
Supplement

S.1 Coordinate system and conventions

Müller matrices describe the effect of optical elements on the Stokes vector with respect to a

coordinate system and using a set of definitions about signs and directions. Different sets of

definitions can be found in the literature as discussed in detail in  Muller (1969); some of

which  are  even  inconsistent.  The  discussions  led  to  the  so-called  Muller  (or  Muller-

Nebraska-) convention, which we follow in this paper (see also Hauge et al. (1980)). We use a

right-handed Cartesian coordinate system (see Fig.  7), in wich angles are defined counter-

clock wise, i.e. from the x- to the y-axis, when looking against the z-axis. The local z-axis

points in the propagation direction of the light. We define the reference coordinate system of

the lidar setup by the orientation of the polarising beam-splitter (PBS) in the receiving optics.

Light polarised with its E-vector on the x-axis, i.e. parallel to the incident plane of the PBS in

Fig. 6, is mostly transmitted by a usual PBS, while light with polarisation in y-direction, i.e.

perpendicularly polarised  to  the  incident  plane,  is  mostly reflected.  The incident  plane  is

spanned up by the direction of light propagation (z-axis, propagation vector k) and the normal

of the reflecting surface, which means that the incident plane in Fig. 6 is the x-z-plane). The

parallel and perpendicular polarisations are also called the p- and s-polarisation, respectively.

The  orientation  of  linearly  polarised  light  is  defined  by  the  orientation  of  the  plane  of

vibration, which contains both the electric vector E and the propagation vector k. 

Fig. 6  Definition of the reference coordinate system with respect to the incidence plane of the

polarising beam-splitter.
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Other  Müller  matrix  measurement  configurations  may  have  other  arrangements  for  the

coordinates.  All  choices,  however,  are  arbitrary,  and  lead  to  different  Müller  matrices

Chipman (2009b). There is no preferred set of definitions in the literature. According to our

choice of orientation, the diattenuation parameter D ist defined as 
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In  order  to  keep  the  results  of  the  Müller  matrix  calculations  consistent  when  adding

reflecting  surfaces  as  mirrors  and beam-splitters  in  the  optical  setup,  a  right-handed xyz-

coordinate system is used with the z-axis in the direction of the light propagation. The vertical

(perpendicular)  polarised light has its E-vector in y-direction, 

Fig. 7 Reflection of a Stokes vector.

S.2 Stokes vector and Müller matrix

The Stokes vector and the Müller matrix are one representation of the state of polarisation of

light, which is a based on measurable quantities. The Stokes vector describes the polarisation

state of a light beam, and the Müller matrix describes how the Stokes vector changes when

passing through an optical volume, which can be an optical element or an atmospheric path

with scattering, absorbing and refracting properties. A Stokes vector can be determined by six

measurements of the flux  I with ideal linear and circular polarisation analysers at different

orientations before a detector Chipman (2009a; Ch. 15.17) 
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The Stokes vector is defined as
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Right-circularly polarised light is defined as a clockwise rotation of the electric vector when

the observer is looking against the direction of light propagation  Bennett (2009a) (see Fig.

X ). Another representation, the so-called modified Stokes column vector Mishchenko et al.

(2002) , uses the horizontally (parallel, p) and vertically (perpendicular, s) polarised fluxes Ip

and Is as the first two Stokes parameters. They can be transformed from the Stokes vector with

a transformation matrix 
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For fully polarised light, the Stokes parameters fulfil the equation

2 2 2 2I Q U V= + + (S.2.5)

and for full linearly polarised light

2 2 2I Q U= + (S.2.6)
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S.3 Depolarisation

Depolarisation is closely related to scattering and usually has it origins from retardance or

diattenuation which is rapidly varying in time, wavelength, or spatially over an optical device

(Cornu-,  Lyot-,  or  wedge-depolariser).  Depolarisation  causes  a  loss  of  coherence  of  the

polarisation state  Chipman (2009a). The  polarisation vector  IF reflected by the atmosphere

F(a) with linear polarisation parameter a from a generally polarised laser IL is (Sect. 5.32 of

van de Hulst (1981);  Sect. 4 of  Mishchenko et al. (2002)).
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The linear depolarisation ratio is defined as 
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With  a  linearly polarised  laser  with  intensity  IL and  linear  polarisation  parameter  aL and

rotational  misalignment  α,  i.e.  without  emitter  optics, the  laser  light  reflected  by  the

atmosphere with linear polarisation parameter a is
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It is obvious that the lasers  aL and the atmospheres  a cannot be discerned in the resulting

Stokes vector, and the measured, combined polarisation parameter is 

La aa=¢ (S.3.4)

The linear depolarisation ratio δ' resulting from a' can be retrieved with Eq. (12) 
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For a small linear depolarisation ratio δL of the laser beam, the resulting linear depolarisation

ratio of an atmospheric measurement is about the sum of the lasers and the atmospheres linear

depolarisation ratios
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1L Ld d d dÞ » +¢= (S.3.6)

If δL is  unknown,  the  uncertainty will  cause  an  absolute  error  of  the  finally  retrieved

atmospheric linear depolarisation ratio. 

S.4 Retarding linear diattenuator

The  diattenuation  magnitude  D* of  an  optical  element,  usually  simply  diattenuation,  is

calculated from the maximum and minimum transmitted intensities  I (or transmittances  T)

(Chipman, 2009b), measured by rotating a linear polarising analyser in front of the element:
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The  diattenuation  magnitude  D* is  always  positive,  and  if  D* is  deduced.  from  the

reflectances  TR
p and  TR

s of an optical sample as in Eq. (17),  Eq. (S.4.1) becomes  Lu and

Chipman (1996)
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In order to avoid sign changes in the equations between the cases where TR
p < TR

s and TR
p >

TR
s, we use instead the diattenuation parameter DS (Eq. (S.4.3)) (see Chipman (2009b), where

it is named dx or dh), with which all equations can be expressed together for the transmitting

(subscript S = T) and the reflecting (subscript S = R) part of a polarising beam-splitter. 
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The transmittances for unpolarised light are shown in Eq. (S.4.4), and some often occurring

expressions in Eqs. (S.4.5) and (S.4.6).

,   
2 2

p s p s
R R T T

R T

T T T T
T T

+ +
º º (S.4.4)

1 ,   1 ,  1 ,   1s p s p
R R R R R R T T T T T TD T T D T T D T T D T T- = + = - = + = (S.4.5)

1 1
,  

1 1

s s
R R T T
p p

R R T T

T D T D

T D T D

- -
= =

+ +
(S.4.6)

The  optical  elements  considered  here  are  non-depolarising,  linear  diattenuators  MD,  with

linear  diattenuation  parameter  DO  and  average  transmission  TO for  unpolarised  light,
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combined with linear retarders MRet (linear retardance ΔO, cosΔO = cO , sinΔO = sO ). The optical

elements with possibly considerable diattenuation and retardation are dichroic beam-splitters,

which are used to separate the wavelengths and to analyse the state of polarisation of the

collimated beam in the receiver optics.  They are used in transmission and reflection.  The

matrix of the transmitting part is Eq. (S.4.7) (see Eqs. (14, 15))
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with the shortcuts in Eq. (S.4.8), the intensity transmission coefficients (transmittance) for

light polarised parallel (TT
p) and perpendicular (TT

s) to the plane of incidence of the PBS, the

diattenuation parameter  DT (see S.3), and the average transmittance TT for unpolarised light.

ΔT is the difference of the phase shifts of the parallel and perpendicular polarised electrical

fields. The Müller matrix for the reflecting part of the PBS (see Eqs.  16,17) includes a mirror

reflection (S.6):
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with  the  corresponding  intensity  reflection  coefficients  (reflectance)  for  light  polarised

parallel (TR
p ) and perpendicular (TR

s) to the plane of incidence of the PBS

22
1 ,  c cos ,  s sin ,  

p s
R R p s

R R R R R R R R Rp s
R R

T T
Z D

T T
D D D j jº = - º º º -

+
(S.4.10)

6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17



In order to simplify the derivation of the equations, we write in the following for both, the

reflecting and transmitting matrix of the polarising beam-splitter, MS (subscript S for splitter)

where appropriate.

{ } { } { }, ,  , ,   ,S R T S R T S R TZ Z Z I I IÎ - Î ÎM M M (S.4.11)

 eigen-polarisations along the x and y axes 
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As both are linear, they commute (Eq. (S.4.13). They have a block-diagonal structure. 

O D ret ret D= =M M M M M (S.4.13)

Among  such  optical  elements  are  λ/4  plates  (Sect.  S.10.16),  λ/2  plates  (Sect.  S.10.13),

dichroic  beam-splitters,  polarising  beam-splitters,  polarising  sheet  filters  ,  aluminium and

dielectric mirrors, and also uncoated glass surfaces under oblique incident angles. For further

information see  Azzam (2009); Bennett (2009a,b); Chipman (2009b,a)

S.5 Rotation 

S.5.1 Rotation about the direction of light propagation

Some confusion can arise because rotation about the optical axis can be done on a Stokes

vector, on the coordinate system (coordinate transformation), and on an optical element while

keeping the reference coordinate system. The first two rotations don't change the state of the

circular polarisation, while a rotated optical element can do that. Additional confusion arises

because often in the literature and in textbooks the vector and coordinate rotations are mixed,

or the derivation of the presented final equations from first principles are not provided, and

sometimes  the  explanatory text  is  misleading or  inconsistent.  We follow the  notations  in

Mishchenko et al. (2002); Chipman (2009b). Rotations are anti-clockwise, from the  x-axis

towards the y-axis, seen against the direction of light propagation (z-axis). 
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Fig. 8 Rotation of the xy-coordinate system (left) and of a vector (right). The z-axis, i.e. the

direction of light propagation, points out of the paper plane.  

A Stokes vector which is physically rotated by an angle ϕ while the coordinate system is fixed

becomes  Mishchenko et al. (2002; Ch. 1.5) 
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with the rotation matrix R(α) and the abbreviations

2 2c cos2 ,     s sin 2f ff fº º , (S.5.1.2)
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With these definitions a formula for one rotation can easily be converted to other angles with
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Please note, that  in Mishchenko et al. (2002; Ch. 1.5) the equations describe a rotation of the

Stokes vector, while the text specifies the transformation as "rotation of the two-dimensional

coordinate  system".  The two transformations  are  called  "alibi"  and "alias"  transformation

Steinborn and Ruedenberg (1973),  respectively.  The Stokes vector  rotates contra-variantly

under the change of basis.  If we rotate the coordinate system (alias transformation) by an

angle    (see Fig.  8), the original Stokes vector  I appears in the rotated coordinate system

under the angle −, and the Stokes vector I' in the rotated coordinate system is Eq. (S.5.1.7).
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The rotation of the polarisation of a Stokes vector can be accomplished by means of a λ/2

plate (HWP), which is a 180° linear retarder. An ideal HWP can be derived from Eq. (S.5.2.3)

by setting Δ0 = 180°, DÒ = 0  ZO = 1 and WO = 2, and TO = 1:
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A HWP rotates  a  Stokes  vector  by twice  the  own rotation  and  additionally  changes  the

direction of the circularly polarised component. For a rotation of  = 90° the HWP acts as a
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mirror but without changing the direction of light propagation. Real HWPs are often made of

birefringent crystals. Their retardance depends in general on the wavelength, on the incident

angle, and on the temperature. For lidar applications so-called true zero-order HWPs are best

suited. The HWP rotator and the mechanical rotator can be combined in one matrix  Mrot as

shown in S.10.15.

S.5.2 Rotation of a retarding diattenuator

The rotation of an optical element with Müller matrix MO by an angle  about the  direction of

light propagation is mathematically performed by first rotating the coordinate system before

MO by  −,  to achieve the description of the Stokes vector in the local coordinate system

(eigen-polarisations) of MO , and then rotating the coordinate system behind MO back to the

reference coordinate system by   using the rotation matrix R()

( ) ( ) ( ) ( )0O Of f f= ° -M R M R ,  (S.5.2.1)

 

Figure 9  Rotation angles of an optical element. The rotations considered in this work are only

1 and  2 .

A linear retarding diattenuator MO rotated by   about the z-axis becomes 
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2 2c cos2 ,s sin 2 ,c cos ,s sin ,   1 ,   1 cO O O O O O O O OZ D W Zf ff f D D= = = = º - = - (S.5.2.3)

Without diattenuation we get

20  1 1,   1 cO O O O OD Z D W= Þ = - = = - (S.5.2.4)

and with ideal diattenuation

21,   1 0,   1O O O OD Z D W= = - = = (S.5.2.5)

Rotation of a retarding diattenuator by ±45° + ε
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Without error angle ε:

( ) ( ) ( )

1 0 x 0

0 c 0 x s
x45 x45 x45
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S.6 Mirror

For a pure mirror without diattenuation or retardance the Müller matrix is

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

M

æ ö
ç ÷
ç ÷=

-ç ÷
ç ÷-è ø

M (S.6.1)

which results from the rotation of the detector (the eye) about the y-axis from the rear of the

optical element to the front as shown in Fig. 10.

Figure 10: Reflection of light by a mirror. The light propagation is along the z-axis. The plane

of vibration of linearly polarised light is indicated by the E-vectors, and right and left circular

polarised light by the RC and LC arrows, respectively.

To explain the change of the axes, let the plane of vibration of linearly polarised light be

rotated in the (xyz) coordinate system by  around the z-axis, indicated by the E -vector in

Fig.  10, and the incident angle be χ = 0 for reflection from a mirror. After the mirror the

direction of light propagation has changed, but not the orientation of the plane of vibration,

indicated by the E'-vector. Hence, the rotation ' in the mirrored coordinate system (xyz)' is '

= 180° − , which is equivalent to ' = − . Thus a Stokes vector rotated by R() in (xyz) is

described in (xyz)' after the mirror MM by 

( ) ( )M Mf f= = -M R R MI I I (S.6.2)
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Furthermore, the circular polarisation has changed its sign from right circular (RC) before to

left circular (LC) after the mirror.

S.6.1 Real mirror

Real mirrors are dielectric or metal surfaces which can exhibit considerable phase retardation

and diattenuation under oblique incident angles.  Hence,  a real mirror is a linear retarding

diattenuator MO combined with a mirror MM..

1 0 0 1 0 01 0 0 0

1 0 0 1 0 00 1 0 0

0 0 c s 0 0 c s0 0 1 0

0 0 s c 0 0 s c0 0 0 1

MO

O O

O O
O O

O O O O O O O O

O O O O O O O O

D D

D D
T T

Z Z Z Z

Z Z Z Z

=

æ ö æ öæ ö
ç ÷ ç ÷ç ÷
ç ÷ ç ÷ç ÷= =

- -- ç ÷ ç ÷ç ÷
ç ÷ ç ÷ç ÷ - --è ø è ø è ø

M

(S.6.1.1)

which commute

MO M O O M OM= = =M M M M M M (S.6.1.2)

Eq. (S.6.1.1) is also the description of the reflecting part of a polarising beam-splitter or of

any dichroic beam-splitter. 

S.6.2 Rotation of a reflecting surface

If we rotate MMO, we have to mind the change of the coordinate system after the mirror. Here

it is important which element comes first, because, as explained above, applying a mirror

means a change of the local coordinate system after the mirror, and rotation of elements are

always  done  with  respect  to  the  local  coordinate  system  before  the  element.  Hence,  a

diattenuator rotated in (xyz) plus a mirror described in (xyz)' is using (S.5.1.5) and (S.6.2)

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )   

M O M O M O MO

MO

f f f f f f f
f
= - = - - = - - =

=

M M M R M R R M M R R M R

M
(S.6.2.1)

Moving the mirror before the diattenuator

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )   

O M O M O M OM

MO

f f f f f f f
f
= - = =

= -

M M R M R M R M M R R M R

M
(S.6.2.2)

we see from (S.6.1.2) to (S.6.2.2) that

( ) ( ) ( ) ( )O M OM M O MOf f f f= = - = -M M M M M M . (S.6.2.3)
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This explains why the rotation of a reflecting diattenuator has to be described as shown by

Chipman (2009b) , i.e.:

( ) ( ) ( )OM OMf f f=M R M R . (S.6.2.4)

S.6.3 Beam-splitters and mirrors in the optical path

In order to make the equations developed in this work applicable to a variety of lidar systems,

we have to investigate how the equations are changed when individual elements are changed

from transmitting to reflecting. This is also useful when the reflected and the transmitted paths

after a beam-splitter are to be described with the same equations.

Above we showed the local coordinate change behind a mirror. But how does this effect the

outcome of a lidar measurement and of the calibration measurements? Let's consider a chain

of rotated optical elements using the eigen-polarisations of the polarising beam-splitter matrix

MS as the reference coordinate system 

( ) ( ) ( )3 2 1S S S inh g f e= M M M M FI I (S.6.3.1)

When we exchange M2 with its reflecting counterpart MM M2, we can move the ideal mirror

MM  step by step to the right in the chain using (S.6.2.3)

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 2 1

3 2 1

3 2 1

3 2 1
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M

L

S S S L

S S L

S S L

S S

h g f e a
h g e a
h g a

h g

f
f e

f e a

-

- -

= =

- -

¢

= =

= =

= -

M M M M F

M M M M F

M M M M F

M M M M F

M

M

M
*

I I

I

I

I
(S.6.3.2)

and see that all rotation angles before the changed element are inversed. In the last step of Eq.

(S.6.3.2)  the  depolarising  atmospheric  F-matrix  is  rotational  invariant,  and  the  circular

polarisation of the input Stokes vector changes its sign, indicated by the star. 

In other words: equations, which are derived for the system in Eq. (S.6.3.1), can be used for

the system with an additional mirror as in Eq. (S.6.3.2) by inverting in the original equations

all rotation angles before the mirror and reversing the circular polarisation of the input Stokes

vector. In case two surfaces are changed from transmitting to reflecting as 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

3 2 1

3 2 1

3 2 1

     

     

S S S in

S S in

S S in

M

M

M

M

f
h g f e
h g
h g

e
f e

= =¢¢

= - -

-

=

-=

M M M M F

M M M M F

M M M M

M M

MM

F

I I

I

I

(S.6.3.3)
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where  a  mirror  is  additionally  placed  behind  the  emitter  optics,  only  the  rotation  angles

between these two elements are inversed, because MMMM = 1, and the circular polarisation is

not changed. 

Real mirrors are usually dielectric or metal surfaces which can exhibit considerable phase

retardation and diattenuation under oblique incident angles. For incident angles smaller than

the Brewster angle the phase changes for p- (parallel) and s- (perpendicular) polarised light

are "in the same direction".

S.7 Standard atmospheric measurement signals

S.7.1 Lidar signal with rotational error before the polarising beam-

splitter

General case with arbitrary laser input and emitter optics  IE =  ME  IL  and  R(ε,h) from Eq.

(S.10.15.1):

( ) 2 2
y h

2 2

2 2

1 0 0 0

0 c hs 0
1 y 0 0

0 s hc 0

0 0 0 h

1 c y hs y 0

S S S S

S S S

T D

T D D

e e

e e

e e

e

æ ö
ç ÷-ç ÷= = =
ç ÷
ç ÷è ø

= -

A M R R M
(S.7.1.1)

Analyser vector from Eqs. (S.7.1.1) and input Stokes vector from (E.31) yield 

( ) ( ) ( )
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(S.7.1.2)

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15



( ) ( ) ( )

( ) ( ) ( ){ }
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(S.7.1.3)
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(S.7.1.5) 

With horizontal linearly polarised emitter input Stokes vector IE 

( ) ( ) ( )
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With rotated, linearly polarised laser and  emitter optics
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S.7.2 Lidar signal with rotational error before the receiving optics

With Eq. (D.7) for the analyser part and (E.26) for the general input vector we get
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Comparison with Eq. (69):
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S.7.3 Lidar signal with rotational error behind the emitter optics 

We get the equation for this case directly from the previous one considering that moving the

matrices for the rotational error from before the receiving optics to behind the emitter optics

just changes the sign of the angle ε using Eq. (S.6.2)
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S.8 Attenuated backscatter coefficient

Attenuated backscatter coefficient F11 derived from the transmitted signal IT 
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With η = ηRTR / ηTTT  we get the attenuated backscatter coefficient
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S.9 Rayleigh calibration

Calibration in ranges with presumably known aerosol depolarisation: 

With some lidar systems the  calibration factor is determined  in a measurement range with

known linear volume depolarisation ratio  δ, for example in clean air  δm. Assuming, for the

sake of simplicity, an ideal PBS (see Eq. (28)), we get with Eq. (26) for the calibration factor

in clean air ηm 

( ) ( ) ( )* 1 1
0 0 0mR R

m
T T

I I

I I
d h

h d
° = ° Þ = ° (S.9.1)

Assuming further that the errors in IR and IT are independent, which could be the case if the

background subtraction or nonlinearities in analog signal detection are the main error sources

for them, we get as a first estimate for the relative error of the calibration factor

m m
R T

m m
R T

I I

I I

Dh Dd D D
h d

= + + (S.9.2)

This error can easily become very large. The linear depolarisation ratio measured in a volume

of air molecules δm depends on the width of the interference filters, as they transmit or reject
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some rotational Raman lines, and on the atmospheric temperature Behrendt and Nakamura

(2002). At 355 nm δm can range from about 0.004 to 0.015. Errors in the order of some 10% in

δm are already possible in case the wavelength dependence of the transmission of the IFF or its

tilt angle in the optical setup are not known accurately. Furthermore, a small contamination of

the assumed clean air with strongly depolarising aerosol as Saharan dust or ice particles from

subvisible cirrus can change the volume linear depolarisation ratio dramatically. Assuming a

small backscatter ratio of 1.01 due to particles with δp = 0.3 and with δm = 0.004, we get Biele

et al.  (2000) a real  δ = 0.01*  δp +  δm = 0.007, which would cause a relative error in the

calibration factor  ηm of (0.007-0.004)/0.004 = +75%. Better than this "clean" air calibration

would even be to use a calibration in a cirrus cloud with δp between let's say 0.3 and 0.5, with

a resulting calibration factor error of "only" +-0.1/0.4 = +-25%. 

Summary of  this  chapter:  Depolarisation  calibration  with  presumably known atmospheric

depolarisation can cause very large calibration errors.

S.10 Some Müller matrices

S.10.1 Depolariser

A diagonal depolariser MDD (Chipman, 2009b) 

1 0 0 0

0 0 0

0 0 0

0 0 0

DD

a

b

c

æ ö
ç ÷
ç ÷=
ç ÷
ç ÷è ø

M (S.10.1.1)

partially depolarises the incident light depending on its state of polarisation. For atmospheric

depolarisation  by  randomly  oriented,  nonspherical  particles  with  rotation  and  reflection

symmetry it can be shown that b = −a and c = (1 − 2a) (van de Hulst, 1981; Mishchenko and

Hovenier,  1995;  Mishchenko  et  al.,  2002) (see  also  Sect.  2.1),  which  results  in  the

backscattering matrix
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0 0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 1 2
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F (S.10.1.2)
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S.10.2 Rotation matrix for various rotation angles

( ) ( )

( )

2 2 2 2

2 2 2 2

1 0 0 0 1 0 0 0

0 c s 0 0 c xs 0
,   x

0 s c 0 0 xs c 0

0 0 0 1 0 0 0 1

1 0 0 0

0 0 x 0
x45

0 x 0 0

0 0 0 1

f f f f

f f f f

f f

æ ö æ ö
ç ÷ ç ÷- -
ç ÷ ç ÷=
ç ÷ ç ÷
ç ÷ ç ÷è ø è ø

æ ö
ç ÷-
ç ÷°
ç ÷
ç ÷è ø

=

=

R R

R

(S.10.2.1)

( ) ( ) ( ) ( ) ( ) ( ) 2 2

2 2

1 0 0 0

0 xs xc 0
x, x45 x45 x45

0 xc xs 0

0 0 0 1

e e

e e

e e e e

æ ö
ç ÷- -ç ÷= ° + = ° = ° =

-ç ÷
ç ÷è ø

R R R R R R (S.10.2.2)

See Supp. S.10.15. regarding the half-wave plate rotation.

( ) ( ) ( ) ( )
( ) ( )y

1 0 0 0 1 0 0 0

0 1 0 0 0 y 0 0 y 1 90
90 ,   y  

0 0 1 0 0 0 y 0 y 1 0

0 0 0 1 0 0 0 1

æ ö æ ö
ç ÷ ç ÷- = - = °
ç ÷ ç ÷° = Þ

- = + = °ç ÷ ç ÷
ç ÷ ç ÷è ø è ø

= º
R R

R R R
R R

(S.10.2.3)

S.10.3 Retarding linear diattenuator

1 0 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0 0

0 0 c s 0 0 0 0 0 c s

0 0 s c 0 0 0 0 0 s c

O D ret ret D
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ç ÷ ç ÷ ç ÷= =
ç ÷ ç ÷ ç ÷
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(S.10.3.1)

( )

2,   1 ,   1 c

c cos cos ,    s sin

p s
O O

O O O O O Op s
O O

p s
O O O O O O

T T
D Z D W Z
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D j j D

-= = - = -
+

= = - =
(S.10.3.2)
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S.10.4 Rotated, retarding linear diattenuator 

( ) ( ) ( )

2 2 2 2

2 2 2 2

2 2
2

2 2 2 2 2

2 2 2

x x x

1 0 01 0 0 0 1 0 0 0
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f f

f f f f f

f f f

f f f= -

æ öæ ö æ ö
ç ÷ç ÷ ç ÷-
ç ÷ç ÷ ç ÷ =

-ç ÷ç ÷ ç ÷
ç ÷ç ÷ ç ÷-è ø è øè ø

- -

=

=

=

M R M R

2
2 2

2 2

1 c c

0 xs c
O O O O

O O O O O O

W W Z s
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f f

f f

æ ö
ç ÷
ç ÷

-ç ÷
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S.10.5 Rotated, retarding linear diattenuator mirror

( ) ( ) ( )

2 2 2 2

2 2 2 2

2 2

2
2 2 2 2 2

2 2

x x x
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S.10.6 ±45° rotated retarding linear diattenuator including error ε 

( ) ( ) ( )

2 2 2 2

2 2 2 2

2 2

2
2 2 2 2

x45 x45 x45

1 0 01 0 0 0 1 0 0 0

1 0 00 xs xc 0 0 xs xc 0
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(S.10.6.1)

S.10.7 ±45° rotated retarding linear diattenuator

( )

1 0 x 0

0 0 x
x45

x 0 1 0

0 x 0

O

O O O O
O O
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O O O O

D

Z c Z s
T

D
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æ ö
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M (S.10.7.1)

S.10.8 Rotated, ideal linear polariser and analyser

Note: without absorption TP = 0.5.

( )

1, 0, 1
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( )
1 0 x 0 1 1

0 0 0 0 0 0x45

x 0 1 0 x x
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( ) ( )

( )

11
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(S.10.8.9)

For the 0° and 90° measurements with a perfect polariser MP we get from Eq. (S.10.8.1) and

Eq. (S.12.2)
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( )2 2 2 2
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xc c s c 0 xc c s c

xs s c s 0 xs s c s

0 0 0 0 0

x c

P P P

P in

in in in in

in in in in
P in P in
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S.10.9 Two rotated retarding linear diattenuators

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
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(S.10.9.1)
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The first row vector of Eq. (S.10.9.2)

( ) ( )

( )
( ) ( )

( )
( )

2 2 2 2

2
2 2 2 2 2 2 2 2 2 2 2

2
2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

1 c 1 c

c 1 s c s c s c c s s

s c c 1 c s s s c s

s s c c s s s s

A O

S O

A O A O

O O A O A O O A

O O A O A O O A

O O A O O A O O A

T T

D D D D

D W D W D D W D

D W D W D D W D

Z D Z D Z D

g f g f

g g f g g f g f g g f

g g f g f g f g g f

g f g f g f

f g

- -

-

-

-

=

+ +

+ - + + -
= =

+ + - + +

- + -

M M

(S.10.9.3)

S.10.10 Cleaned analyser (polarising beam-splitter with additional 

polarising sheet filters)

The intensity transmission of analysers is proportional to a certain state of polarisation before

the analyser, with arbitrary state of polarisation behind, while the output of polarisers is a

certain state of polarisation regardless which state of polarisation exists before the polariser

(Lu  and  Chipman,  1996).  Here  we  use  a  polarising  sheet  filter,  which  is  a  depolarising

analyser and a depolarising polariser at  the same time, to get rid of the cross talk of the

polarising beam-splitter.  The combined matrix  of a  polarising sheet filter  MA   behind the

polarising beam-splitter  MS is again the matrix of a retarding linear diattenuator, which we

call a cleaned polarising beam-splitter.  If  MA is rotated (misaligned) by   we get from Eq.

(S.10.9.3)

( ) ( )
2 2 2 2

0

0
1 c +c s c s sA S

A S S A A S S A S S
A S

D D D D D Z D Z
T T f f f f

g
f

= Þ

= +
M M (S.10.10.1)

( ) ( )
0, 0

0 0
1 + 0 0A S

A S S A
A S

D D D D
T T

g f= = Þ

= +
M M (S.10.10.2)

( ) ( )
0, 90

90 0
1 0 0A S

A S S A
A S

D D D D
T T

g f= = ° Þ

°
= - -

M M (S.10.10.3)

Typically the manufacturers'  terminology is  as Eq. (S.10.10.4) and their  specifications for

polarising sheet filters are the transmission of two crossed filters Eq. (S.10.10.6) and that of

two parallel filters Eq. (S.10.10.7) of the same type. 
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1 2  and     p s
A AT k T k= = Þ (S.10.10.4)

1 21 2 1 2

1 2 1 2

2
,   ,   

2A A A

k kk k k k
D Z T

k k k k

- +
= = =

+ +
(S.10.10.5)

2
90 1 2 1cross A AT H k k T D= = = - (S.10.10.6)

( )2 2 2
0 1 20.5 1parallel A AT H k k T D= = + = + (S.10.10.7)

For the extinction ratio  ρ (see  Bennett (2009a), Sect. 12.4) and its inverse, i.e. the contrast

ratio  or  transmission  rato,  different  definitions,  as  in  Eq.  (S.10.10.9),  can  be  found  in

manufacturers' descriptions, which is sometimes confusing. However, usually k2 << k1, and

the given extinction ratios are then to be understood as "on the order of", irrespective of the

used formula.

2

1

k

k
r = (S.10.10.8)
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2 1

90 1 2
2 2

0 1 2

2
0.5
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k k
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(S.10.10.9)
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(S.10.10.10)

For an ideal (cleaned) analyser MA with total extinction (k2 = 0) we get from Eqs. (S.10.10.3)

and (S.10.10.10)

2

# # # # #
1 1

with  0, 1, 0

0.5 ,   0.5 ,   1,   1,   0

A A

p s
T T R R T R S

k D Z
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(S.10.10.11)

#

#
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h hh
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General:

27

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17



( ) ( )

( )

( ) ( )

21 2 1 2 1 2 1 2 1 21 21

1 1
1

1 1

1 1 1

2 1 2 1 2 1
21

2 1 2 1 2 1

21 2 1 2 1 2 1 2 1

2 1 2 12 1
21

2 1 2 1 2 1

0 0 1 0 0 1 0 0

0.5

,
1

1 0.5

2

1

p s

p s

p s

p p s s

p p s s

p p s s

p p s s

p p s s

T T D D D D T D

T T
D

T T

T T T

D D T T T T
D

D D T T T T

T T T D D T T T T

T T T TZ Z
Z

D D T T T T

º ° ° = + + =

-
=

+

= +

+ -
= =

+ +

= + = +

= =
+ +

M M M

(S.10.10.13)

1 1
1 1

1 1

1 ,1
s pT T

D D
T T

- = + = (S.10.10.14)

( ) ( )
( ) ( )

( ) ( ) ( ){ }
Sy

y

1 1y
=

1 y 1 1

1 y 0.25 1 1

1 ,

p p s s p s s p
O S O S O S O SO S

O p p s s p s s p
S O O S O S O S O S

p p s s p s s p
S O S O S O O S O S O S O S

p p s s
O S O S

S O p p s s
O S O S

y T T T T y T T T TD D
D

D D y T T T T y T T T T

T T T D D y T T T T y T T T T

T T T T
y D

T T T T+

é ù é ù+ - + - -+ ë û ë û=
+ é ù é ù+ + + - +ë û ë û

é ù é ù= + = + + + - +ë û ë û
-

= + Þ =
+ ( )

( )

+

- - - -

    0.5 ,     ,     

1 ,     0.5 ,     ,     

p p s s p p p s s s
S O O S O S S O O S S O O S

p s s p
p s s p p p s s s pO S O S

S O S O O S O S S O O S S O O Sp s s p
O S O S

T T T T T T T T T T T

T T T T
y D T T T T T T T T T T T

T T T T

+ += + = =

-
= - Þ = = + = =

+

(S.10.10.15)

2 2

Sy

1 1 1

y 1 y 1 1
= y

1 y y 1 y y

S S

O S S O
O S

S O S S O S

D y D y

D D D D
D D

D D D D D D

= ± Ù = ± Þ = = Þ
+ +

= = =
+ +

(S.10.10.16)

y y
Sy y

y y

1 ,1
s p

S O S O
O S O

S O S O

T T
D D

T T
- = + = (S.10.10.17)

S.10.11 Retarder

A retarder  is  a  retarding  linear  diattenuator  (Sect.  S.10.3ff)  without  diattenuation  (see

Chipman (2009b)):

=0, =1  (without absorption 1)
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S.10.12 Rotated retarder

Rotated retarder with
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S.10.13 Rotated λ/2 plate

Retarder Eq.(S.10.12.1)  with 

2180 c 1,s 0, 0, 1 1, 1 c 2O O O O O O O O OD Z D W ZD = ° Þ = - = = = - = = - = (S.10.13.1)
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The  rotation  of  a  λ/2  plate  by   rotates  the  Stokes  vector  by  twice  the  rotation   and

additionally  inverts  the  circular  polarisation  component.  This  is  equivalent  to  a  mirror

followed by a rotation of the coordinate system by 2θ. Please note, that the rotator and mirror

matrices don't commute (compare Eqs. (S.6.2.1) ff).

λ/2-retarder Eq.(S.10.12.1) at 0° and 22.5° with phase shift error 2ω

2

2 2

2 2
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S.10.14 Rotated λ/2 plate for Δ90-calibration including error ε 
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S.10.15 Rotation calibrator

The mechanical rotator (Sect.  S.10.2) and the λ/2- rotator (Sects.  S.10.13,  S.10.14) can be

combined to 
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where Trot is the transmission of the rotation calibrator for unpolarised light, which equals one

for the mechanical rotator. For the mechanical rotator we use h = +1, and for the λ/2- rotator h

= −1, and ϕ = 2θ is two times the actual rotation θ of the λ/2-plate, as well as ε is two times

the actual error angle of the λ/2-plate. With Eq. (S.10.15.1) we get Eq. (S.10.15.2) for the

rotation calibrator Mrot at ±45°.
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The error rotation  ε can be separated as in Eq. (S.10.15.3) using the explanations in Sect.

S.6.3 .

( ) ( ) ( ) ( ) ( )h h hx45 x45 x45 he e e° + = ° = °R M R R M R M R (S.10.15.3)

S.10.16 λ/4 plate (QWP)

From Eq. (S.10.6.1): QWP without diattenuation, with phase shift error ω.
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S.10.17 Rotated, ideal λ/4 plate

290 c 0,   s 1,   0,   1 1,   1 c 1

 (without absorption 1)
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S.10.18 Circular polariser 

Linear polariser at 0° Eq. (S.10.3.1) and QWP  at z45° Eq. (S.10.16.3) (see Chipman (2009a)

Chap. 15.26).
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Circular polariser as  ±45° calibrator with a QWP with phase shift error ω and a real linear

polariser 
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Circular polariser with QWP without phase shift error ω and real  linear polariser as  ±45°

calibrator
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Circular  polariser  with  QWP with  phase  shift  error  ω  and  ideal  linear  polariser  as  ±45°

calibrator
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Ideal circular polariser as ±45° calibrator (see Eq. (E.27))
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Rotated, ideal circular polariser as ±45° calibrator

( ) ( ) ( ) ( ) ( )

2 2 2 2

2 2 2 2

2 2

1,  0 

x45 z45 0 x45z,x45

1 0 0 0 1 0 0 0 1 1 1 0 0 0

0 xs xc 0 0 0 0 z 1 1 0 xs xc 0

0 xc xs 0 0 0 1 0 0 0 0 xc xs 0

0 0 0 1 0 z 0 0 0 0 0 0 0 1

1 xs xc 0

0 0 0 0

0 0 0

P

QW PCP

CP CP

D

T T

e e e e

e e e e

e e

w
e ee

= = Þ
° + ° ° - ° -° +

= =

æ ö æ öæ ö
ç ÷ ç ÷ç ÷- - - -ç ÷ ç ÷ç ÷= =

- - -ç ÷ ç ÷ç ÷
ç ÷ ç ÷ç ÷è øè ø è ø

-

=

R M M RM

2

2

2 2

1 1

0 xs

0 0 xc

z zxs zxc 0 z 0

e

e

e e

æ ö
ç ÷ -
ç ÷ =
ç ÷
ç ÷-è ø

(S.10.18.6)

35

1

2

3



Rotated circular polariser as +-45° calibrator with a QWP, with retardation error

From Eq. (S.10.9.3)
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S.10.19 Circular analyser (CA)

(see Chipman (2009a) Chap. 15.26)

In order  to  keep the  same flexibility  regarding the  mutual  orientation  between the  linear

polariser and the λ/4 plate as for the circular polariser, we construct the ideal circular analyser

with a λ/4 plate  at  ±45° and a linear polariser at 0° or 90° (according to Chipman (2009a)

15.18: left circular analyser for x,z = +1) from Eqs. (S.10.8.5) and (S.10.17.4)
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S.11 Helpful relations 

(see also  S.10.10)
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20  1 1,   1 cO O O O OD Z D W= Þ = - = = - (S.11.5)

21   1 0,   1O O O OD Z D W= Þ = - = = (S.11.6)
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S.12 Trigonometric relations
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S.12.1 Tangent half-angle substitution

The substitution Eq. (S.12.1.1) is sometimes called Weierstrass substitution, but it can already

be found in Euler's Institutionum calculi integralis (Eneström number E342: Vol. 1 Part 1,

Sect. 1, Chap. 5, Problem 29, http://eulerarchive.maa.org/pages/E342.html).

2

2
tan sin

2 1

t
t

t

q qæ ö= Û =ç ÷è ø +
(S.12.1.1)

With this substitution we can write Eq. (S.12.1.2) and yield ε from Eq. (S.12.1.3). For small ε

we get the approximation Eq. (S.12.1.4).
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S.13 Example

From Eqs. (65) and (61)
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we get for the simplest case from Eq. (79): 

90° rotated polarising beam-splitter
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0° rotated polarising beam-splitter
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From Eq. (78) with cleaned 90° rotated polarising beam-splitter => 
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S.14 Determination of the degree of circular polarisation of the emitted 

laser beam.

Combining the ±45 calibrations with different calibrators can yield information about the laser

polarisation.  With  a  cleaned  analyser,  without  receiver  optics  rotation, and  with  a  QWP

without calibrator rotation ε before the receiving optics from Chap. (9.2) and a linear polariser

(LP) from Chap. (8.2)

( )
( )

*

*
, 90

with  0, 1, 1

xy 1 21 y

1 y xy 1 2

1 y

1 y

T R

QWP E EO

O E E

LP O

O

D D

i a vD

D i a v

D

D
D

g e
h

h

h
h

= = = + = - Þ

+ --
=

+ - -

-=
+

(S.14.1)

we can calculate

( ) ( )
( )

*

*
, 90

x xy 1 2

xy 1 2
QWP E E

LP E E

i a v
Y

i a vD

h
h

+ -
º =

- - (S.14.2)

and get the degree of circular polarisation 
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