
Response to the reviews of manuscript amt-2015-338.

I am deeply grateful to the reviewers for reading this very long manuscript.

Its lengthiness and the explicit derivation of many scalar equations where matrix equations would
be much more concise is the main objection of reviewers 1 and 2.

There are several reasons why I think this elaborateness is necessary.

Most of the lidar papers lack a thorough error analysis, especially regarding systematic errors. Why
is that, and how can it be changed?

As can be seen from this manuscript, which deals only with polarisation related uncertainties, there
are many different error sources, and it is laborious to consider them all together. I have not seen a
complete  error  analysis  of  lidar  measurements  and  their  products  published  yet.  If  at  all,
uncertainties due to signal and background noise are processed, and in only few cases one or the
other systematic uncertainty is included. The description how the error bars are achieved is often
insufficient and important error sources are often neglected. But we urgently need verifiable error
bars  which  reflect  the  true  uncertainty  without  systematic  biases,  if  we  want  our  data  to  be
assimilated in weather models and used in micro-physical retrieval algorithms, whose outcomes
strongly depend on the uncertainty of the input data. 

The persons which are able to prepare the error analysis of a lidar system are the ones which built it,
because only these persons can be aware of all the error sources which have to be included. But
these persons have enough troubles to deal with the instrumental issues and are often under pressure
of time by the schedule of the project which funds the lidar or by the limited time span for their PhD
study, which must present some new, exiting atmospheric measurements at the end. Usually, there is
no time left for a thorough error analysis, which would cost maybe another year, and for which
there would be only little appreciation value. 

On the  other  hand,  many error  sources  could  already be  eliminated  in  the  design  of  the  lidar
systems, but concise matrix formulas, as proposed by the reviewers, don't reveal the influence of the
individual elements and of the parameters of the matrices. If we want to estimate the importance of
a certain parameter either for system design or error estimation, or to compare different system or
calibration  setups,  it  is  necessary to  expand  the  concise  matrix  equations  as  it  is  done in  this
manuscript, hopefully saving many colleagues a lot of time and mistakes.

There are several papers dealing with one or the other error source, and much could be learned from
publications in the field of ellipsometry. But these publications are not only in another "language",
but in many different "languages", with different assumptions, different definitions and conventions,
different neglects also, which takes a lot of time to sort out what can be used. And then, finally, it
takes again some time to write an error analysis code and to verify that it really works correctly.

To my opinion,  concise matrix  equations  don't  help those which actually have to  run the lidar
systems and do the error analysis.

I admit that such a lengthy manuscript as present here is a burden as well, but it tries to cover the
different variants of the most common type of lidar systems with different calibration techniques,
and it is also meant as a starting point for further developments in the direction of a complete error
analysis and a related open source software. Therefore I want to present all definitions, derivations,
and variants in one paper in such a way, that misunderstandings and mistakes are less probable. The
manuscript is also meant as a reference for future papers, so that the derivations don't have to be
repeated again and again with different  definitions.  The companion paper "Assessment of lidar
depolarization uncertainty by means of a polarimetric lidar simulator " by J. A. Bravo-Aranda et al.
(doi:10.5194/amt-2015-339 ) shows already an application.



Another critique is, that we should "let the computer do the hard part" and use software which can
deal with matrix calculations. The original Monte-Carlo code in the above mentioned companion
paper was written with such a software, and it took orders of magnitude longer than the scalar code
we  wrote  for  verification.  And  this  is  only  the  beginning,  because  we  have  to  include  more
parameters for a complete error analysis and make it somehow operational. The error debugging of
these two codes showed, that a detailed reference for the used equations is necessary. 

Most of the above is already mentioned in the introduction of the manuscript. 

Detailed answers to Anonymous Referee #2:

This analysis includes consideration of different polarization calibration schemes that, as far as I
can tell, the author has previously published.

There is only one publication (Freudenthaler et al., 2009), which presents the basic idea of the Δ90-
calibration in a very reduced form compared to this manuscript, and only for the rotation calibrator.
Section 2 of this manuscript starts from the concept of that paper, and transfers the pure scalar
concept  there  into  the  more  general  context  of  the  Müller-Stokes  formalism  with  adapted
terminology, which serves as an introduction to the following sections.

It belabors a number of topics that have been thoroughly addressed in other published works while
sometimes completely ignoring other  aspects,  creating the false  impression of a comprehensive
analysis.

The published works about these topics I am aware of are mentioned in the introduction. But none
of those includes all the calibration techniques and all the error sources included in this manuscript.
This manuscript describes several techniques in the same mathematical framework and compares
the different advantages and disadvantages. 

Already in the introduction I present the general setup of the sort of lidar systems which is covered
by the presented model. It covers at least 80% of the lidar systems in EARLINET, and I guess this
holds for other networks. I don't see the necessity to explicitly exclude everything which is not
covered.

For all the meticulous steps in this section, there is absolutely no mention of oriented particles or
multiple scattering. In my view, the reader may be given the false impression that this scattering
matrix is somehow comprehensive, which it clearly is not, since it only covers single scattering by
randomly oriented particles.

I  am thankful  for  this  hint.  I  include  Section 13 (see  below),  which lists  the  assumptions  and
constraints of this model:

Assumptions and constraints of the model

1. The correction of the standard signals (Sect. 4) and of the calibration factor (Sects. 5 ff) are
only  applicable  in  scattering  ranges  without  aerosol  or  with  randomly  oriented,  non-spherical
particles with rotation and reflection symmetry as described in Sect. 2.1, and not for clouds with
oriented particles as in cirrus and rain clouds (Kaul et al. (2004); Hayman et al. (2014); Volkov et al.
(2015)). However, the scattering volume for the calibration measurements can be chosen to avoid
oriented particles in the calibration range, and then the calibration corrections in Sects. 5 to 10 can
be applied for the retrieval of the calibration factor η = (ηR TR) / (ηT TT), which itself is general for
the considered types of lidar set-ups in Fig. 1.

2. We assume that the extinction in the range between the lidar and the scattering volume is
polarisation independent and that signal contributions due to multiple scattering can be neglected.



3. We assume that  the atmospheric  depolarisation in the calibration range does not change
between the two measurements  of  the Δ90-calibrations.  This  can be verified by comparison of
standard  measurements  before  and  after  and  maybe  even  between  the  two  calibration
measurements.

4. Not considered are range dependent effects as the overlap function and the range dependent
transmission and polarisation of interference filters and dichroic beam-splitters, which is caused by
the range dependent incident angles on the optics. 

5. We assume that the optical elements of the lidar do not depolarize. Such depolarization can
be caused by variable retardation or diattenuation over the aperture of optical elements, for example
due to crystalline (e.g. CaF2 and MgF2 lenses) or stress birefringence. The latter can be present in all
optical  elements  if  they  are  inappropriately  restrained  in  their  holders.  Larger  optics,  as  e.g.
telescope windows, can exhibit  inherent  stress  birefringence due to  annealing and/or  their  own
weight. Such optical elements can easily be visually inspected by means of crossed polarising sheet
filters before and after the sample.  Furthermore,  non-parallel (converging or diverging) incident
beams  on  optics  with  polarisation  effects  depending  on  the  incidence  angle  will  cause
depolarisation. The manufacturers specification of dedicated polarisation optics should be sufficient
to  determine  the  maximum  allowable  divergence  of  the  incident  beam,  but,  for  example,  the
coatings of 90° reflecting mirrors in Newtonian telescopes are usually not sufficiently specified to
determine their polarisation effects. The depolarising effects of optics can additionally depend on
the state of polarisation of the incident beam.

It is good there is a table of variable definitions, but maybe it would be better to break them up a bit
based on where they are used in the paper. 

Most  of  the  listed  definitions  are  used  in  many  places  in  the  manuscript.  The  idea  of  one
comprehensive list is to make the definitions easy to find in one place. 

Be very clear about the assumptions applied in this work (preferably itemize them or keep them in a
table).

See above, new Sect. 13.

In Eq. (14) (and others) pick a matrix form and stick to it.

The various matrix forms are quoted on purpose in order to avoid mistakes, which would certainly
arise  because  the  definitions  are  different  in  different  textbooks.  It  is  especially  important  to
emphasize that the diattenuation parameter is used in this manuscript and not the diattenuation as in
most other literature and textbooks. 

There really isn’t a reason to evaluate to a scalar equation unless it produces a result that is simple,
concise  and reveals  some previously  not  obvious  fact.  That  is,  evaluating  the  matrices  should
produce a reduction in complexity, not the other way around.

The fully evaluated scalar equations are necessary for the complete error calculation, as described
above. Furthermore, I present for each calibration setup some equations (special cases) which are
reduced in complexity and show the advantages of avoiding certain error sources already in the
lidar design. This analysis of "previously not obvious facts" is continued in Sects. 11 and 12.

Present the overall Mueller equation describing Is (Eq. (64)?), then give the evaluation in Eq. (68),
but get rid of all those coefficients in front, which can just as easily fold into G and H and aren’t
important since absolute intensity measurements are almost never used in atmospheric lidar. 

The "coefficients in  front"  and the absolute  signal  intensities  are  important  for  numerical  error
analysis when we include signal and background noise. 



I don't  want to fold the coefficients into G and H, because G and H are the parameters which
describe the polarization and misalignment dependencies, while the coefficients in front are the
unpolarised  transmittances.  G  and  H  are  simply  1  and  ±1,  respectively,  for  the  ideal  cases.
Furthermore, also for the comparison of different lidar systems in intercomparison campaigns it
makes sense to keep them separate.

The explicit definitions of G and H seem unnecessary. 

With G and H the general Eqs. (62) and (65) can be formulated. This is the reduction in complexity
as required by the reviewer. These general equations are a superset of several equations presented in
other papers considering only a part of the error sources in this manuscript. They are very helpful
for a general lidar data analysis software as described, e.g., in Mattis et al., 2016, EARLINET Single
Calculus Chain – technical Part 2: Calculation of optical products (doi:10.5194/amt-2016-43 ).

Drop the <bra|ket> notation. 

I include after Eq. (43):

This split-up of the equations in an analyser bra-vector and an input Stokes ket-vector is similar to
the split-up in instrumental vectors of the transmitter and receiver in Kaul et al. (2004) and Volkov
et al. (2015). 

The <bra|ket> notation makes it easy to discern between the instrumental vectors of the transmitter
and receiver. It allows for an elegant restructuring of the matrix equations as for example in Eqs.
(133) and (177).

I don’t really understand all this interest in obtaining “correction equations” for scalar polarization
variables. The approach used in Kaul Appl. Opt. 2004, Hayman, Opt. Express 2012, Volkov Appl.
Opt. 2015 and countless other polarimetry papers avoids any need to belabor “corrections” and just
retrieves the relevant scattering matrix terms based on the lidar’s operational parameters”errors” or
whatever you want to call them.

Kaul (2004), Hayman (2012), and Volkov (2015) determine the gain ratio with a calibration in clean
air ranges, where they assume molecular depolarization. This assumption can cause large errors.
Furthermore, the mentioned papers don't describe any error calculation for systematic errors. 

In this manuscript I describe various versions of the more robust Δ90-calibration, which must and
can be corrected for systematic errors,  if  they are not already avoided in the lidar  design.  The
necessary correction equations are described in Sects. 5 to 10. A numerical error calculation code
can directly be written from the given equations. 

In order to make the connections between the standard measurements, the model corrections and the
additional calibration measurements more clear, I included in Section 5 the following figure and
corresponding text:

Figure (4) shows the steps in which the measurements are corrected for systematic errors by means
of the model. If all system parameters (Eqs. (56) and (57)) are known, the cross-talk parameters GS

and HS can be calculated (see Eqs. (68) to (79)) and we only need to determine the calibration factor
η by means of calibration measurements in step 2 and its  correction for systematic errors (step 3) as
explained  in  Sects.  6  to  10.  Under  certain  conditions  some  instrumental  parameters  can  be
determined  by means  of  additional  calibration  measurements  (step  4)  described  under  “special
cases” in Sects. 6 to 10 and in Sects. 11 and 12.



Figure 4: Four steps for calibrating and correcting the standard measurements for systematic errors by means of the 
model equations and additional calibration measurements.


