive comparison between POLDER and MODIS cloud top phase products and discuss those in view of cloud vertical structure and optical properties derived simultaneously from collocated CALIOP active measurements. These results allow to identify and quantify potential biases present in the 3 considered dataset. Among those, we discuss the impacts of observation geometry, thin cirrus in multilayered and single layered cloud systems, supercooled liquid droplets, aerosols, fractional cloud cover and snow/ice or bright surfaces on global statistics of cloud phase derived from POLDER and MODIS passive measurements. Based on these analysis we define criteria for the selection of high confidence cloud phase retrievals which in turn can serve for the establishment of a reference cloud phase product. This high confidence joint product derived from POLDER/PARASOL and MODIS/Aqua can be used in the future as a benchmark for the evaluation of other cloud climatologies, for the assessment of cloud phase representation in models and the development of better cloud phase parametrization in the general circulation models (GCMs).
S. Zeng et al.
Viewed
Total article views: 1,485 (including HTML, PDF, and XML)
HTML
PDF
XML
Total
BibTeX
EndNote
847
552
86
1,485
75
79
HTML: 847
PDF: 552
XML: 86
Total: 1,485
BibTeX: 75
EndNote: 79
Views and downloads (calculated since 12 Sep 2013)
Month
HTML
PDF
XML
Total
Sep 2013
62
49
1
112
Oct 2013
14
23
0
37
Nov 2013
21
22
1
44
Dec 2013
7
12
2
21
Jan 2014
12
13
1
26
Feb 2014
15
18
4
37
Mar 2014
9
16
1
26
Apr 2014
8
15
1
24
May 2014
7
25
2
34
Jun 2014
8
28
1
37
Jul 2014
13
20
1
34
Aug 2014
3
27
2
32
Sep 2014
8
26
0
34
Oct 2014
4
19
0
23
Nov 2014
1
20
1
22
Dec 2014
2
17
0
19
Jan 2015
6
3
0
9
Feb 2015
7
3
0
10
Mar 2015
6
1
1
8
Apr 2015
10
1
0
11
May 2015
2
1
0
3
Jun 2015
5
3
0
8
Jul 2015
9
1
1
11
Aug 2015
2
3
0
5
Sep 2015
1
1
0
2
Oct 2015
5
2
0
7
Nov 2015
8
2
0
10
Dec 2015
2
3
0
5
Jan 2016
9
1
0
10
Feb 2016
7
0
7
Mar 2016
10
3
1
14
Apr 2016
3
1
0
4
May 2016
8
5
1
14
Jun 2016
7
4
2
13
Jul 2016
8
1
2
11
Aug 2016
9
0
9
Sep 2016
6
1
0
7
Oct 2016
7
3
0
10
Nov 2016
3
1
0
4
Dec 2016
4
3
2
9
Jan 2017
9
2
3
14
Feb 2017
9
4
2
15
Mar 2017
20
2
3
25
Apr 2017
31
11
5
47
May 2017
18
2
1
21
Jun 2017
17
3
20
Jul 2017
7
0
7
Aug 2017
4
4
2
10
Sep 2017
1
2
0
3
Oct 2017
5
0
5
Nov 2017
2
1
0
3
Dec 2017
5
1
0
6
Jan 2018
6
1
0
7
Feb 2018
14
1
3
18
Mar 2018
6
1
0
7
Apr 2018
8
4
2
14
May 2018
4
3
0
7
Jun 2018
7
3
0
10
Jul 2018
9
1
0
10
Aug 2018
7
3
0
10
Sep 2018
6
5
0
11
Oct 2018
5
1
0
6
Nov 2018
9
3
0
12
Dec 2018
1
0
1
Jan 2019
5
2
0
7
Feb 2019
5
1
0
6
Mar 2019
2
4
0
6
Apr 2019
8
3
0
11
May 2019
3
2
0
5
Jun 2019
5
2
0
7
Jul 2019
1
3
0
4
Aug 2019
8
4
0
12
Sep 2019
6
1
0
7
Oct 2019
3
3
0
6
Nov 2019
5
0
5
Dec 2019
0
Jan 2020
7
1
0
8
Feb 2020
6
2
0
8
Mar 2020
2
0
2
Apr 2020
3
6
4
13
May 2020
3
1
0
4
Jun 2020
3
0
3
Jul 2020
9
8
11
28
Aug 2020
6
1
5
12
Sep 2020
6
1
0
7
Oct 2020
6
2
1
9
Nov 2020
6
3
0
9
Dec 2020
6
4
1
11
Jan 2021
4
1
0
5
Feb 2021
5
2
3
10
Mar 2021
7
2
3
12
Apr 2021
8
4
0
12
May 2021
4
2
0
6
Jun 2021
8
4
2
14
Jul 2021
7
2
0
9
Aug 2021
6
5
0
11
Sep 2021
7
0
7
Oct 2021
13
3
0
16
Nov 2021
17
4
1
22
Dec 2021
17
5
0
22
Jan 2022
12
3
0
15
Feb 2022
12
1
0
13
Mar 2022
8
1
1
10
Apr 2022
10
3
2
15
May 2022
30
0
30
Jun 2022
8
3
0
11
Jul 2022
2
1
0
3
Cumulative views and downloads
(calculated since 12 Sep 2013)
Month
HTML views
PDF downloads
XML downloads
Sep 2013
62
49
1
Oct 2013
76
72
1
Nov 2013
97
94
2
Dec 2013
104
106
4
Jan 2014
116
119
5
Feb 2014
131
137
9
Mar 2014
140
153
10
Apr 2014
148
168
11
May 2014
155
193
13
Jun 2014
163
221
14
Jul 2014
176
241
15
Aug 2014
179
268
17
Sep 2014
187
294
17
Oct 2014
191
313
17
Nov 2014
192
333
18
Dec 2014
194
350
18
Jan 2015
200
353
18
Feb 2015
207
356
18
Mar 2015
213
357
19
Apr 2015
223
358
19
May 2015
225
359
19
Jun 2015
230
362
19
Jul 2015
239
363
20
Aug 2015
241
366
20
Sep 2015
242
367
20
Oct 2015
247
369
20
Nov 2015
255
371
20
Dec 2015
257
374
20
Jan 2016
266
375
20
Feb 2016
273
375
20
Mar 2016
283
378
21
Apr 2016
286
379
21
May 2016
294
384
22
Jun 2016
301
388
24
Jul 2016
309
389
26
Aug 2016
318
389
26
Sep 2016
324
390
26
Oct 2016
331
393
26
Nov 2016
334
394
26
Dec 2016
338
397
28
Jan 2017
347
399
31
Feb 2017
356
403
33
Mar 2017
376
405
36
Apr 2017
407
416
41
May 2017
425
418
42
Jun 2017
442
418
45
Jul 2017
449
418
45
Aug 2017
453
422
47
Sep 2017
454
424
47
Oct 2017
459
424
47
Nov 2017
461
425
47
Dec 2017
466
426
47
Jan 2018
472
427
47
Feb 2018
486
428
50
Mar 2018
492
429
50
Apr 2018
500
433
52
May 2018
504
436
52
Jun 2018
511
439
52
Jul 2018
520
440
52
Aug 2018
527
443
52
Sep 2018
533
448
52
Oct 2018
538
449
52
Nov 2018
547
452
52
Dec 2018
548
452
52
Jan 2019
553
454
52
Feb 2019
558
455
52
Mar 2019
560
459
52
Apr 2019
568
462
52
May 2019
571
464
52
Jun 2019
576
466
52
Jul 2019
577
469
52
Aug 2019
585
473
52
Sep 2019
591
474
52
Oct 2019
594
477
52
Nov 2019
599
477
52
Dec 2019
599
477
52
Jan 2020
606
478
52
Feb 2020
612
480
52
Mar 2020
614
480
52
Apr 2020
617
486
56
May 2020
620
487
56
Jun 2020
623
487
56
Jul 2020
632
495
67
Aug 2020
638
496
72
Sep 2020
644
497
72
Oct 2020
650
499
73
Nov 2020
656
502
73
Dec 2020
662
506
74
Jan 2021
666
507
74
Feb 2021
671
509
77
Mar 2021
678
511
80
Apr 2021
686
515
80
May 2021
690
517
80
Jun 2021
698
521
82
Jul 2021
705
523
82
Aug 2021
711
528
82
Sep 2021
718
528
82
Oct 2021
731
531
82
Nov 2021
748
535
83
Dec 2021
765
540
83
Jan 2022
777
543
83
Feb 2022
789
544
83
Mar 2022
797
545
84
Apr 2022
807
548
86
May 2022
837
548
86
Jun 2022
845
551
86
Jul 2022
847
552
86
Cited
Saved
Latest update: 06 Jul 2022