Preprints
https://doi.org/10.5194/amtd-7-10585-2014
https://doi.org/10.5194/amtd-7-10585-2014
21 Oct 2014
 | 21 Oct 2014
Status: this preprint was under review for the journal AMT. A revision for further review has not been submitted.

Characterization and first results of an ice nucleating particle measurement system based on counterflow virtual impactor technique

L. P. Schenk, S. Mertes, U. Kästner, F. Frank, B. Nillius, U. Bundke, D. Rose, S. Schmidt, J. Schneider, A. Worringen, K. Kandler, N. Bukowiecki, M. Ebert, J. Curtius, and F. Stratmann

Abstract. A specific instrument combination was developed to achieve a better microphysical and chemical characterization of atmospheric aerosol particles that have the potential to act as ice nucleating particles (INP). For this purpose a pumped counterflow virtual impactor system called IN-PCVI was set up and characterized to separate ice particles that had been activated on INP in the Fast Ice Nucleus Chamber (FINCH) from interstitial, non-activated particles. This coupled setup consisting of FINCH (ice particle activation and counting), IN-PCVI (INP separation and preparation), and further aerosol instrumentation (INP characterization) had been developed for the application in field experiments. The separated INP were characterized on-line with regard to their total number concentration, number size distribution and chemical composition, especially with the Aircraft-based Laser Ablation Aerosol Mass Spectrometer ALABAMA. Moreover, impactor samples for electron microscopy were taken. Due to the coupling the IN-PCVI had to be operated with different flow settings than known from literature, which required a further characterization of its cut-off-behavior. Taking the changed cut-off-behavior into account, the INP number concentration measured by the IN-PCVI system was in good agreement with the one detected by the FINCH optics for water saturation ratios up to 1.01 (ice saturation ratios between 1.21–1.34 and temperatures between −18 and −26 °C). First field results of INP properties are presented which were gained during the INUIT-JFJ/CLACE 2013 campaign at the high altitude research station Jungfraujoch in the Bernese Alps, Switzerland (3580 m a.s.l.).

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
L. P. Schenk, S. Mertes, U. Kästner, F. Frank, B. Nillius, U. Bundke, D. Rose, S. Schmidt, J. Schneider, A. Worringen, K. Kandler, N. Bukowiecki, M. Ebert, J. Curtius, and F. Stratmann
 
Status: closed (peer review stopped)
Status: closed (peer review stopped)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed (peer review stopped)
Status: closed (peer review stopped)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
L. P. Schenk, S. Mertes, U. Kästner, F. Frank, B. Nillius, U. Bundke, D. Rose, S. Schmidt, J. Schneider, A. Worringen, K. Kandler, N. Bukowiecki, M. Ebert, J. Curtius, and F. Stratmann
L. P. Schenk, S. Mertes, U. Kästner, F. Frank, B. Nillius, U. Bundke, D. Rose, S. Schmidt, J. Schneider, A. Worringen, K. Kandler, N. Bukowiecki, M. Ebert, J. Curtius, and F. Stratmann

Viewed

Total article views: 2,672 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,960 601 111 2,672 118 116
  • HTML: 1,960
  • PDF: 601
  • XML: 111
  • Total: 2,672
  • BibTeX: 118
  • EndNote: 116
Views and downloads (calculated since 21 Oct 2014)
Cumulative views and downloads (calculated since 21 Oct 2014)

Cited

Saved

Latest update: 11 Oct 2024
Download
Short summary
A pumped counterflow virtual impactor (PCVI) was set up to separate ice nucleating particle (INP) counter produced ice particles that had been activated to ice from non-activated aerosol particles. The released INP were characterized with regard to their physico-chemical properties. A successful separation (PCVI) of INP for water-subsaturated conditions is proven. First results of INP properties are presented which were gained during a campaign at the high altitude research station Jungfraujoch.