A new setup for simultaneous high precision measurements of CO$_2$, δ^{13}C-CO$_2$ and δ^{18}O-CO$_2$ on small ice core samples

T. M. Jenk1,*, M. Rubino$^{2,\#}$, D. Etheridge2, V. G. Ciobanu1, T. Blunier1

[1]{Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark}

[2]{CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia}

[*]{now at: Paul Scherrer Institut, Laboratory for Radio– and Environmental Chemistry, Villigen PSI, Switzerland}

[#]{now at: Seconda Università degli Studi di Napoli, Caserta, Italy}

Correspondence to: T. M. Jenk (theo.jenk@psi.ch)
Figure S1: Chromatograms for the measurement of pure CO$_2$-WS injected into section B of the setup (Fig. 2) and subsequently passing the PreCon–GC system. Upper panel: IRMS signal intensity for mass 44, 45, and 46. The flat-topped peaks are on/off peaks of the WS injected via the open split. Peaks 1-9 are used to reach stable source conditions while peaks 10 and 14 before and after the samples (i.e. the WS passing the PreCon–GC system) are used for referencing. The inset shows baseline details and N$_2$O separation in detail. Lower panel: PDD and TCD intensity signal for CO$_2$ and air (not detected for the pure CO$_2$ sample injected here), respectively. Stars indicate valve switching, resulting in small variations in the PDD signal due to changes in pressure and flow (see inset, not detected by the less sensitive TCD). Diamonds indicate immersion of the three capillary traps into liquid nitrogen for CO$_2$ cryofocusing and their subsequent one by one release resulting in the three peaks of the split sample shown in the upper panel (peaks 11–13). Over the time period indicated by the grey bar the GC–1 temperature is increased to 150 °C in order to pre-condition the column for the next sample. The enlargement shows baseline details and the N$_2$ and O$_2$ signal of the system blank contribution.
Figure S2: Chromatograms for the measurement of a system blank including both sections A and B (Fig. 2) and bellow compression (i.e. needle movement but no ice). Upper panel: IRMS signal intensity for mass 44, 45, and 46. The flat-topped peaks are on/off peaks of the CO$_2$-WS injected via the open split. Peaks 1–9 are used to reach stable source conditions while peaks 10 and 14 before and after the samples (i.e. the system blank) are used for referencing. The inset shows baseline details and the system blank signal of CO$_2$ and N$_2$O in detail. Lower panel: PDD and TCD intensity signal for CO$_2$ and air (not detected), respectively. Stars indicate valve switching, resulting in small variations in the PDD signal due to changes in pressure and flow (see inset, not detected by the less sensitive TCD). Diamonds indicate immersion of the three capillary traps into liquid nitrogen for CO$_2$ cryofocusing and their subsequent one by one release resulting in the three peaks of the split sample shown in the upper panel (peaks 11–13). Over the time period indicated by the grey bar the GC–1 temperature is increased to 150 °C in order to pre-condition the column for the next sample. The enlargement shows baseline details and the system blank contribution of N$_2$, O$_2$ and CO$_2$.
Figure S3: Fractionation effects for δ^{18}O: A) IRMS nonlinearity effect; δ^{18}O dependence on peak amplitude (top x-axis), Δ–amplitude is the deviation in intensity (mass 44) from the reference peak (ref, δ^{18}O and Δ–amplitude = 0). The data is obtained from a total of 177 measurements and shown are mean values with the 1σ standard deviation. B) PreCon–GC linearity (bottom x-axis); CO$_2$ sample size dependence for pure CO$_2$ working standard directly injected to section B. The data is obtained from a total of 318 measurements corrected for IRMS nonlinearity and blank; shown are mean values with the 1σ standard deviation. C) Air amount dependence (bottom x-axis); air sample size dependence for air standards/samples injected to section A. The data is obtained from a total of 46 measurements corrected for IRMS nonlinearity, PreCon–GC linearity and system blank, shown are mean values with the 1σ standard deviation. The grey bars indicate the typical procedural blank and sample size range of air extracted from ice samples, respectively.
Figure S4: Laboratory comparison measurements of Law Dome ice samples covering the recent past (1851–1969 AD). Shown are the δ^{18}O-CO$_2$ values measured at CIC (x-axis) and CSIRO (y-axis; Rubino M., pers. communication). Blue boxes indicate 1σ uncertainties defined for each laboratory by the respective side length.
Figure S5: High resolution records of δ^{18}O-CO$_2$ with error bars (1σ, left axis) and δ^{18}O-H$_2$O (right axis) for an ice section from NGRIP. The sample in red has been defined as an outlier (for details see Sect. 4.3 in the main manuscript).