p—

\S)

O© 0 9 &N Wn b~ W

10
11
12
13
14
15
16
17

18
19

20
21

Supplement
S.A1 Coordinate system and conventions

Miiller matrices describe the effect of optical elements on the Stokes vector with respect to a
coordinate system and using a set of definitions about signs and directions. Different sets of
definitions can be found in the literature as discussed in detail in Muller (1969); some of
which are even inconsistent. The discussions led to the so-called Muller (or Muller-
Nebraska-) convention, which we follow in this paper (see also Hauge et al. (1980)). We use a
right-handed Cartesian coordinate system (see Fig. 7), in wich angles are defined counter-
clock wise, i.e. from the x- to the y-axis, when looking against the z-axis. The local z-axis
points in the propagation direction of the light. We define the reference coordinate system of
the lidar setup by the orientation of the polarising beam-splitter (PBS) in the receiving optics.
Light polarised with its E-vector on the x-axis, i.e. parallel to the incident plane of the PBS in
Fig. 6, is mostly transmitted by a usual PBS, while light with polarisation in y-direction, i.e.
perpendicularly polarised to the incident plane, is mostly reflected. The incident plane is
spanned up by the direction of light propagation (z-axis, propagation vector k) and the normal
of the reflecting surface, which means that the incident plane in Fig. 6 is the x-z-plane). The

parallel and perpendicular polarisations are also called the p- and s-polarisation, respectively.

The orientation of linearly polarised light is defined by the orientation of the plane of

vibration, which contains both the electric vector E and the propagation vector k.

YA
b ,W
E.V

Fig. 6 Definition of the reference coordinate system with respect to the incidence plane of the

polarising beam-splitter.
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Other Miiller matrix measurement configurations may have other arrangements for the
coordinates. All choices, however, are arbitrary, and lead to different Miiller matrices
Chipman (2009b). There is no preferred set of definitions in the literature. According to our

choice of orientation, the diattenuation parameter D ist defined as

_TTp_TTS _ V4 K

T_TTP+T;’AT_Ar AT’
T’ —T )

R~ Rp RS’AR:A;_AR
7 + T,

In order to keep the results of the Miiller matrix calculations consistent when adding
reflecting surfaces as mirrors and beam-splitters in the optical setup, a right-handed xyz-
coordinate system is used with the z-axis in the direction of the light propagation. The vertical

(perpendicular) polarised light has its E-vector in y-direction,

o -. f::;: z’\A

Fig. 7 Reflection of a Stokes vector.
S.2 Stokes vector and Muller matrix

The Stokes vector and the Miiller matrix are one representation of the state of polarisation of
light, which is a based on measurable quantities. The Stokes vector describes the polarisation
state of a light beam, and the Miiller matrix describes how the Stokes vector changes when
passing through an optical volume, which can be an optical element or an atmospheric path
with scattering, absorbing and refracting properties. A Stokes vector can be determined by six
measurements of the flux / with ideal linear and circular polarisation analysers at different

orientations before a detector Chipman (2009a; Ch. 15.17)



O o0 9 N n A

10

11

12

13

14

15

16

I” parallel (horizontal) linear polarizer (0°)

I'  perpendicular (vertical) linear polarizer (90°)
I*  45° linear polarizer

I 135° linear polarizer

I*  right ciruclar polarizer

1" left ciruclar polarizer

The Stokes vector is defined as

1 1" +r
o| | I'-r
U - 5 13
Vv I*-I*

(S.2.1)

(S.2.2)

Right-circularly polarised light is defined as a clockwise rotation of the electric vector when

the observer is looking against the direction of light propagation Bennett (2009a) (see Fig.

X ). Another representation, the so-called modified Stokes column vector Mishchenko et al.

(2002) , uses the horizontally (parallel, p) and vertically (perpendicular, s) polarised fluxes 7,

and /; as the first two Stokes parameters. They can be transformed from the Stokes vector with

a transformation matrix

I, I 05 05 0 0V/[

I 05 05 0 O I =
a2l o|_1,
U U 0 0 1 0||U L=
V |14 0 0O 0 LNV

and vice versa

I I, 1 1 00 I,

0 A I, B 1 -1 0 0},

Ul Ul o o1 o0|U

14 14 0O 0 0 1NV

For fully polarised light, the Stokes parameters fulfil the equation

r=0*+U+1?
and for full linearly polarised light

=0 +U?

(S.2.3)

(S.2.4)

(S.2.5)

(S.2.6)
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S.3 Depolarisation

Depolarisation is closely related to scattering and usually has it origins from retardance or
diattenuation which is rapidly varying in time, wavelength, or spatially over an optical device
(Cornu-, Lyot-, or wedge-depolariser). Depolarisation causes a loss of coherence of the
polarisation state Chipman (2009a). The polarisation vector Ir reflected by the atmosphere
F(a) with linear polarisation parameter a from a generally polarised laser I, is (Sect. 5.32 of

van de Hulst (1981); Sect. 4 of Mishchenko et al. (2002)).

1 0 0 0 ip i
1, (a) =F(a)|MEIL>= 0 a 0 9e \ _ aqg S3.1)
K T.I, kT, 0 0 -a 0 |lug —auy e
0 0 0 1-2a)lv, (1-2a)v,
The linear depolarisation ratio is defined as
Fi-Fy _l-a_ _1-6
= = = a=—2 (S.3.2)
F,+F, l+a 1+6

With a linearly polarised laser with intensity 7, and linear polarisation parameter a, and
rotational misalignment a, i.e. without emitter optics, the laser light reflected by the

atmosphere with linear polarisation parameter a is

1 0 0 0 1 1
L (@0a) Fl|lL(ea) [0 a 0 0 jae, | |ac, (833)
Fu, Fu, 00 —a 0 @152 ~iS2a B
00 0 1-2a) 0 0

It is obvious that the lasers a; and the atmospheres a cannot be discerned in the resulting

Stokes vector, and the measured, combined polarisation parameter is
@ =aa, (S.3.4)

The linear depolarisation ratio ¢’ resulting from a’ can be retrieved with Eq. (12)

6,_1—(1'_ 0+9,

1+a’ 1+66, (535)

For a small linear depolarisation ratio J, of the laser beam, the resulting linear depolarisation
ratio of an atmospheric measurement is about the sum of the lasers and the atmospheres linear

depolarisation ratios
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0, <1=0"=0+9, (S.3.6)

If 6, is unknown, the uncertainty will cause an absolute error of the finally retrieved

atmospheric linear depolarisation ratio.
S4 Retarding linear diattenuator

The diattenuation magnitude D* of an optical element, usually simply diattenuation, is
calculated from the maximum and minimum transmitted intensities / (or transmittances 7)

(Chipman, 2009b), measured by rotating a linear polarising analyser in front of the element:

D_

— max min _ — max min (S4 1)
Imax + Imin Tmax + Tmin

The diattenuation magnitude D* is always positive, and if D* is deduced. from the
reflectances 7%’ and T%' of an optical sample as in Eq. (17), Eq. (S.4.1) becomes Lu and
Chipman (1996)

Tl -T,
2 +T,

L3

D, = (S.4.2)

In order to avoid sign changes in the equations between the cases where 7¢ < Tx* and T¢” >
T, we use instead the diattenuation parameter Ds (Eq. (S.4.3)) (see Chipman (2009b), where
it is named d, or d;), with which all equations can be expressed together for the transmitting
(subscript S = T) and the reflecting (subscript S = R) part of a polarising beam-splitter.

T T
TY +T)°

— TTp _TTS

DSE{DT’DR}’D = =TTp+TTS

(S.4.3)

T

The transmittances for unpolarised light are shown in Eq. (S.4.4), and some often occurring

expressions in Egs. (S.4.5) and (S.4.6).

P +T, T’ +T;
T,=—2—2* T=-"1-L (S.4.4)
2 2
1-D,=T;/T,, 1+D, =T"/T,, 1-D, =T; /T, 1+ D, =T" /T, (S.4.5)
T, 1-D, T; 1-D
=, = (S.4.6)

7 1+D, T/ 1+D,

The optical elements considered here are non-depolarising, linear diattenuators Mp, with

linear diattenuation parameter Do, and average transmission 7p for unpolarised light,

5
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combined with linear retarders Mg, (linear retardance 4o, cosdo = co , sindo = so ). The optical
elements with possibly considerable diattenuation and retardation are dichroic beam-splitters,
which are used to separate the wavelengths and to analyse the state of polarisation of the
collimated beam in the receiver optics. They are used in transmission and reflection. The

matrix of the transmitting part is Eq. (S.4.7) (see Egs. (14, 15))

TV +TS T/ —T: 0 0
-1 1 0 0
Me=3l o 0 2JT'Ticosa 2T/Tsing, |~
0 0 2I/Tysing, 2JT/T cos 4, $47)
1 D 0 0
Pt 0o
0 0 Zec, Zs,;
0 0 -Zs, Zc,

2TIT:

Zr =y NI D e = cosd, sy =sindy, A= 07 —o; (S4.8)

with the shortcuts in Eq. (S.4.8), the intensity transmission coefficients (transmittance) for
light polarised parallel (77°) and perpendicular (77) to the plane of incidence of the PBS, the
diattenuation parameter Dy (see S.3), and the average transmittance 7 for unpolarised light.
Ay is the difference of the phase shifts of the parallel and perpendicular polarised electrical
fields. The Miiller matrix for the reflecting part of the PBS (see Egs. 16,17) includes a mirror
reflection (S.6):

1 D, 0 0 10 0 01 D, O 0
Moop | P ] 0 0 |_,|01 0 0fD 1 0 5.49)
FOR0 0 00 —Zyer —Zpsg| 1O 0 =1 0|0 0 Zgc, Zsp|
0 0 Zis, —Zic, 00 0 —-1)LO0 0 -—Zs, Zic,

with the corresponding intensity reflection coefficients (reflectance) for light polarised

parallel (73") and perpendicular (7%°) to the plane of incidence of the PBS

2TIT:

Z T =‘/1—D§, Cpr=cosd,, s, =sinA,, A, =@y — @, (S.4.10)
R + R

R
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In order to simplify the derivation of the equations, we write in the following for both, the
reflecting and transmitting matrix of the polarising beam-splitter, My (subscript S for splitter)

where appropriate.
Zsel{-Z.,7,}, Mg e{M M, }, I,e{l,,I.} (S.4.11)

eigen-polarisations along the x and y axes

1 D, 0 0310 0 O 1 D, O 0
Mo=MM =T 0 0 2 0 00 o) s 7T 0 ze, zm | G412
0 0 0 Z,)\0 0 —s, c, 0 0 —Zs, Z,c,
As both are linear, they commute (Eq. (S.4.13). They have a block-diagonal structure.
M,=M,M,, =M M, (S.4.13)

Among such optical elements are A/4 plates (Sect. S.10.16), A/2 plates (Sect. S.10.13),
dichroic beam-splitters, polarising beam-splitters, polarising sheet filters , aluminium and
dielectric mirrors, and also uncoated glass surfaces under oblique incident angles. For further

information see Azzam (2009); Bennett (2009a,b); Chipman (2009b,a)
S.5 Rotation
S.5.1 Rotation about the direction of light propagation

Some confusion can arise because rotation about the optical axis can be done on a Stokes
vector, on the coordinate system (coordinate transformation), and on an optical element while
keeping the reference coordinate system. The first two rotations don't change the state of the
circular polarisation, while a rotated optical element can do that. Additional confusion arises
because often in the literature and in textbooks the vector and coordinate rotations are mixed,
or the derivation of the presented final equations from first principles are not provided, and
sometimes the explanatory text is misleading or inconsistent. We follow the notations in
Mishchenko et al. (2002); Chipman (2009b). Rotations are anti-clockwise, from the X-axis

towards the y-axis, seen against the direction of light propagation (z-axis).
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Fig. 8 Rotation of the Xy-coordinate system (left) and of a vector (right). The z-axis, i.e. the

direction of light propagation, points out of the paper plane.

A Stokes vector which is physically rotated by an angle ¢ while the coordinate system is fixed

becomes Mishchenko et al. (2002; Ch. 1.5)

1 1 0 0 0)17 1
0 ¢ —s 0 c —s,,U
1(¢)=R(9) ol A Q1| Q5 (S.5.1.1)
U 0 s, ¢ OJ|U $,,0 +¢,,U
V 0 O 0 1)\V |4
with the rotation matrix R(a) and the abbreviations
Cyy =C082¢, 8,,=sIn2¢ (S.5.1.2)
and
1 O 0 O
0 ¢, —s5 O
R(¢) =
(@)=, S e 0 (S.5.1.3)
0 O 0 1
1 0 0 O
0 —c s 0
R(90°+¢) = T (S.5.1.4)
( ) 0 —-s,, —Cy O
0 0 0 1
1 0 0 0
0 —xs,, —xc,, 0
R($45°+¢)=R(x45°+€)=R(x,€) = (S.5.1.5)

0 xc,, —xs,, 0
0 0 0 1

With these definitions a formula for one rotation can easily be converted to other angles with
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b d - 0°+¢ “ +45°+ ¢
R(¥) - R(e) < R(x45°+¢)

1 0 0 O 10 0 O 1 0 0O 0
0 Cop —Spp 0 0 ¢ =5, 0 0 —xs,, —xc,, 0
0 s: CZ:” ol 1o s; czi ol <o XC; _XS; 0 (S.5.1.6)
00 0 1 00 0 1 0 0 0 1
Coy - Cae « —XS,,
Sy - S2¢ « XC,,

Please note, that in Mishchenko et al. (2002; Ch. 1.5) the equations describe a rotation of the
Stokes vector, while the text specifies the transformation as "rotation of the two-dimensional
coordinate system". The two transformations are called "alibi" and "alias" transformation
Steinborn and Ruedenberg (1973), respectively. The Stokes vector rotates contra-variantly
under the change of basis. If we rotate the coordinate system (alias transformation) by an

angle ¢ (see Fig. 8), the original Stokes vector I appears in the rotated coordinate system

under the angle —¢, and the Stokes vector I' in the rotated coordinate system is Eq. (S.5.1.7).

I’ 1 0 0 0)1I 1
! 0 ¢ S 0 c +s,, U
= Q, —R(—Q))I— 2¢ 2¢ Q _ 2¢Q 2¢ (S.5.1.7)
U 0 —s,, ¢, O(U =8,,0 +¢,,U
v’ 0 O 0o 1)V V

The rotation of the polarisation of a Stokes vector can be accomplished by means of a A/2

plate (HWP), which is a 180° linear retarder. An ideal HWP can be derived from Eq. (S.5.2.3)
by setting 4, =180°, D=0 = Zo=1and Wy =2, and Tp = 1:

1 0 0 0 1 0 0 0
0 1-2s,.° 2s,.c 0 0 ¢ S 0
MHWP((/’): 2¢ 26 2¢2 — 0 4¢ _4¢ 0 —
0 2s,,c,, 1-2¢,,7 0 S4p  ~Cuy
0 0 0 -1, \0 0 0 -l
(S.5.1.8)
1 0 0
0 1 0
=R(2
(20) 00 -1 0
00 0 -1

A HWP rotates a Stokes vector by twice the own rotation and additionally changes the

direction of the circularly polarised component. For a rotation of ¢ = 90° the HWP acts as a



whn A W N

10
11

12

13
14

15

mirror but without changing the direction of light propagation. Real HWPs are often made of
birefringent crystals. Their retardance depends in general on the wavelength, on the incident
angle, and on the temperature. For lidar applications so-called true zero-order HWPs are best
suited. The HWP rotator and the mechanical rotator can be combined in one matrix M,,, as

shown in S.10.15.
S.5.2 Rotation of a retarding diattenuator

The rotation of an optical element with Miiller matrix My by an angle ¢ about the direction of
light propagation is mathematically performed by first rotating the coordinate system before
My by —¢, to achieve the description of the Stokes vector in the local coordinate system
(eigen-polarisations) of My , and then rotating the coordinate system behind M, back to the

reference coordinate system by ¢ using the rotation matrix R(¢)

M, (¢) =R(¢)M, (0°)R(-¢), (S.5.2.1)

Figure 9 Rotation angles of an optical element. The rotations considered in this work are only

¢,and ¢,.

A linear retarding diattenuator My, rotated by ¢ about the z-axis becomes

10
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1 0 0 0 1 D, 0 0 1 0 0 0
_7 0 ¢, =s 0D, 1 0 0 0 ¢y 8 Of
S0 s, oy Ol 0 0 Zocy Zoso |0 sy €y O
0 0 0 1 0 0 _ZOSO ZOCO 0 0 0 1 (8522)
1 54D, 82400 0
_7 55Dy 1—sz¢2W0 $20C20Wo  —825Z0S0
—ro
$,0D0  825C2,W0 l—cszO C25Z0S0
0 $20Z080  —€25Z0S0 Z,c,
C,, =C€0820,8,, =sin2¢,c, =cos4,,s,=sin4,, Z,= l—DOZ, W,=1-Z,, (S.5.2.3)
Without diattenuation we get
D,=0= Z,=y1-D, =1, W, =1-c¢, (S.5.2.4)
and with ideal diattenuation
\D,|=1, Z,=41-D," =0, W, =1 (S.5.2.5)
Rotation of a retarding diattenuator by +45° + ¢
M, (x45° +£) = R (x45°) M, (£) R (—x45°) =
1 0 0 0 1 c,.D, s,.D, 0 1 0 0 O
_7 0 0 x 0fc,,D, 1—s§€W0 $5:C Wy —$,,205, |0 0 —x O 3
%0 —x 0 0| s,D, syC M, 1-cIW, c,Zs, ||[0 x 0 0|
0 0 0 1 0 $5:2050 —C2.ZpSo Z,C, 0 0 0 1 (S.5.2.6)
1 xs,, D, —xc,.D, 0
xs,,D, 1-c;, W, —=s,.c,.W, xc,,Z,s
:TO 260 2¢"7 0 2e 225 o 26070 :R(S)MO(X450)R(—€)
—XCy Dy =830 Wy 1=, W5 X85, 208,
0 —XCy, 28y  —XS,.Z,5, ZC,
Without error angle &:
1 0 xD,, 0
0 Zyc 0 —xZss
M, (x45°) = R(x45°) MR (-x45°) = X e o0 8.5.2.7
0( ) ( ) o ( ) o XDO 0 1 0 ( )
0 xZ,s, O Z,C,

11
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S.6 Mirror

For a pure mirror without diattenuation or retardance the Miiller matrix is

1 0 0 0
01 0 0
M, = 6.1
Molo o0 -1 0 (5.6.1)
00 0 -1

which results from the rotation of the detector (the eye) about the y-axis from the rear of the

optical element to the front as shown in Fig. 10.

Figure 10: Reflection of light by a mirror. The light propagation is along the z-axis. The plane
of vibration of linearly polarised light is indicated by the E-vectors, and right and left circular

polarised light by the RC and LC arrows, respectively.

To explain the change of the axes, let the plane of vibration of linearly polarised light be
rotated in the (xyz) coordinate system by ¢ around the z-axis, indicated by the E -vector in
Fig. 10, and the incident angle be x = 0 for reflection from a mirror. After the mirror the

direction of light propagation has changed, but not the orientation of the plane of vibration,
indicated by the E'-vector. Hence, the rotation ¢’ in the mirrored coordinate system (xyz)' is ¢’
= 180° — ¢, which is equivalent to ¢’ = —¢ . Thus a Stokes vector rotated by R(¢9) in (xyz) is

described in (xyz)' after the mirror My, by

I=M,R(¢)I =R(-¢)M,,I (S.6.2)

12
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Furthermore, the circular polarisation has changed its sign from right circular (RC) before to

left circular (LC) after the mirror.
S.6.1 Real mirror

Real mirrors are dielectric or metal surfaces which can exhibit considerable phase retardation
and diattenuation under oblique incident angles. Hence, a real mirror is a linear retarding

diattenuator My combined with a mirror M.

MMO_
1 0 0 0Y 1 D, 0 0 1 D, 0 0
_7 01 0 0D, 1 0 0 _7 D, 1 0 0 (S.6.1.1)
S0 0 -1 00 0 Zye, Zys,| °l 0 0 —Zyc, —Zys,
0 0 0 —-I){LO0 0 —Zs, Zy, 0 0 Zs, —Zyc,
which commute
Mo =M,M, =M;M,, =M,,, (S5.6.1.2)

Eq. (S.6.1.1) is also the description of the reflecting part of a polarising beam-splitter or of

any dichroic beam-splitter.
S.6.2 Rotation of a reflecting surface

If we rotate M0, we have to mind the change of the coordinate system after the mirror. Here
it is important which element comes first, because, as explained above, applying a mirror
means a change of the local coordinate system after the mirror, and rotation of elements are
always done with respect to the local coordinate system before the element. Hence, a

diattenuator rotated in (xyz) plus a mirror described in (xyz)' is using (S.5.1.5) and (S.6.2)

M, M, (¢) =M, R($)M,R(~9) =R(-¢)M,MR(~¢) = R(-¢)M, ;R (-9) =

S.6.2.1
=M, (¢) (
Moving the mirror before the diattenuator
M, (9)M,, =R($)MR(-9)M,, =R(¢)MM,,R(9) = R(¢)M,, R(¢)
(S.6.2.2)
=M, (_¢)
we see from (S.6.1.2) to (S.6.2.2) that
M, (¢)MM =M,,, (¢) =M, M, (—Q)) =M,, (_¢) . (S.6.2.3)

13
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This explains why the rotation of a reflecting diattenuator has to be described as shown by

Chipman (2009b) , i.e.:

M,, (¢) =R(¢)M,,R(9). (S.6.2.4)
S.6.3 Beam-splitters and mirrors in the optical path

In order to make the equations developed in this work applicable to a variety of lidar systems,
we have to investigate how the equations are changed when individual elements are changed
from transmitting to reflecting. This is also useful when the reflected and the transmitted paths

after a beam-splitter are to be described with the same equations.

Above we showed the local coordinate change behind a mirror. But how does this effect the
outcome of a lidar measurement and of the calibration measurements? Let's consider a chain
of rotated optical elements using the eigen-polarisations of the polarising beam-splitter matrix

Mg as the reference coordinate system

I, =n,M M, (y)M, ()M, (¢)FI, (S.6.3.1)

m

When we exchange M, with its reflecting counterpart My, M, we can move the ideal mirror

M, step by step to the right in the chain using (S.6.2.3)

I; =n,MM, (y)M,,M, (¢)M, (¢)FI, (&) =
=1n,M;M, ( ) ( ¢)MMM1 (E)FIL(O‘)
=1;M,M, (y)M, (—¢)M, (~£)M,,FI, () = (5632
=n,M;M, (y )M, (—¢)M, (—€)FI . (—)

and see that all rotation angles before the changed element are inversed. In the last step of Eq.
(S.6.3.2) the depolarising atmospheric F-matrix is rotational invariant, and the circular

polarisation of the input Stokes vector changes its sign, indicated by the star.

In other words: equations, which are derived for the system in Eq. (S.6.3.1), can be used for
the system with an additional mirror as in Eq. (S.6.3.2) by inverting in the original equations
all rotation angles before the mirror and reversing the circular polarisation of the input Stokes

vector. In case two surfaces are changed from transmitting to reflecting as

I{=n MM, (y)M, M, (¢)M, (e)FM I, =
=1sMM; (y)M, (-¢)M, (-€)M,, M, FI, = (S.6.3.3)
=775MSM3 (Y)Mz( ¢)Ml( )

14
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where a mirror is additionally placed behind the emitter optics, only the rotation angles
between these two elements are inversed, because MM, = 1, and the circular polarisation is

not changed.

Real mirrors are usually dielectric or metal surfaces which can exhibit considerable phase
retardation and diattenuation under oblique incident angles. For incident angles smaller than
the Brewster angle the phase changes for p- (parallel) and s- (perpendicular) polarised light

are "in the same direction".

S.7 Standard atmospheric measurement signals
S.71 Lidar signal with rotational error before the polarising beam-
splitter

General case with arbitrary laser input and emitter optics Ir = Mg I, and R(g,h) from Eq.

(S.10.15.1):

1 0 0 0
0 c —hs 0
AJ=(M.R |[R(eM. =T.{1 yD. 0 0 2 2 =
(As|=(MR,[R(e)M, =T (1 yD; 0 s, hc, O (S.7.1.1)
0 0 0 h

=T <1 C,.yDs  —hs, yD; O|
Analyser vector from Egs. (S.7.1.1) and input Stokes vector from (E.31) yield

<MSRy \ R(e)M,|M, (y)F(a)M,I,)
TST TOEITEIL

rot

: iy +D0a(czqu —szqu)

¢,,yDs Cyy Doy +aq, —s,, [Woa(szqu + czqu) +Z,8, (1 — 2a)vEJ ~

—hs,, yDs S5, Dol — auy +¢,, [Woa(szqu + c2yu5) +Zy8,(1- Za)vE} B
0

Zosoa(szqu + czqu) +Z,c,(1-2a)v,
= (1 +YDsDoCoy e )iE ~YDsZ 8082y n2eVe *
+a {Do (CquE - Szy”E) +yD; [(Cze‘h + hszg”E) ~ 82y 4n2e (Wo (SquE + Czy”E) =278,V )}}

(S.7.1.2)

15



y=0=
(MR, |R(£)M,|M, (0)F(a)M,1, )
TST TOEITE]L

rot

= (14 YDsDyC 1, )iz = YDZoS 812eVe + (Do +¥DsCo, )i+ YDs8 10 Zo (St + 2507, )}
(S.7.1.3)
y=e=0=
<MSRy \ R(0)M, |M,, (0)F(a)M,1,)
L1, ToR T,

rot

(S.7.1.4)

=(1+yDyD, )i, +a(D, +yDy)q,

Yy =-he =
<MSRY‘R(8)Mh IM,, (~he)F(a)M, 1, )
TST TOEITEIL

rot

= (1 + yDSDO)iE + a(DO + yDS)(czqu - szqu)

(S.7.1.5)
With horizontal linearly polarised emitter input Stokes vector I
i,=Lqg,=Lu,=v,=0=
(MR, [R()M,M, (y)F(a)|l 1 0 0)
= (S.7.1.6)

TST TOElTEIL

rot

=1+ yDgDCoy ppe + a{DOCZy +yD (025 - Szy+hzeszyWo)}
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With rotated, linearly polarised laser and emitter optics

g, =Lu, =0,y,=0=

(MR, |R(e)|M, ()F ()M, (B)1, (cx)) _
TSTOEITEIL

=1+ DECZa—zﬁ + st {Doczs+2y (1 + DECZa—Zﬂ ) + Zososzg+2yZESESZa—2ﬂ } +

Do |:C2y (CZﬁDE +Cyp t SzﬁWEsza—Zﬁ ) - 527 (SzﬁDE +8, — C2ﬁWESZa—2ﬁ ):| +

+ [Cza (CZﬂDE TCp t SZ,BWESZa—zﬁ ) +8, (SZﬁDE +85, — CzﬁWESZa—Zﬁ )] -
a =

+yDy . w, (szy (czﬁDE +Cop +5,5WS55 25 ) +c,, (szﬁDE +8,, = CosWiSs0 25 )) +
242y
+ZZOSOZESES2%2[,

= (1 + cZy+2£yDSDO)(1 + C2a—2ﬁDE) + SZy+2£S2a—2ﬂyDSZOSOZESE +
DO (CZa—Z}/ + CZ,B—Z;/DE + SZﬂ+27SZa—2ﬁWE) +
(Cza—zg + czﬁ—ngE + sZﬂ—2£S2a—2ﬂWE) -

+st _Szy+25Wo (52a+2y + 52ﬁ+2yDE - CZﬁ—Zysza—zﬁWE) -

_827+2£S2a—2ﬁ 2ZOSOZESE

+a

(S.7.1.7)
q, =Lu, =0,v, =0Ay=0=
(MR R ()||M, (1) F(a)M, ()1, (@)
TSI\ Ty -
- (1 + CnyDSDO)(l + CZa—ZﬁDE ) + SZSSZa—ZﬁyDSZOSOZESE +
Dy (Caq +Cop Dy 83585 25y )+ (S.7.1.8)

(Cza—zg + Czp—ngE + Szﬁ—zssza—zﬁWE) -

+yDg | =8, W, (SZa +8,5D; _CZBSZa—z,BWE) -

+a

82680028 27,802 Sk

q, =Lu, =0,v, =0,e=-y =

(MSR,R ()] M, () F(a)M, (B)1, () _
T:S‘TOFIITEIL

=(1+ yDSDO)(l +Coyrp Dy ) +

+a {DO (C2a—2y + C2ﬁ—2yDE + S2ﬁ+2y82a—2ﬂWE) + yDS (C2a+2y + C2ﬁ+2yDE + S2ﬁ+2y52a—2ﬂWE )}

(S.7.1.9)
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q,=Lu, =0,v, =0,e=y=0=

(MR R()|[ Mo (1) F ()M, (B) 1, () _ $7110)
7TS‘IZ)};;]T‘EIL o
= (1+yDyD, ) (1455 Dy ) + (D + YDy ) (€0 + 1Dy #8558 057 )
S.7.2 Lidar signal with rotational error before the receiving optics
With Eq. (D.7) for the analyser part and (E.26) for the general input vector we get
<AS (y’y)| ‘Iin,s (g,h,a)> — <MSRYM0 (7/)‘ |R(8)MhF(a)IE> —
7jS‘TO T;atFIlTEIL TSTO TrotFilTE]L
1+yc,, DDy i
B ¢, Do + yD (1 - SgyWo) a(qECZS + h”Eszg)
Sy (Do + yCZYDsWo) a(qpsz. —huge,,) (S.7.2.1)
_ySZyDSZOSO (1 — 2a)hVE
= (1+ ye,, DyDy )iy = ¥, DsZ 8 ohvy, +
.\ D, [czy_zng - szy_zghuE] —yDW,s,, [szy_zng + czy_zghuE] +
a
+yDq [chze +hu,s,, + 2sZyZos0hvE]
Comparison with Eq. (69):
e=0=>
(MR M, (7)] R (e)M,F(a)1,) _
LT, Lo b T,
= (1+ ye,, DoDy )iy = y85, D ZoSohv, + (8.7.2.2)
D, [CquE - S2yhuE:| —YDWos,, I:SquE + CthuE:I +
+yDg [qE + 2s2yZosohvE]
y=0=
MR M, (7)||R(&)M,F(a)l ‘ (S.7.2.3)
< : T};Too ‘ | ];otﬁlllTEIL E> = (1 + yDODS )lE +a (DO + yDS)[CZSqE + SZshuE]
S.7.3 Lidar signal with rotational error behind the emitter optics

We get the equation for this case directly from the previous one considering that moving the
matrices for the rotational error from before the receiving optics to behind the emitter optics

just changes the sign of the angle € using Eq. (S.6.2)
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(As (v7.0)[| 2.0 (e.0)) _ (MRM, (7)F(a)|[R(e)M, 1, )

TOTS‘EI T;'otTEIL TOT:SFII 7—;fotIWEIL (S 7 3 1)
_ <MSRyMO (’}/)R(—E)Mh HF(a)IE> _ <AS (y9y)| ‘Iin,s (_8’h’a)>
TOTSF;ITZ'otTEIL T:S‘TO ]TrotF;lTEIL
S.8 Attenuated backscatter coefficient

Attenuated backscatter coefficient /7, derived from the transmitted signal /r

I I H,—-6H.)I
L1, F T, = G TH = 5*GT G = *( = T*) d
R N A (Hy—6"H,)G, +(8°G, — G, ) H,
" H,-8H, "
L7 (S8.8.1)
1
_ R -
(HR_6*HT)IT (HR T][T HTJIT HR[T_T][RHT
- HRGT _HTGR - HRGT _HTGR - HRGT _HTGR
With = nxTr / nrTr we get the attenuated backscatter coefficient
HRIT_nTTT HTIR HR IT _HT IR
1 Ne1% _ 1 N1, Ne1% (8.8.2)

11

_nTTTTOIL HRGT_HTGR TOIL HRGT_HTGR
S.9 Rayleigh calibration

Calibration in ranges with presumably known aerosol depolarisation:

With some lidar systems the calibration factor is determined in a measurement range with
known linear volume depolarisation ratio d, for example in clean air 6™. Assuming, for the
sake of simplicity, an ideal PBS (see Eq. (28)), we get with Eq. (26) for the calibration factor

in clean air ™

117, w1 I
=—2R(Q° =—Rr(p°

5°(0°)
Assuming further that the errors in /z and /r are independent, which could be the case if the
background subtraction or nonlinearities in analog signal detection are the main error sources
for them, we get as a first estimate for the relative error of the calibration factor
An" _ Ad™ N Al N Al

T’m 6m IR IT

(S.9.2)

This error can easily become very large. The linear depolarisation ratio measured in a volume

of air molecules 0™ depends on the width of the interference filters, as they transmit or reject
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some rotational Raman lines, and on the atmospheric temperature Behrendt and Nakamura
(2002). At 355 nm 0™ can range from about 0.004 to 0.015. Errors in the order of some 10% in
o™ are already possible in case the wavelength dependence of the transmission of the IFF or its
tilt angle in the optical setup are not known accurately. Furthermore, a small contamination of
the assumed clean air with strongly depolarising aerosol as Saharan dust or ice particles from
subvisible cirrus can change the volume linear depolarisation ratio dramatically. Assuming a
small backscatter ratio of 1.01 due to particles with & = 0.3 and with 0™ = 0.004, we get Biele
et al. (2000) a real 0 = 0.01* ¢* + 0™ = 0.007, which would cause a relative error in the
calibration factor #™ of (0.007-0.004)/0.004 = +75%. Better than this "clean" air calibration
would even be to use a calibration in a cirrus cloud with ¢” between let's say 0.3 and 0.5, with

a resulting calibration factor error of "only" +-0.1/0.4 = +-25%.

Summary of this chapter: Depolarisation calibration with presumably known atmospheric

depolarisation can cause very large calibration errors.
S.10 Some Miiller matrices
S.10.1 Depolariser

A diagonal depolariser Mpp (Chipman, 2009b)

(S.10.1.1)

S O & O
S o O O
o O O O

partially depolarises the incident light depending on its state of polarisation. For atmospheric
depolarisation by randomly oriented, nonspherical particles with rotation and reflection
symmetry it can be shown that » = —a and ¢ = (1 — 2a) (van de Hulst, 1981; Mishchenko and
Hovenier, 1995; Mishchenko et al., 2002) (see also Sect. 2.1), which results in the

backscattering matrix

F, 0 0 0 10
O e (S.10.1.2)
0 0 —-F, 0 0 0 —-a
0o 0 0 F, 00 0 1-2a
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S.10.2

Rotation matrix for various rotation angles

1 0 0 0 1 0 0 0
R(¢)= 0 ¢ -85 O L R(x0)= 0 ¢, -—xs5 0
0 s, ¢, O 0 xs,, ¢, 0
0 0 0 1 0 O 0 1
(S.10.2.1)
1 0 0 O
0 0 x 0
R(x45°) =
0 x 0 O
0 0 0 1
1 0 0 o0
0 —xs,, —-xc,, 0
R(x,e)=R(x45°+ &) =R(x45°)R(e) =R(e)R(x45°) = (S.10.2.2)
0 xc,, -xs,, 0
0 0 0 1
See Supp. S.10.15. regarding the half-wave plate rotation.
1 0 0 O 1 0 00
-1 0 0 0y 00 R(y=-1)=R(90°)
R(90°) = , R, =R(y)= = 10.2.
(50°) o -1 of BTRWEIG 5y 0|7 Riy=+)=r(e) $1029
0 0 0 1 0 0 01
$.10.3 Retarding linear diattenuator
MO = MDMret = MrelMD =
1 0 0 O 1 D, 0 O 1 D, 0 0
_ 01 0 O T D, 1 0 0 _7 D, 1 0 0 (S.10.3.1)
00 ¢, s,|°0 0 Z, 0] °l0 0 Zgc, Zs,
0 0 -s, c, 0 0 0 Z, 0 0 -Zs, Zxc,
T;_T(; 2
= , Z,=1-D,, W,=1-Z,c
Oty o e o (S.10.3.2)
c0=cosAO=cos((p£—(pg), So =sin 4,
-1<D,<+1= 0<Z,<1, 0<W,<2 (S.10.3.3)
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S.10.4 Rotated, retarding linear diattenuator

M, (x¢) =R(x¢)M,R(-x¢) =

1 0 0 0y 1 D, 0 0 1 0 0
_7 0 ¢, —xs5 O} D, 1 0 0 0 ¢, X8y
°l0 X855 € O O 0 Zyc, Zpso |0 —XSy, €y
0 0 0 IO 0 —Zssp Zyco AO 0 0
1 5Dp X8,,Dp 0
_T. c,yDp  1=s3,, xsz‘pcszO —X8,,Z S0
X8,,Dp  X8,,C0, Wy 1=¢3, Wy €320,
0 X8,5Z050  —C25Z050 Z,c,
S$.10.5 Rotated, retarding linear diattenuator mirror
M, (X¢) = R(X¢)MM0R(X¢) =
1 0 0 0 1 D, 0 0 1 0 0
_r 0 ¢ —xs5 0D, 1 0 0 0 ¢ —XSy,
°10 XS,  Cy O O 0 ZoCo —ZoSo |0 X8y, €y
0 O 0 INO0 0 Zs, —Z,ec, O 0 0
1 5Dp —X8,,D, 0
_r CpDpy 1- s§¢WO X85, W0 X8,,Z080 ~
so X8,0Dp  X8,4C,,W, —(l—c;,WO) ~C24Z 050 B
0 X8,,Z050 C26Z0S0 —Z,Cp
1 ¢,,Dp X8,,D, 0 1 0 0 O
7 cDp 11— s§¢W0 XSMCZMWO —X82,Z050 |0 1 0 0
X8,,Dp  X8,,CosWy  1=C3 W, €520, |0 O -1 0
0 X855Z0S0  —C€25Z0S0 Z,co 00 0 -1

-_ o O O

— o O O

(S.10.4.1)

(S.10.5.1)
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S.10.6

M, (x45°+¢) =
1 0
0 —xs
— TO X 2¢e
0 xc,,
0 0
1
=7, —x8,.D,
XCZEDO
0
S.10.7

M, (x45°) =T,

S.10.8

145° rotated retarding linear diattenuator including error &

R(x45°+ )M, R(-x45°—¢) =

0 0y 1 D, 0 0 1 0
-xc,, 0| D, 1 0 0 0 —xs,,
-xs,, 0| 0 0 Z,c, Zss, |0 —xc,,
0 1IN0 0 —-Zs, Z,,)\0 0
—x8,,D, Xc,, D, 0
1= W, =8, W, —x¢,.Z,5,
=8, W, 1=83W,  —x8,.Zs,
XCy ZpSy  XS,.2,8, Z,c,

#45° rotated retarding linear diattenuator

1 0 xD,, 0
0 Zy, 0 —xZ,s,
xD,, 0 1 0

0 xZ,s, O Z,c,

Rotated, ideal linear polariser and analyser

Note: without absorption 7, = 0.5.

D,=1,Z,=0,W,=1=

I 1

S o =

0 0

XS5, €y

0 0

Cyy
2

Cyy Cy

XS5,  XSp,Cop

0 0

TP

1 0
0 ¢, -—xs O
0 0
0 1

0 0) [I\ /1
0 0| |1\/1
0 0| |o/\0
0 0) |0/ \O
)MPR(—xq’)):
TP
I\ /1|(1 0 0 0
1 10 ¢, xs5 O
0/\0[[0 —xs,, ¢, O
0/ \0\0O 0 0 1
XS, 0 1 1
X8,4Cp 0} Cop Cop
s;) 0] [x8y [\ XS,
0 0 0 0

Xcza

—XS,,

- O O O

(S.10.6.1)

(S.10.7.1)

(S.10.8.1)

(S.10.8.2)
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(o)

1 0 x O 1 1
MP(X450)_ 00 0 0] (01/0 $.10.83
T, lx 01 0 [x/\x (5.10.8.3)
0 0 0O 0/ \0
1 -1 00 1 1
M, (90°) _ -1 1 0 0 _ -1\/ -1 (S.10.8.4)
T, 0 0 0O 0 0 S
0 0 0O 0 0
D,=1,Z,=0W,=1=
I x 00 1 1
MP(45°—X450)_ x 1 0 0] |x\/x (S.10.8.5)
T, oo o0 o] |0/\oO
0 0 0O 0/ \0
D,=1,Z,=0W,=1=
M, (x45°+ &) =R(+&)M, (x45°)R(-¢) =
1 —X8,, Xc,, O 1 | (S.10.8.6)
5 .10.8.
—XS,, Sae —5,¢C0¢ 0 —XSy, —XSy,
= 2 =TP
XCZE _SZECZE 025 0 XC28 XCZE
0 0 0 0 0 0
D,=1,Z,=0W,=1=
1 1 ||, 1
M, (x45°+¢)1, PRV C | A W e P [i. (50 — ot )] (S.10.8.7)
TP]in XC2€ XCZE uin XCZE " e e
0 0 ||v, 0
MP(X45°+8)F(a)Im B
TPFIIIin
1 1 1 0 O 0 i, 1 (5.10.8.8)
_[XSae \ [ xSy 0 a 0 0 |9, | XSa [i sy, +on )] .10.8.
XC28 XCZE O 0 —a 0 Uin XCZE in 2¢ein 2e%in
0 0 {0 0 0 1-2a)v, 0

24



F(a)M,(x45°+¢)1,

TPElIin
10 0 0 1
0 a O 0 ||—xs,,
00 —a 0 | xc,
00 0 1-2a)| 0

(S.10.8.9)

14, 1
XSy ||Din \ _ | TXASy, .
- lin -X (SZEqin - CZ(:‘uin)
XCoe ||Uin —Xac,,
0 || 0

For the 0° and 90° measurements with a perfect polariser M, we get from Eq. (S.10.8.1) and

Eq. (S.12.2)

for D, =1,Z,=0,W, =1
M, (—x45°+45°+¢)l, =

170

1 XCZE XS28 0 iin iin +X (C2£q[n - S28uin)
T XC,, czg 5282(:28 01(g., T XC,, I, + cigqm + szgczzgum _
XS2£ S2€C2£ SZe O uin XSZé‘iin + SZECZEQin + SZsuin
0 0 0 0)v, 0
iin + X(CZEQM - SZsuin) 1
= Tplm XCZSZin ’ ng (CZEQin - SZeuin) = Tplm I:iin +X (Cquin - SZeuin ):I Xczg
XSZEiin + SZ&‘ (CZSqiiz - SZSuil1) XSZS
0 0
S$.10.9 Two rotated retarding linear diattenuators
M, (¢)M,(y) =
=R(¢)MR(-¢)R(y)M, R(-y)=
:R(¢)MA R(7_¢)M0 R(_7):
=R(9)M, R(y-¢)M, R(-7)R(¢)R(-¢)=
=R(¢)M, R(y-¢)M, R(9-7)R(-9)=
:R(¢)MA Mo (}/—¢)R(—¢)
M, ()M, (7) _
TATO
1 cMDA s2¢DA 0 1 czyDO szyDO

2 2
C oDy 1=83,W,  83,Co Wy —835Z,8, || €D 1=83, W, 8,6, W,

SZ¢DA Sz¢C2¢WA

0 SYWLY

1—c§¢WA

_02¢ZASA

2
Cowl iS4 || 82 D0 85,6, Wy 11—, W,

Z,.c, 0 $5,Z080 €3, 2080

(S.10.8.10)

(S.10.9.1)

0
_SzyZoso
CZ;/ZOSO

Z

oo

(S.10.9.2)
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The first row vector of Eq. (5.10.9.2)

(M, (0)M, (v)]
IT,
1+¢,,,,D,D, 1+c¢,,,,D,D,
c,, D, + (l - sﬁyWO)cMDA +5,,C,, WSy, D, ) ¢,, D, + (CZ¢ - s2y527_2¢W0)DA (8.10.9.3)
S5, (DO + 027W002¢DA) + (1 - cﬁyWo)sz(pDA - 8,,Dp + (52¢ + czyszywao)DA
—SzyZOSOCMDA + czyZosOstA —szy_MZOsODA
S$.10.10 Cleaned analyser (polarising beam-splitter with additional

polarising sheet filters)

The intensity transmission of analysers is proportional to a certain state of polarisation before
the analyser, with arbitrary state of polarisation behind, while the output of polarisers is a
certain state of polarisation regardless which state of polarisation exists before the polariser
(Lu and Chipman, 1996). Here we use a polarising sheet filter, which is a depolarising
analyser and a depolarising polariser at the same time, to get rid of the cross talk of the
polarising beam-splitter. The combined matrix of a polarising sheet filter M behind the
polarising beam-splitter Ms is again the matrix of a retarding linear diattenuator, which we
call a cleaned polarising beam-splitter. If M, is rotated (misaligned) by ¢ we get from Eq.
(S.10.9.3)

y=0=
(M, (6)M(0)] (S.10.10.1)
=(l+¢,,D,D; Dyte,,D, s,,D,Zscs 5,,D Zs;

TATS

y=0,p=0=

M, (0)M;, (0 110.10.2

< A() S( )‘:<1+DADS DD, 0 0 (S.10.10.2)
T,T;

Y =0,0=90°=

M, (90°) M (0 10.10.

(M, (90°) S()‘:<1—DADS D,-D, 0 0 (S.10.10.3)
T,T;

Typically the manufacturers' terminology is as Eq. (S.10.10.4) and their specifications for
polarising sheet filters are the transmission of two crossed filters Eq. (S.10.10.6) and that of

two parallel filters Eq. (S.10.10.7) of the same type.
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T’ =k and TS =k, = (S.10.10.4)

k —k 2\ kk k +k
D="—2 Z, =" T =""2 (S.10.10.5)
k +k, k +k, 2
chross = H9O = k1k2 = TA VI_DA2 (810106)
T paier = Hy = O~5(k12 +k22) =T, \/1+DA2 (S.10.10.7)

For the extinction ratio p (see Bennett (2009a), Sect. 12.4) and its inverse, i.e. the contrast
ratio or transmission rato, different definitions, as in Eq. (S.10.10.9), can be found in
manufacturers' descriptions, which is sometimes confusing. However, usually k, << k;, and
the given extinction ratios are then to be understood as "on the order of", irrespective of the

used formula.

k
p=-= (S.10.10.8)
kl
k, <k =
Toose _Ho Kk, 2p (S.10.10.9)
Tparallel HO 0.5 (k12 + k22)
D = DT+DA _ TTpkl_TTSkZ D = DR_DA _TRpkz_TRSkl

T R

" 1+D,D, T'k +Tk,’ " 1-D,D, Tk, +T:k
T} =T,T,(1+ D;D,) = 0.5(T}k + T;k,), T; =TT, (1-D,D,)=0.5(T7k, + Tyk,)

7# 2,2, _2NT'kI;k, 7 Z.Z,  2NTRkI{k,

""1+D.D, T'k+T'k,’ ®1-D,D, TPk, +Tk

(S.10.10.10)

For an ideal (cleaned) analyser M, with total extinction (k. = 0) we get from Eqgs. (S.10.10.3)
and (S.10.10.10)

with k, =0,D,=1,Z,=0=

T}/ =0.5T/k, T} =0.5T;k, Dj=+1, Dj=-1, Z;=0 (5.10.10.11)
MLy _ eIy

n=—r—r=—-, (S.10.10.12)
nI  nT

General:
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<M21| = <M2 (0°)M, (0°)
_I'-r
" +17
T,=05(T"+T;')
_D,+D, T -TT; (S.10.10.13)
1+D,D, T/T"+T,T"
T, =T,7,(1+ D,D,) = 05(IYTY + TT})

2,72, 2QTTT

C1+D,D, LT+ TTY

=T,1,(1+D,D, D,+D, 0 0|=T,(1 D, 0 0

1

21

21

T‘
1=Dy ="l 14D =1 (S.10.10.14)

—_
—

_ DytyD, (U N[IT ~TT3 |+ (1-y)[ Ty ~ 1577 ]
SyO 1+ stDO (1 + y)I:TOPZEP +TOSTSS:|+ (1 _ y)I:TOpTSs + TOSTSP:I

T

o =TT, (14 YDD, ) = 025{(1+ ) /1Y + TyT3 |+ (1= »)[ T3 T5 + 11y ]}
Tpr _TSTS
y=+1= Dy, :%:

T +T)T,
TITS - TSTY
y=—l= Dy, =05 2055 T —05(TIT:+TTY), Ty =TITS, Tio=TaTY
5-0 TIT +TTY 5-0 (os 0 )

ZS+0:O'5(T5)TSP+TOSTSS)9 TSﬁOZTgTSpa TSS+0:T0STSS

(S.10.10.15)
Dy=*lay=+1=D’ =y’ =1=
D,+yD; 1 yDD,+1 1 (S.10.10.16)
DSy() = = = =yDy
1+yD¢D, yDs1+yD¢D, yDq
T: T?
1= Dy,p =22 14+ Dy, =22 (S.10.10.17)
TSyO T.'SyO
S.10.11 Retarder

A retarder is a retarding linear diattenuator (Sect. S.10.3ff) without diattenuation (see

Chipman (2009b)):

D,=0,Z,=1 (without absorption 7, =1) =
1 0 0 O
01 0 0 (S.10.11.1
“ =10 0 co S

0 0 -5, ¢
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S$.10.12 Rotated retarder

Rotated retarder with

D,=0=Z,=\1-D,> =1, W,=1-Z,c,=1—c, =
M., (X¢)/TRet = R(X¢) M()R(_X(b) =

1 0 0 0

0 1=s3,(1=cp)  xsyuea,(l=c) X858,
0 x8,,055(1—cp) 1-¢3,(1—cp) ¢80 (S.10.12.1)
0 X$,,80 —Cp4S0 Co

with

2 2 2
1-s5, (l—co) =C5, +82,Co

1-¢3,(1-c,) =83, + ¢3¢0
S$.10.13 Rotated A/2 plate

Retarder Eq.(S.10.12.1) with

A, =180°=¢,=-1,5,=0,D,=0,Z,=+/1-D," =1,W, =1—Z,c, =2 (S.10.13.1)
M, (0)/THW =
1 0 0 0 1 0 0 0 0 0 0
_ 0 1-2s3, 2c295229 0 _ 0 ¢y sS4 O _R(26) 01 0 O (S.10.13.2)
0 2c,p8,, 1-2¢5;, O 0 s, —¢, O 0 -1 0
0 0 0 -1 0 O 0 -1 0 0 0 -1

The rotation of a A/2 plate by ¢ rotates the Stokes vector by twice the rotation ¢ and
additionally inverts the circular polarisation component. This is equivalent to a mirror
followed by a rotation of the coordinate system by 26. Please note, that the rotator and mirror

matrices don't commute (compare Egs. (S.6.2.1) ff).

M2-retarder Eq.(S.10.12.1) at 0° and 22.5° with phase shift error 2w

D,=0=Z,=+1-D, =1

A, =T +20=c,=—1+20°,s,=20=>W,=1-Z,c,=2-20° (S.10.13.3)
1

=7

$=225°=s,,=c¢,
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10 o0 0

01 0 0 (S.10.13.4)
o 0 —1+20° 2w

0 0 20 -1+20°

M, (x22.5°,20)/T,,, =

1 0 0 0

0 @ x(1-0') -x\20 (S.10.13.5)
= TO 2 2

0 x (l -0 ) 0] \/Ea)

0 x2w 2o  -1+20°

(A (y)|Myy (x22.5%,20) =

1 1 0 0 0 1
. yD, || 0 ’ x(l —a)z) —x2w ) —y@*Dy )
*\ 0o x(l—a)z) o’ Vo | —XY(I—CUZ)DS -
Ollo 20 2o -l1+20° xy2wD, (S.10.13.6)
1 0
0 D -0
= +yo
—xyDy YOES\ xa
0 X2
S.10.14 Rotated A/2 plate for A90-calibration including error &

1 0 0 0
M, (x22.5°+¢/2) |0 —xs,, xc,, O

T 0 xc,, xs,, O
0 0 0 -1
(S.10.14.1)
1 0 0 0)(1 0 O O
0 —xs,, —-xc,, 0110 1 O
= =R(x45°+¢€&)M,,
0 xc,, -xs,, 0|0 0 -1
0 0 0 1){0 0 0 -1
S.10.15 Rotation calibrator

The mechanical rotator (Sect. S.10.2) and the A/2- rotator (Sects. S.10.13, S.10.14) can be

combined to
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AN O AW N

10

11

12

13

1 0 0 0)1 000y (1 0 0 0
M, (¢,h 0 ¢y -5, O[O0 1 0 0| [0 ¢, —hs, 0
T( )=R(¢)Mh‘o SZZ c2: 0{0 0 h 0| |0 s2: hc2: 0l
00 o 1) ooon) oo o n
10001 0 0 0y (1L00O0)lL 0 0 0
01 0 0[[0 ¢, —hs,, 0| [0 1 0 o}o Coro —Spag O
0 0 h 0|0 hs,, ¢, O 0 0 h 0]0 s,, ¢ O
00o0nflo o o 1)Jlooonfo o o 1
with h=:+1

(S.10.15.1)

where T, is the transmission of the rotation calibrator for unpolarised light, which equals one
for the mechanical rotator. For the mechanical rotator we use h = +1, and for the A/2- rotator h
=—1, and ¢ = 20 is two times the actual rotation 6 of the A/2-plate, as well as ¢ is two times
the actual error angle of the A/2-plate. With Eq. (S.10.15.1) we get Eq. (S.10.15.2) for the

rotation calibrator M,,, at +45°.

M,,, (x45°+¢€,h)/T,

rot rot

= R(x45°+ €)M, = R(x45°)R(g)M, =

1 0 0 O0)1 O 0 O0)1 0 0 O 1 0 0 0
0 0 -x OO0 ¢c,, =s,, OO 1 0 O 0 -xs,, —xhc,, O
= = (S.10.15.2)
0 x 0 O0}]l0 s,, ¢c,, OO O h O 0 xc,, —xhs,, O
00 0 10 O 0 1){0 0 0 h 0 0 0 h
with x,h==1

The error rotation ¢ can be separated as in Eq. (S.10.15.3) using the explanations in Sect.

S.6.3.

R(x45°+¢&)M, = R(x45°)R ()M, = R(x45°)M, R (he¢) (S.10.15.3)
S.10.16 A4 plate (QWP)

From Eq. (S.10.6.1): QWP without diattenuation, with phase shift error .

4,,=90+tw = ¢, =-s,, s, =¢,

¢ =x45°+ €= c¢,, > —78,,, S, = XCy,

Dy =0,Zpy =1,W, = 1=y )=(1+5,) (S.10.16.1)
2

2 _ 2 2 _ 2
(1 - CstQW) =85 TCCop = (Szg - ngsw)

2 2,2 (2 2
(1 - stWQW) =Cpe T82:Cop = (ng - Szesw)
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Dyy =0,Zyy =1L W,, =(1=cyy )=(1+s,)=
M, (x45°+€,0)

Tow
1 0 0 0
0 (1 - C;E‘WQW) _CZ€SZ£WQW —XCy Sow
0 _SzecngQW (1 - S;EWQW) X8, Sow
0 XCyhS o X858 o Cow
(S.10.16.2)
1 0 0 0
_ 0 Sge - Cgesw _828028 (1 + Sw) _XCZSCw _
- 0 —5,.C¢ (l + Sm) Cge - Sges(o —X8,:Cp -
0 XC,,C, XS,,.C,, =S,
1 0 0 0
0 1-c,(I+s,) —cus,(1+s,) —xc,.c,
10 =sye (1+s,) 1-si,(1+s,) —xs,.c,
0 XC,,C, XS,,C, =S,
D,y =0, W, =(1+s,),e=0=>
1 0 0 0
M,, (x45°%0) |0 -s, 0 —xc, (S.10.16.3)
Tow 0O 0 1 O
0 xc, 0 -s,
S.10.17 Rotated, ideal A/4 plate
A, =90°=c,=0, s,=1, D,=0, Z,=+1-D," =1, W,=1-Z,c, =1 (S.10.17.1
(without absorption 7}, =1)
1 0 0 0
0 c§¢ $16C2  —S2p
M =T
on (9)=Ton |, o Sy o (S.10.17.2)
0 sy —Cyy 0
M, (x45°+¢&)=R(x45°+ €)M, R(-x45°—¢) =
1 0 0 0
0 s, —$,,Co,  —XC,, (S.10.17.3)
= Tow 2
0 —S7¢Coe Cre —XS,,
0 xc,, XS,, 0
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10

1 00 0
M,,(x45°) |0 0 0 —x
or ( )= (S.10.17.4)
Tow 0 0 1
0 x O
1 0 0 0
01 0 0
Moy O)=Ton| 0 0 o | (S.10.17.5)
00 -1 0
xe{O,il}
1 0 0 0
. 0 1-x° 0 —X (S.10.17.6)
My, (x45°) =Ty | o ¢ 2 1— 2
0o x —(1-x*) o0
xe{O,il}
1 0 0 0
0 : 0 —(1-x2 S.10.17.7
M, (45°-x45°)=T,, X ( X) ( )
0 0 1—x? X
0 1—-x? —X 0
S$.10.18 Circular polariser

Linear polariser at 0° Eq. (S.10.3.1) and QWP at z45° Eq. (S.10.16.3) (see Chipman (2009a)
Chap. 15.26).
Dyy =0, Zy, =1,4,,=90°+ 0 =W, =(1+s,)=

1 0 0 O 1 D, 0 0
M, (z45°,0)M,(0°) |0 -s, O —-zc, || D, 1 0 0 |
Ty Ty 0 0 1 0 0 0 Zyc, Zss,
zc, 0 —s, \O 0 —Zs, Zx., (S.10.18.1)
1 D, 0 0
-s,D, -s, zc,Z.s, —zC,Z,Cp,
B 0 0 Z,cp Z,Sp
zc,D, zc, S,Z,5p —S,Z,Cp

Circular polariser as +45° calibrator with a QWP with phase shift error ® and a real linear

polariser
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[M,, (z45°,0)M,,(0°) |(x45°+¢)

TQWTP
1 —xs,,D,
Xs,.8. D —s2s +c (c C,+S zcs)Z
2e¥0—P 2e¥w 2¢e 2eYP 2¢ " P P

—XCp 8, Dp  €5685:8, + Cy, (SZsCP - CZsZCwSP)ZP
zc,D, —X(8,,2C,, +C,.8,8pZ,)
X, Dp

CZSSZSS(D + S25 (C2SCP + SZSZCwSP)ZP

2
—C3 8, 18,5, (SngP - CZSZCa)SP)ZP

X (CZSZC(U - SZsstPZP)

Circular polariser with QWP without phase shift error @ and real linear polariser as +45°

calibrator

w=0 =

X (SZSZCa)CP - CZSSP)ZP

—X (czgzcwcP + szgsP)ZP

(S.10.18.2)

0

—S,Cplp

M, (2,0,x45°+€) [ Mgy (245°0)M, (0°) |(x45°+¢)

Tep TowT)p
1 —X8,,D, X, D, 0
— O C2g (C2eCP + ZSZESP)ZP SZS (CZECP + ZszesP)ZP X (ZSZECP - CZgSP)ZP
0 ¢y (stcp - ZCZsSP)ZP S2¢ (stCP - ZcszP)ZP —X(2€,Cp +5,,85) 2,
zD, —XZS,, XZC,, 0
1 —XS,,Dp XC,, D, 0
_ 0 o pZp $5:Co pZp XS, plp
0 8o pZp 83:Copplp —XCppp pZp
zD, —XZS,, XZC,, 0

(S.10.18.3)
Circular polariser with QWP with phase shift error ® and ideal linear polariser as +45°

calibrator

D,=1, Z,=0, =
M, (z,0,x45° + €) [MQW (z45°,0)M,, (0°)](X45° +¢€) ~

TCP TQWTP
1 —XS,, xc,, 0 1 1 (5.10.18.4)
_| X828, —s3.S,  ©,,8,8, O _| X828, XS,,
—XC,,S, ©,,8,,8, —C28, 0| |-xc,s, XC,,
zc,, —X8,,7C, XC,.zc, 0 zc,, 0

Ideal circular polariser as +45° calibrator (see Eq. (E.27))
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with D, =1, @ =0=

M, (Z) =My, (Z450)MP (OO) =
1 0 0 01 1 0 O 1 1T 0 O
_7 0 0 0 —zf1 1 00 _r {O 0 0 O
“lo o1 00000 “l0oo0O00O
0z0 0)Jo 00O z z 00 (S.10.18.5)
1 0 0 1 1 1 1
_7 0 0 0 —z|l1 1:T 0 1
“lo o 1 ofo/\o “lo/\o
0z 0 0)O0 0 z 0
with z = +l1
Rotated, ideal circular polariser as £45° calibrator
D,=1, =0 =
M, (z,x45°+¢€)  R(x45°+€)M, (245°)M, (0°)R(-x45°~¢) _
TCP TCP
1 0 0 0y1 0 0 01 1|(1 0 0 0
0 —-xs,, —-xc,, 0|0 0 0 -z|[1 1{{0 -xs,, xc,, O
10 xe,, -xs,, 0]J0 0 1 00/\0[[0 —xc,, —xs,, O]  (S.10.18.6)
0 0 0 1)\0O z 0 0 )0/ \0[lO 0 0 1
1 -xs,, xc,, O 1 1
0 0 0 0| |0\/ —xs,,
o 0 0 of |0/\ xc,
z —7XS,, zXc,, 0) |z 0
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1

Rotated circular polariser as +-45° calibrator with a QWP, with retardation error

2 From Eq. (S.10.9.3)

My, ()M, _
TQWTO

1+¢,,Dyy Dy

25 ( Doy +C25Woy D)

S20Z owSow Dp

CMDQW +D,

C,pDgy + (1 - s§¢WQW)DP C,4Dgn Dy + (1 —s§¢WQW)

25 (DowDp + oWy )

szq,ZQWsQW

S25DowZ pCp
S (CMWQWCP + ZQWSQWSP)ZP
2
[(l —CoWow )cp - CZ¢ZQWSQWSP:|

—(C2¢SQWCP + cQWs,,)ZQWZP

1 0 0 0 1 1 1 1

0 ¢, 5,6,y —Sy |[1\]1 ¢ 1
MQW (¢)MP = TQW 0 2(])2 2¢ ¥ = TQW 2¢

0 850C5 829  Co [I0/)0 $26C2 [\ 0

0 sy  —Cy 0 Jlo/ \0 S29 0

S25DowZ pSp
S (cMWQWsP - ZQWSQWCP)ZP
Z, [(1 — c§¢WQW)sP - c2¢ZQWsQWc,,}ZP

(—CMSQWSP + CQWCP)ZQWZP

¢ =X45°+€ = ¢y, > —X8,,,8,, > XC,y, =

M, (x45°+ €)M, 3
TQWTP
1=x8,.D,, Dy
=X8,.Dpy + (1 - W

Cae (XDQW - S2£WQWDP)
XCZEZQWSQWDP
xcngQWZPcP

—(—stngWcP + CQWSP)ZQWZP

€y (SzeWQWCP - XZQWSQWSP)ZP

[(l —sigWQW)cP +XSZ£ZQWSQWSP}ZP [(l —sigWQW)sP —xsngQWsQWcP}ZP

—x8,. Dy + Dy
QW)DP _XS2£DQWDP + (1 - C;:;WQW)
Cae (XDQWDP - SZsWQW)

XC2£ZQWSQW
XCoe Doy ZpSp

€y (SzeWQWSP + XZQWSQWCP)ZP

(+XSZ€SQWSP +CopCp )ZQWZP

(S.10.18.7)

(S.10.18.8)

(S.10.18.9)
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P =45°+€ = Cypy > =8,,,8,, > C,, =

or)

My, (45°+£)M, _
TowT),
1=58,.Dpy Dp =8, Dpy + Dy
~$2: Dy + (1= C3 Wy ) Dy =8, Dy Dy + (1= 3T,
Cae (DQW - SZEWQWDP) Cae (DQWDP - SZ£WQW)
CoeZowS ow Dp CoeZowSow
B Coe Doy ZpCp

—Cae (SzeWQWCP - ZQWSQWSP)ZP

(SZ£SQWCP - CQWSP)ZQWZP

CZeDQWZPSP

—Ca (SZ£WQWSP + ZQWSQWCP)ZP

[(1 - SiEWQW)CP + stZQWSQWSP]ZP |:(1 - SggWQW)SP - SZEZQWSQWCP:|ZP

(SZESQWSP + cQWcP)ZQWZP

Dy = 0,00y = 0,55y =1,Zp, =1Wp, =(1-cpy ) =1=

[ M, (45°+£)M,, |(x45°)
TQWTP
1 D,
S3¢Dp 3
1 0 0 0) C282.Dp —€58,.Dp
100 x Of ©.Dp Cae
10 —x 0 0 0
0 0 0 1 _ng(sngP_SP)ZP
(ngcp + SzgSP)ZP
$2:CpLp
1 0 -xD,
_ S;EDP (cgecP + SzgSP)ZP C2e82:Dp
_CzssstP C25(525CP_SP)ZP Sig
CstP stgCPZP —XCy,

1 0 O

0 0 —x

0 0 x 0

—Cy (stSP + CP)ZP 0 0 0

2
(ngsp - SZecP)ZP
S2£SPZP
0
265p = Z
X CZESP SZscP P

—XCy (SzgSP * CP)ZP

S2£SPZP

(S.10.18.10)

- o O O

(S.10.18.11)
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P =45°+€=Cyy = —8,.,8,, = Cps 4y =90°+G¢ = ¢y =5, >0, s, =c. —>1
2 _ 2 _ 2 2 (.2 2
(l - CZEWQW) = (1 —C5, (1 - ZQWCQW)) =85, +C5.ZoyCop = (szg - cngQng), =

2 _ 2 2 (.2 2
(1 - SzeWQW) =Che T82:Z,Cop = (ng - S2€ZQWSQ)

[ My, (45°+£,4,,=90°+¢ )M, |
TQWTP
1- SZgDQWDP _SzeDQW + DP

2 2 2 2
=8, Dy + (S2£ — €2 ZowS, )DP =8, Dy Dp + (st - CzeZQWSg)

Coe (DQW — Sy (1 - ZQWCQW)DP) Coe (DQWDP — Sy (1 - ZQWCQW ))
CreZowC . Dp CoeZowC:

CZEDQWZPCP CzeDQWZPSP
—Cy, (szg (1 - ZQWCQW)CP - ZQchsP)ZP —C,, (szg (1 - ZQWCQW)SP + ZQchcP)ZP

2 2 2 2
[(Cze - SZ£ZQWSg )CP + SZé‘ZQWCgSP]ZP [(ng - SngQWSg )SP - SZEZQWCgCPi|ZP

(szgcgcp+sgsP)ZQWZP (szgcgsp—sch)ZQWZP
(S.10.18.12)
¢:45°:>c2¢ =0,8,,=1=
1 D, cpDyyZp $pDowZp
M,, (45°)M,, ConZowDr ConZow  SowSpZowZp  —SowCplowZp (S.10.18.13)
Tow Ty D,y Dy Dy cpl, SpZp
SonlowDpe  ZowSow  —CowSpZowZe  CowCrlowlp
D,y =0,Z,, =1L,W,, = (l - CQW),¢ =45°+ €= ¢y, = —8,,,8,, > Cy, =
1 D, 0 0
M, (0°) My, (45°)M, | coyDp Cop SouSpZp  —SpuCpZy (S.10.18.14)
T, Ty T, 0 0 CpZlp SpLp
SowDp  Sow  —CowSplp  CowCplp
P=45°+€= 0y > —8y,,8,, €y, 4,,790°H¢ = ¢, =S, Sy, =¢. =
1 D, cpDyyZp $pDoyZp
[MQW (45°,4,,=90° + G)MP] NS Zo Dy =5 2y CSpZoyZp —¢CoZoyZp
Tou T, D,, D, Dy Cplp SpLp

c.LowDp CZyy SSplowly —SCplowlp

(S.10.18.15)
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[ My, (45°,4,=90° +¢ )M, |(x45° + )

TQWTP
1 0 0 0 1 D, ¢, DyZ, $;DpZ, \(1 0 0 0
10 —xs,, —xc,, 0 =S ZowDp =82, CSploylp, —C.CplpyZp||0 —Xs,, Xc,, O B
0 xc,, -xs, 0 D,y Dy D) Cplp SpLp 0 -xc,, —xs,, 0
0 0 0 LN c.ZoyDp ¢Zy 8SpZpyZp —SCpZoyZp \O 0 0 1
1 —X (SZSDP + czchDQZP)
X (SZSSgZQWDP - CZEDQW) =838 Zoyy +C3CpZp +Co,S, (cgsPZPZQW - DQWDP)
—X(CZ€SgZQWDP + szEDQW) Cy.Ssp (ngQW + cPZP) - cgecgsPZ,,ZQW +S§£DQWDP
~ ¢.ZowDp —X(szgcg + czgsgsPZP)ZQW
B X(CZSDP - szchDQWZP) $pDyyZp
C,,S,, (ngQW + cPZP) +55,6.8pZpZyy — 3. Dy Dy x(szchcPZQW - czgsP)ZP
—C5:8. Zoy +52:CpZp = Cy,S, (cgsPZPZQW +DQWDP) —x(czgcchZQW +s2€sP)ZP
x(czgcg —szgsgsPZP)ZQW 8. ZowZp
(S.10.18.16)
CP withideal LP: D, =1, Z,=0, =
[ My, (45°,4,,=90°+ ¢ )M, |(x45°+£)
TQWTP -
1 —XS,, XC,, 0
X(szgngQW - cngQW) —signgQW 580 Doy €285 Zow —cggDQW 0
- —x(cstgZQW+s2£DQW) czgszgngQW+s§£DQW —c;ngQW—czgsngQW 0l
chQW —xszgchQW xczgchQW 0
1 1
X(stSgZQW - Cstvi) —XS,,
- —x(czgngQW +s2£DQW) XCyp
CZow 0
(S.10.18.17)

39



(Ay(¥)[ Mg (x45°+£,0) (MR, |M, (x45°+ £,0)

I{Tep ITep
1 ( ! | 1 1
D X SZESwZQW - CZEDQW —XS,, —XS,,
= yOS 2| =| 1+ xyDy (szgstQW - CZSDQW)] ?
-X (czgstQW + Snggw) XCy, XCye
0 CoZow 0 0
(S.10.18.18)
1 iin
IS _XSZS qin
=| 14+ XyDg|8,.5,Zow — €. D, =
N T T T, F T,I, [ s(S280Z0r = QW)] XCop ||t (S.10.18.19)
O Vin
= |:1 + XyDg (SzgSwZQW —Cye Dy ):|[im —X (Szng'n —Co Uy, ):I
D, =+1,D, =-1=
n 1= XY (82680 Zow = €5 Doy ) (S.10.18.20)
n o1+ XY(SZESLUZQW - CZsDQW)
D,=0,7Z,=1=
(As ()M (x45°+ £,0) (MR, M, (x45°+¢£,0) _
ITep ITep
1 1 1 1 (S.10.18.21)
D — —
— yos XSZsSw XS2£ — [1 + XYDSSZSSH)] XSZE
—XCSp XCye XCye
0 C, 0 0
<As (YJ/)‘MCP (X450 + 8) _ <MSRyM0 (7)‘MCP (X450 + 8) _
I T Tep TToTep
1+yc,, DyD, 1 .
B ¢, Dy +yDs (1 - Sino) X (stSgZQW - C2£DQW) —XS,,
0 (0,55, D00 | x(e5 20 +5,00) | 20 101522
—y8,,DsZ 8, ¢ Zow 0
=1+yDq (czyDO =82, 2080 Zow ) +
[czyDO +yD (1- sinO)](szgngQW ~ ¢, Dy ) -
X

=Sy, (Do + yCZyDSWO)(C2£SgZQW + SzeDQW)
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O o0 93

y=0=
(A (.0)| My (x45°+ ) (MR M, (0)| My (x45°+ 2)

- - .10.18.23
IToTep T ToTcp S )

=1+ yD,D, +x{[Dy + YDy (5525, Zgw = 5Dy )}

CP with QWP without diattenuation: D,y =0, Z,, =1, =

[ Mg, (45°,4,,=90°+ )M, |(x45°+¢)
TQWTP -

1 —XS,,Dp
2
X8,.8.Dp =858, +Cy, (czch +szgcgsP)ZP
—XCpS.Dp  €,.8,.8. +Cy, (szgcp - czgcgsP)ZP .o (S.10.18.24)
c.D, —x(s2gcg +czgsgsPZP)
xc,,. D, 0
2eV2e 2e¥¢

C,.S sg+szg(czgcp+s28cgsP)ZP x(s ccP—czgsP)ZP

2
—C2S. 8, (szgc,, - czgcgsP)Zp -X (czgcgcp +s2£sP)ZP

x(czgcg —szgsgsPZP) —8.C,Zp

CP with QW without diattenuation and phase shift error: D, =0, Z,, =1, ¢ =0=

1 —xs,.D, XC,, D, 0
[MQW (450’ AQW:gOO)MP}(X“SO + 8) 10 ey pZp 8,0 p Ly XSy, pZp
TowTp 0 CuSyepZp SySpeplp —XCop pZp
D, —XS,, XC,, 0
(S.10.18.25)
S$.10.19 Circular analyser (CA)

(see Chipman (2009a) Chap. 15.26)

In order to keep the same flexibility regarding the mutual orientation between the linear
polariser and the A/4 plate as for the circular polariser, we construct the ideal circular analyser
with a /4 plate at +£45° and a linear polariser at 0° or 90° (according to Chipman (2009a)
15.18: left circular analyser for x,z = +1) from Egs. (S.10.8.5) and (S.10.17.4)
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M, (x,z) M, (45°—x45°) M, (z45°)

T, T, T

ow
/1100 o) |1\ /1| (1 0 0 -z
x\/x|]|0O 0O 0O —-z| |x 0 x 0 0 -z
“lo/\ollo 0 1 “lo/\ ol lo 0o o0 o
o/ \ollo z o o/ \=xz| {0 0 0 o

with x,z==1
with zx = +1= left circ. analyzer

with zx = —1 = right circ. analyzer

Ideal circular analyser with QWP at z45° with error angle ¢

M, (x,z,e) _ R(+8) M, (x,z) R(—g) _
Cc4 TCA
1 0 0 0)(1 0 0 -zx)\(1 0 0
0 ¢, —-xs,, Of(x 0 0 -z |0 ¢, x5,
10 xs,, ¢, 0]l0 00 00 —xs, «c,
0 O 0 1I)\0 0 0 0 /O O 0
1 0 0 -z 1 1
xc,, 0 0 =-zc,, XC,, 0
- S, 0 0 —zxs,, - Sye 0
0 0 0 1 0 —zX

— o O O

(S.10.19.1)

(S.10.19.2)

42



S.11 Helpful relations

(see also S.10.10)

1+6 I+1,° l+a
TTP_T; — N

TP -T; 2T}

1-D, =1-L—L=—"1

TP +T T +T:

1+D, =1--L—L= :
7+7T;, T/ +T;

7 -T, 17 -T;
1+D,D, =1+2—%-L T

T -T; 217 T

14D T
1-D, T!

_jﬁ+ﬁﬂﬁ+ﬁ%%ﬂ—ﬁﬂﬂ—ﬂﬂ_

17 +T, TV +T;

CTUT) A TIT
27,7,

T -T T} —T;
|-D,D, =1--2 01 "1

(7 +13) (17 +17)

_(n) (17 + 1) (15 - 15)(17 - 17) _

17 +T, TV +T;

_ LT+ TI5T
2T,T,

D,=0= Z,=+1-D, =1, W,=1-c,

7+ T \T7 + T,
(15 +75) (17 +77)

(S.11.1)

(S.11.2)

(S.11.3)

(S.11.4)

(S.11.5)

(S.11.6)
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S.12 Trigonometric relations

CoCpt8sSp = /2(Cy- ﬁ+c¢+ﬂ+°¢—ﬁ‘c¢+ﬂ) =Csp

Co = J2S2
C,Cp :%(ca_ﬂ +ca+ﬂ) =

» So-p+ Sop~ Seup+So-p) =55
$eSp = A(ca—/} _Ca+ﬂ)

Hle

CoCp—8ySp = %(% BT Corp™CopTCy ﬁ) Coep
=X
=X

So-ptSpspTSep=Ssp ) =Spip

with ¢ =x45°+¢e,x=*1=

20 = 008 2(x45° + £) | = cos(£90° + 2¢) = Fsin(2¢€) = —xs,,

Sy = sin[2(x45° + 8)] =sin(£90° + 2€) = £cos(2€) = xc,,

with ¢ =x45°+45+¢,x=t1=

2 = CO8[ 2(x45° + 45+ £) | = cos(£90° +90° + 2¢) = Fcos(2€) = —Xc,,

51, =sin[ 2(x45°+ 45 + £) | =sin(+90° +90° + 2¢) = Fsin(2€) = —xs,,

C
C

—XS8,, —> —XC,,

for (x45° + 8) - (x45° +45+ 8) = {
XC,, —> —XS,,

with x =1 =
cos|:2(x45°)] =0
sin[2(x45°)] =X

cos| 2(x45° +45) | = —x
sin[ 2(x45° + 45) ]z 0

cos| 2(—x45° - ] s(¥90° - 27) = Fsin (27 ) = —xs,,
sin[ 2(—x45° —y) | =sin (F90° - 2y ) = Fcos (2y ) = —xc,,
cos{2[x(45°+7 ]}=cos[+ (90°+2y)]=-sin(2y) =-s,,
sin{2[ x(45°+7) ]} = sin[ £(90°+ 2y ) | = £cos(2y) = xc,,

¢=x22.5°+¢/2,x=*1=
4o =c08[ 4(x22.5° + £/2) | = cos (x90° + 2€) = —xs,,
5, =sin[ 4(x22.5° + £/2) | = sin (x90° + 2¢) = xc,,

C

S4p = 28,4Cy,

l+c,, = 20§¢

— 2 _ 2 902 _1=1_9
Cyp =Coy =Sy, =25, —1 =1 2s2¢:{1_c .
49~ “S2p

(S.12.1)

(S.12.2)

(S.12.3)

(S.12.4)

(S.12.5)
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10

11

1=y W, =1=(1=$3, )W, =1 =W, +5; W, = Z0p +, W, = Zp0, +55, (1= Z,0,) =

1- C;EWP = S;.e + CgsZPCP (8126)
1- SgsWP = Cga + SisZPCP

S.121 Tangent half-angle substitution

The substitution Eq. (S.12.1.1) is sometimes called Weierstrass substitution, but it can already

be found in Euler's Institutionum calculi integralis (Enestrom number E342: Vol. 1 Part 1,

Sect. 1, Chap. 5, Problem 29, http://eulerarchive.maa.org/pages/E342.html).

t:tan(ﬁ)g,smg: 2 (S.12.1.1)
2 1+¢

With this substitution we can write Eq. (S.12.1.2) and yield ¢ from Eq. (S.12.1.3). For small ¢
we get the approximation Eq. (S.12.1.4).

t:Kszgztan(g)@sin0=Y=2K—szgz (S.12.12)
2 1+(Ks,,)
ezlarcsin itan M (S.12.1.3)
2 K 2
K<lrnexl=>
Y (S.12.1.4)

£=—
2K
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S.13 Example
From Egs. (65) and (61)

8 (G, +H;)— (G, +Hy)
(Gy—Hy)-6"(G,—H,)

Fye<nHpl, —HI; and 6=

and the relations

T, -T; T -T; ' +T; ' +T; . T,
= T r = T TR = , TT = , T = —

Tr +T, 7 +T; 2 2 T, (S.13.1)
1-D,=T;/T,, 1+D, =T"/T,, 1-D, =T; /T, 1+ D, =TT,

R

we get for the simplest case from Eq. (79):
90° rotated polarising beam-splitter

with y=-1=>%¥=90° G,=1, Hi=-D; =
ST -TT; (S.13.2)
T'T) 8T/

-1, _Ti-T;

F.o<—nDI +D.I, = -
11 N DLy LR 7+ T R TP +T)

ni; (S.13.3)

0° rotated polarising beam-splitter

with y=+1=%¥ =0°% G,=1, H,=D, =
ST -TTY (S.13.4)
T'T; -8'T;

TTP _TTS I + TRp _T1§

F,oe<nD,l.—D.I, =—
11 < NPl (e 7+ T R T/ + T

ni; (S.13.5)

From Eq. (78) with cleaned 90° rotated polarising beam-splitter =>

with D, =1, D,=-1=
G, =1+yD,, G,=1-yD,,
H,=D,+y=yG,, H,=D,—-y=-yG, (S.13.6)

Iy +T;

T, , 1-D,=T;/T,, 1+D,=T"/T,
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o BN e Y|

10

11

12

13

1-yD,

6 (1+y)-——2(1-y
ey 0y
1 - yDO *
——2(1+y)-0 (1-
T+ yp, LFY) =8 (1-y)
S.13.7)
114D, 17T) (
with y=-1=6 =— 0 =—-9
6 1-D, 6 T,
.1+ D LTy
with y=+1=8 =0 =5
1-D, 7;
F o< n(Do - Y)IT - (Do + Y)IR
11-D 17,
with y=—-1= F, e [, +— Of, =1, +—-21,
nl+D, n1y (S.13.8)
11+D 177
with y=+1= F, o< [, +— Ol =1 +—2%1,
nl-D, n 1,
S.14 Determination of the degree of circular polarisation of the emitted
laser beam.
Combining the +45 calibrations with different calibrators can yield information about the laser
polarisation. With a cleaned analyser, without receiver optics rotation, and with a QWP
without calibrator rotation ¢ before the receiving optics from Chap. (9.2) and a linear polariser
(LP) from Chap. (8.2)

with y=£=0,D, =+1,D, =-1=
ﬂ;WP _1-yD, iy +xy(1—2a)vE

n B 1+yD, i, —xy(1-2a)v, (S.14.1)
77;,4\90 _ 1-yD,
n 1+yD,

we can calculate

Y= U;WP (X) _ I+ XY(I - 2a)VE

=— : S.14.2
Nipaso e — XY (1 - 2a)VE ( )
and get the degree of circular polarisation
v 1 Y-1
= (r-1) (S.14.3)

i xy(l - Za) (Y +1)
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