
* Reviewer 1 
 
** Comment 1 
This paper deals with post-processing methods for mimicking the determination of 
time-resolved concentrations of atmospheric organic aerosols (OAs) starting from 
time-averaged measurements. This is an important issue because, even if it has been 
acknowledged that the existing spectroscopic methods for OA measurement provide 
complementary information, the actual applicability of some offline methods (e.g., 
FTIR, NMR) is limited for not providing the desired time resolution. The paper 
presents a comprehensive theoretical discussion of a case study, an AMS field 
campaign, where a hypothetical time-averaged measurement series was produced 
based on a set of sampling strategies and post-processing methods which were then 
compared and evaluated. 
 
- Response: 
We thank the reviewer for his/her succinct summary of the work, and for the 
constructive comments that follow. These comments have helped to improve the 
manuscript. Our responses to each comment are listed below. 
 
 
** Comment 2 
The authors conclude that the simple linear interpolation of sequential samples of 4 h 
duration provides the best approximation of a time-resolved (hourly) timeline of 
observations for many practical purposes, although some uncertainty still relies in the 
actual sampling strategy (how much start/stop times overlap with peak 
concentrations). This is a useful recommendation, even if, I believe, it is not 
straightforward to generalize it to all possible real sampling conditions. The Mexico 
City campaign was characterized by very pronounced, consistent diurnal variations in 
the concentrations of HOA and OOA (Figure 2), and simply most of this variability 
can be captured by a 4 h sampling strategy. In areas where diurnal cycles are more 
complicated (e.g., lunch-time peak of cooking aerosols) or meteorological conditions 
are more variable (marine/coastal sites), I am not sure the Authors would have found 
the same conclusions. 
 
- Response: 
We thank the reviewer for recognizing that this work results in useful 
recommendations. We agree that we would not necessarily come to the same 
conclusions with other types of time series. As suggested, generalization is not 
straightforward, and therefore such an aim is beyond the scope of a single paper. This 
is why we have chosen a test case. On P7, L14 we discuss the rationale for choosing 
this particular HOA and OOA case. The daily peaks of the two time series are 
separated by only a few hours, so it is important to measure the time series at high 
time resolution, to help resolve the primary and secondary origins of these two 
aerosol species. We would also like to add that although the occurrence of the daily 
peaks is consistent, the magnitude and shapes of the peaks vary substantially on a 
day-to-day basis, and between the two aerosol species. Fig. 1 indicates that the test 
data set includes sharp (high gradients), broad (low gradients), large magnitude, and 
relatively flat regions. Therefore, we think that this is a well-chosen example. 
Furthermore, we have provided a consistent theoretical and modeling framework that 



can be easily extended to time series of other variables. We have added the following 
text to the Conclusion to make these points more clearly: 
 
- Additions to the manuscript: 
The following text has been added to the Conclusion. 
“These conclusions are based on the two time series we have investigated, which 
included sharp (high gradients), broad (low gradients), large magnitude, and relatively 
flat regions (Fig. 1). However, further work is required to test the generality of the 
conclusions by applying these sampling strategies and post-processing methods to 
different time series types (e.g. cooking organic aerosols, which may display even 
sharper peaks in concentrations). The theoretical and modeling frameworks provided 
in Sections 3 and 4 do not depend on the specific test case in question and can be 
applied to time series of any variable.” 
 
 
** Comment 3 
I suggest to include the average concentration calculated throughout the full 
measurement period as an additional diagnostic, because some post-processing 
methods seem to qualitatively capture the time trend but not the absolute amounts 
respect to the true time series (Figure 5d,e). 
 
- Response: 
We calculated average concentrations over the full measurement periods 
corresponding to the results presented in Sections 5, 6, and 7. In almost all of the 
cases, except the one that we discuss below, average concentrations were reproduced 
to within 10% (and very often to within only a few percent).  
 
The sole exception is the deconvolution result presented in Section 7. Concentrations 
recovered by Tikhonov regularization were found to be systematically lower than the 
true concentrations, resulting in average concentrations 10 - 20% below the 
corresponding true values. We have included a new Figure in the supporting 
information to highlight this result. This calculation further strengthens our 
recommendation of TSVD over Tikhonov regularization, and we now point out this 
fact in Section 6 and the Conclusion.  
 
- Additions to the manuscript: 
The following Figure has been added to the Supporting Information: 
 



 
Figure S6. Percentage deviations of average concentrations over the full time series 
from the true values for different boundary value methods applied to HOA and OOA 
time series constructed by deconvolution with TSVD and Tikhonov regularization of 
staggered measurements of length (∆τ) 4, 6, and 8 hours. κm = 20% and T = 57 hours, 
meaning each data point is an average over 4 (=228/57) time series segments. The 
boundary value methods are full; trunc, truncated; unipad, uniformly padded; and 
refpad, reflectively padded. The vertical bars represent 95% confidence intervals 
determined by bootstrapping the mean estimates. 
 
 
The following text has been added to Section 6: 
“Although the REs are similar, concentrations recovered with Tikhonov regularization 
are generally lower than the true concentrations. As a result, the overall average 
concentrations of time series recovered with Tikhonov regularization are 10 - 20% 
below the corresponding averages of the original time series. The average 
concentrations of the time series recovered with TSVD regularization are very similar 
to the true values (Supplementary Fig. S6).” 
 
And the result has also been referenced in the Conclusion: 
“If a deconvolution algorithm is applied, we recommend using TSVD regularization 
because it resulted in more accurate average concentrations over full sampling 
periods, and marginally better peak capture and REs than Tikhonov regularization.” 
 
 
** Comment 4 
The regularization parameters remain a source of error that cannot simply constrained 
in a real case scenario, when the true time series is (obviously) not known. Are there 
any recommendations for the selection of k and l in the TSVD and Tikhonov methods 
beside looking at when the solution provides a “reasonable” time trend? 
 



- Response: 
Yes, we have added the following discussion to the Supplementary section, which 
references previous work on this topic and describes two common parameter choice 
methods. This Supplementary section is now referred to in the discussion of 
regularization parameter choice in Section 4. 
 
- Additions to the manuscript: 
The following text has been added to the Supplementary information 
“In a real life experiment, the true time series that one seeks to measure cannot be 
known a priori. Therefore, when performing TSVD or Tikhonov regularization, it is 
not possible to choose the optimal regularization parameter corresponding to the aims 
of a given experiment (e.g. the regularization parameter that minimizes the RMSE 
error between the deconvolved and true time series as utilized in this work, or the 
regularization parameter that minimizes the difference between the peak 
concentrations in the deconvolved and true time series if one was mainly interested in 
maximum concentrations). One must select a parameter by calibration to a training set 
similar to the data set of interest, or employ a parameter choice method based only on 
available measurement data.  
 
A number of such parameter choice methods have been devised (Hansen, 1992) and 
implemented in software packages for inverse modeling (e.g. Regularization Tools 
Version 4.1 for MATLAB; Hansen, 2007). Perhaps the most convenient and intuitive 
of these methods is the L-curve criterion, which seeks to balance minimization of the 
solution ( 𝒈 ) and residual 𝑯𝒇− 𝒈  norms. A plot of the solution norm versus the 
residual norm for all valid regularization parameters often yields an L-curve on a log-
log scale. This indicates that beyond a certain point, less filtering of singular values 
produces only minimal reductions in the residual norm, but very strong increases in 
the solution norm (hence the vertical stroke of the L-curve). Examples of such 
solutions are the curve corresponding to k = 53 in Fig. 5d) and the curve 
corresponding to λ = 0.1 in Fig. 5e). The L-curve criterion chooses the regularization 
parameter corresponding to the corner of the L-curve. In other words, the method 
chooses the smoothest solution that produces an acceptably low residual norm.  
 
Cross validation can also be used to estimate the regularization parameter. This 
method amounts to successively leaving out a single element of the measurement 
vector 𝒈, and choosing the regularization parameter that best predicts the left-out 
observations.” 
 
 
** Comment 5 
Figure 6 shows that the error associated with sequential sampling increases with 
increasing sampling duration. Here, it is assumed that measurement errors are 
invariant with sampling duration except for the effect of mass loading approaching 
the detection limit. In the real world, this is complicated by sampling artifact effects. 
A number of studies have shown that extending the sampling time allows for a better 
equilibration of vapors absorbing into the filter matrix (e.g., Kirchstetter and 
Novakov, Atmos. Environ. 2001, 1663-1671), therefore, ME would decrease with Dt 
faster than it is supposed in the present study for many practical purposes (but 
depending on the technique and on the substrate, actually). 
 



- Response: 
This is an important point and we thank the reviewer for raising it. Firstly it is 
important to clarify the difference between systematic measurement artefacts and 
random measurement error, and how we account for these two concepts in our 
numerical model. We assumed that the random measurement error (σ) has both a 
fixed component (σ0) and a relative component depending on concentration (κ*c). The 
random perturbations due to measurement error were assumed to be normally 
distributed about 0 with a standard deviation of σ (Eq. 6). The centering of the normal 
distributions about a mean of 0 amounts to assuming that there were no systematic 
measurement artefacts. We made this assumption because as suggested, measurement 
artefacts depend strongly on the measurement technique in question and even the 
specific materials used (e.g. batch lots of filters) and are therefore difficult to model. 
If known, measurement artefacts for a specific technique could be addressed by 
assuming a non-zero mean of the normal distribution in Eq.6. The time dependance 
discussed by the reviewer could be addressed by making the non-zero mean sampling 
time dependant.  
 
- Additions to the manuscript: 
We have added the following discussion to Section 4 to make our assumption of no 
measurement artefacts explicit, and to discuss how non-zero, time dependant 
sampling artefacts could be addressed in the model: 
 
“By setting the means of the ε distributions to 0 we have assumed that the simulated 
measurements are not affected by systematic measurement artefacts. Systematic 
measurement artefacts depend strongly on the measurement technique in question and 
even the specific batch of materials used (e.g. filter lot). They can be positive or 
negative, and can depend on sampling time (e.g., Kirchstetter et al., 2001; 
Subramanian et al., 2004). If known, measurement artefacts could be addressed in this 
modeling framework by the setting the means of the ε distributions to non-zero, time-
dependant values.” 
 
 
** Comment 6 
Page 10, line 6: “The temporal resolution of f is dt, the temporal resolution of g.” 
There is something missing in this phrase. (Dt?) 
 
- Response: 
We have modified the phrase to "The temporal resolution of f is the same as that of g 
(i.e. δτ)." 
 


