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Abstract 21 

The Measurements of Pollution in the Troposphere (MOPITT) instrument is the only satellite-22 

borne sensor in operation that uses both thermal (TIR) and near infrared (NIR) channels to 23 

estimate CO profiles. With more than fifteen years (2000 to present) of validated multi-24 

spectral observations, MOPITT provides the unique capability to separate CO in the Lower 25 

Most Troposphere (LMT, surface to 3 km (~700 hPa)) from the free tropospheric abundance. 26 

To extend this record, a new, hyper-spectral approach is presented here that will provide CO 27 

data products exceeding the capabilities of MOPITT instrument by combining the short 28 
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wavelength infrared (SWIR, equivalent to the MOPITT NIR) channels from the 1 

TROPOspheric Monitoring Instrument (TROPOMI) to be launched aboard the European 2 

Sentinel 5 Precursor (S5p) satellite in 2016, and the TIR channels from the Cross-track 3 

Infrared Sounder (CrIS) aboard Suomi National Polar-orbiting Partnership (Suomi NPP) 4 

satellite. We apply the MUlti-SpEctra, MUlti-SpEcies, Multi-SEnsors (MUSES) retrieval 5 

algorithm, to quantify the potential of this joint CO product. CO profiles are retrieved from a 6 

single-footprint, full spectral resolution CrIS transect over Africa on August 27-28, 2013 7 

coincident with significant biomass burning. Comparisons of collocated CrIS and MOPITT 8 

CO observations for the LMT show a mean difference of 2.8±24.9 ppb, which is well within 9 

the estimated measurement uncertainty of both sensors. The estimated degrees of freedom 10 

(DOFS) for CO signals from synergistic CrIS/TROPOMI retrievals are approximately 0.9 in 11 

the LMT and 1.3 above LMT, which indicates that the LMT CO can be distinguished near 12 

surface CO abundance information from the free troposphere, similar to MOPITT multiple 13 

spectral observations (0.8 in the LMT, and 1.1 above LMT). In addition to increased 14 

sensitivity, the combined retrievals reduce measurement uncertainty with ~15% error 15 

reduction in LMT. With a daily global coverage and a combined spatial footprint of 14 km, 16 

the joint CrIS/TROPOMI measurements have the potential to extend and improve upon the 17 

MOPITT multi-spectral CO data records for the coming decade.  18 

 19 

1 Introduction 20 

Observations of tropospheric carbon monoxide (CO) from space over the last decade have 21 

been exploited for monitoring air quality (e.g., Clerbaux et al., 2008a; Kar et al., 2010), 22 

quantifying CO emissions (e.g., Kopacz et al., 2009; Fortems-Cheiney et al., 2011), analyzing 23 

long-range transport of pollution (e.g., Heald et al., 2003; Edwards et al., 2006; Zhang et al., 24 

2006), attributing sources and sinks of CO2 concentrations (e.g., Silva et al., 2013), and 25 

evaluating chemical transport models and decadal trends in atmospheric composition (e.g., 26 

Shindell et al., 2006; Worden et al., 2013a). The Measurements Of Pollution In The 27 

Troposphere (MOPITT) instrument, which is on the Earth Observation System EOS-Terra 28 

platform, has acquired more than fifteen years (2000 to present) of validated global CO 29 

observations (Emmons et al., 2007, 2009; Deeter et al., 2013, 2014). MOPITT is equipped 30 

with gas filter correlation radiometers (Drummond, 1992) measuring both CO first 31 

fundamental (4.6 µm) and overtone bands (2.3 µm). The synergy of CO first fundamental 32 
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band in the thermal infrared (TIR) and overtone band in the near infrared (NIR) provides an 1 

unprecedented sensitivity to probe CO in the Lower Most Troposphere (LMT, surface to 3 2 

km) (Worden et al., 2010; Worden et al., 2013b). This unique multi-spectral capability of 3 

MOPITT is not available from any single sensor on existing satellites that depend on a single 4 

spectral band, e.g., AIRS (Atmospheric Infrared Sounder) on EOS-Aqua (McMillan et al., 5 

2005; Warner et al., 2007), TES (Tropospheric Emission Spectrometer) on EOS-Aura 6 

(Rinsland et al., 2006), IASI (Infrared Atmospheric Sounding Interferometer) on METOP-A 7 

and B (George et al., 2009), SCIAMACHY on Envisat (de Laat et al., 2007). Retrieval 8 

sensitivity to the LMT is critical for the operational use of satellite data in air quality, climate, 9 

and carbon applications, motivating the multi-spectral retrieval approach for a variety of 10 

species including O3 and CO, (Landgraf and Hasekamp 2007; Worden et al., 2010; Cuesta et 11 

al., 2013; Fu et al., 2013; Luo et al., 2013; Worden et al., 2013a, 2013b). 12 

All NASA space missions capable of measuring atmospheric CO concentrations have passed 13 

their nominal lifetime by years (Table 1). The European Space Agency (ESA) Sentinel 5 14 

precursor (S5p) TROPOspheric Monitoring Instrument (TROPOMI), which is expected to 15 

launch in 2016 into an afternoon orbit behind the Suomi National Polar-orbiting Partnership 16 

(Suomi-NPP) satellite, has only NIR channels for CO measurements. The Cross-track 17 

Infrared Sounder (CrIS) aboard the Suomi-NPP satellite is a TIR sensor operating since 18 

October 28, 2011 and providing measurements of full spectral resolution radiances for all 19 

three spectral bands since December 4, 2014 (Han et al., 2015). The constellation of Suomi 20 

NPP and ESA S5p provides a unique set of collocated observations, which could extend the 21 

EOS-MOPITT multi-spectral CO data products with significant improvements on spatial 22 

resolution and coverage (Table 1). This multi-spectral retrieval algorithm could also be 23 

applied to the future joint Sentinel-5 UVNS/IASI-NG observations from METOP Second 24 

Generation satellites (Veefkind et al., 2012; Crevoisier et al., 2014), which is anticipated in 25 

the time period of 2022-2045.  26 

The MUlti-SpEctra, MUlti-SpEcies, Multi-SEnsors (MUSES) retrieval algorithm, has a 27 

generic design that incorporates hyperspectral forward model radiances from multiple sensors 28 

in a joint optimal estimation retrieval algorithm. MUSES has been applied to joint TES/OMI 29 

ozone retrievals (Fu et al., 2013; Worden et al., 2013b) using measured TIR/UV spectral 30 

radiances and joint TES/MLS CO retrievals (Luo et al., 2013) using measured TIR/ 31 

Microwave spectral radiances. In this paper, we first time describe the MUSES retrieval 32 
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algorithm that is capable of combining the TROPOMI and CrIS spectral radiances to produce 1 

atmospheric CO Volume Mixing Ratio (VMR) profiles with a vertical resolution that 2 

improves upon the EOS-Terra MOPITT multi-spectral CO data products. This multi-spectral 3 

observation strategy offers two significant advantages relative to traditional single band 4 

measurements: enhanced sensitivity to composition changes especially in the LMT, and 5 

reduced measurement uncertainty.  6 

The paper is organized as follows: Section 2 describes the characteristics of CrIS/TROPOMI 7 

measurements and the pairing strategy. Section 3 describes the MUSES retrieval algorithm, 8 

samples of retrievals using CrIS full spectral resolution, single-footprint measurements, 9 

comparisons of collocated CrIS and MOPITT observations and estimated characteristics of 10 

synergistic CrIS/TROPOMI retrievals. Conclusions are presented in Section 4. 11 

    12 

2 CrIS and TROPOMI 13 

CrIS is on the Suomi NPP satellite in a near-polar, sun-synchronous, 828 km altitude orbit 14 

with a 1:30 pm equator crossing time (ascending node), and has been operational since 15 

October 28, 2011. TROPOMI will be on the ESA S5p satellite, planned for launch in 2016 16 

with a design lifetime of 7 years (Table 1). S5p will fly within approximately 5 minutes of 17 

Suomi NPP, which enables collocated observations of atmospheric composition (cloud, 18 

aerosol, temperature, and trace gases) and surface properties (albedo, emissivity, and skin 19 

temperature), thus building upon the success of the “A-Train” constellation of Earth 20 

observation satellites.  21 

CrIS is a Fourier transform spectrometer that measures the TIR radiances emitted by the 22 

Earth's surface and transmitted through atmospheric gases and particles in three spectral 23 

bands, including the long-wave IR band 1 (648.75-1096.25 cm-1), the mid-wave IR band 2 24 

(1208.75-1751.25 cm-1), and the short-wave IR band 3 (2153.75-2551.25 cm-1) (Han et al., 25 

2013, 2015; Strow et al., 2013a,b; Tobin et al., 2013; Wang et al., 2013). It was intended as 26 

the operational successor to the AIRS instrument on the Aqua Platform (Aumann et al., 2003; 27 

Pagano et al., 2003). The typical signal to noise ratio (SNR) of a CrIS measurement is about 28 

800:1 in the spectral region of interest for CO. CrIS is a cross-track scanning instrument, 29 

whose full spectral resolution is 0.625 cm-1, providing measurements with daily global 30 

coverage (Table 1). Currently, the operational Level 1B products provide full spectral 31 

resolution only for the long-wave IR band 1 for entire lifetime of the mission (Han et al., 32 
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2013). The full resolution (0.625 cm-1) spectral radiance products for band 2 (was 1.25 cm-1) 1 

and band 3 (was 2.5 cm-1) have been available since December 4th, 2014 (Han et al., 2015). 2 

Ground pixels have a diameter of 14 km at nadir. CrIS atmospheric measurements in the 3 

2155-2209 cm-1 spectral region – nearly identical to observations of MOPITT TIR channels – 4 

include high-density absorption features of the strongest fundamental band of CO and minor 5 

absorption from interfering species, providing sensitivity for estimating the atmospheric CO 6 

concentration. It is worth noting that Gambacorta et al., [2014] found that the information 7 

content present in the CO retrievals improves up to one order of magnitude upon switching 8 

from spectral resolution of 2.5 cm-1 to the full spectral resolution of 0.625 cm-1 (starting from 9 

December 4th 2014). 10 

TROPOMI will provide daily global coverage owing to its wide swath across track (Table 1). 11 

It is a nadir-viewing push broom imaging spectrometer that measures backscattered and 12 

reflected sunlight covering the 270-500 nm, 675-725 nm, 725-775 nm, and 2305-2385 nm 13 

(4193-4338 cm-1) spectral regions. Its atmospheric measurements in the 2.3 µm band – nearly 14 

identical to observations of NIR channels of SCIAMACHY and MOPITT – include high-15 

density absorption features of the overtone band of CO, providing sensitivity for estimating 16 

the CO total column average VMR. The module of the spectral band at 2.3 µm has a spectral 17 

resolution of 0.25 nm and a spectral sampling rate of about 2.0-2.5 detector elements per 18 

FWHM (Full Width at Half Maximum) (Veefkind et al., 2012). The ground pixel size of its 19 

CO measurements at the nadir position is 7 × 7 km2, which yields a spatial resolution about 10 20 

times higher than Terra-MOPITT (22 × 22 km2) mission (Table 1). Within the spectral region 21 

of interest, the minimum spectral SNR of a single TROPOMI measurement is 120:1 in the 22 

continuum around 2310 nm (4329 cm-1), specified for a scene with a surface albedo of 5% 23 

and solar zenith angle of 70° (Veefkind et al., 2012).  24 

In order to match the CrIS footprint size, our retrieval algorithm will average 4 adjacent pixels 25 

of TROPOMI prior to the spectral fittings. Hence, the effective SNR of TROPOMI 26 

measurements for the synergistic retrievals will be greater than 240:1. The joint 27 

CrIS/TROPOMI spatial resolution will be 14 × 14 km2 at the nadir position, about 2.5 times 28 

higher than that of the MOPITT mission (Table 1). MUSES algorithm uses single footprint 29 

CrIS L1B radiances into the retrievals, leading to the 9 times smaller footprint size (Table 1) 30 

than that of operational algorithm (Gambacorta et al., 2014). 31 
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Daytime ascending node CO retrievals are available from TROPOMI and CrIS whereas 1 

nocturnal descending node CO depends exclusively on CrIS. The daily spatial sampling of the 2 

joint CrIS/TROPOMI measurements is more than eight times better than that of Terra 3 

MOPITT since CrIS/TROPOMI measurements have ~3.5 times wider swath and 2.5 times 4 

finer ground pixel size compared to MOPITT (Table 1). After performing the temporal and 5 

spatial matches among CrIS/TROPOMI measurements, the distances between matched 6 

CrIS/TROPOMI observations in the nadir direction are within 3 km – smaller than the pixel 7 

sizes of both instruments. The associated temporal differences are within 5 minutes. In 8 

general, these spatial and temporal separations are small compared to the scales of variability 9 

anticipated for CO and could be neglected. Over complex source regions, such as urban areas, 10 

the special treatments on achieving perfect spatial match might be necessary. 11 

 12 

3 Retrieval algorithm, sample results and retrieval characteristics 13 

This section describes the MUSES algorithm for synergistic retrievals of CO profiles (Section 14 

3.1), sample retrievals when only using CrIS measurements (Section 3.2), synthetic joint 15 

CrIS/TROPOMI CO retrievals to assess the characteristics of improved tropospheric CO 16 

profiling when combining TIR/NIR observations (Section 3.3). 17 

3.1 MUSES retrieval algorithm for producing joint TROPOMI and CrIS carbon 18 

monoxide volume mixing matrix profile data products 19 

The MUSES retrieval algorithm is based upon the Optimal Estimation (OE) method (Rodgers 20 

2000). OE combines a priori knowledge, which includes both a mean state and covariance of 21 

the atmospheric state, and the measurements to infer the atmospheric state. The OE algorithm 22 

computes the best estimate state vector !, which represents the concentration of atmospheric 23 

trace gases and ancillary parameters, by minimizing the following cost function 24 

                         ! ! = !− !! !!!!
! + !!"# − !!"# ! !!!!

!   (1) 25 

Equation 1 is a sum of quadratic functions representing Euclidean !! norm ( ! !
! = !!!"), 26 

with the first term accounting for the difference between the retrieval vector ! and a priori 27 

state !!, inversely weighted by the a priori matrix !!, and with the second term representing 28 

the difference between the observed !!"# and simulated !!"#(!) radiance spectra inversely 29 

weighted by the measurement error covariance matrix !!.  30 
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Under the assumption that measurement error between TROPOMI and CrIS are uncorrelated, 1 

Eq. 1 can be written as: 2 

! ! = !− !! !!!!
! + !!"#_!"#$#%& − !!"#_!"#$#%& ! !!_!"#$#%&!!

!

!"#$#%&

 

+ !!"#_!"#$ − !!"#_!"#$ ! !!_!"#$!!
!

!"#$

   (2) 3 

The joint retrieval algorithm iteratively updates the state vector based upon a trust-region 4 

Levenberg-Marquardt optimization algorithm to minimize the cost function in Eq. 2 (Rodgers 5 

2000; Bowman et al., 2006):  6 

!!!! = !! + !!!! + !!"#$#%&! !!_!"#$#%&!! !!"#$#%&
!"#$#%&

+ !!"#$! !!_!"#$!! !!"#$
!"#$

!!

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!∗ !!!!(!!−!!)+ !!"#$#%&! !!_!"#$#%&!! !"!"#$#%&
!"#$#%&

+ !!"#$! !!_!"#$!! !"!"#$
!"#$

  (3) 7 

where, ! is the Jacobian matrix representing sensitivity of spectral radiances to the 8 

atmospheric state; and Δ! is the difference between observed and simulated spectral 9 

radiances.  10 

To simulate thermal infrared spectral radiances !!"#_!"#$ and Jacobians !!"#$, the joint CrIS 11 

and TROPOMI algorithm incorporates the forward model of TES operational algorithm 12 

(Bowman et al., 2006, Clough et al., 2006), with CrIS specifications (spectral range, 13 

resolution, SNRs, and viewing geometry) obtained from CrIS L1B data products. In the NIR 14 

region, we use the Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT) 15 

model (Spurr, 2006, 2008), with the specification for TROPOMI measurements (spectral 16 

range, resolution, SNRs) described in Veefkind (2012), to compute the spectral radiances 17 

!!"#_!"#$#%& and Jacobians !!!"#"$%. The characteristics of joint CrIS/TROPOMI CO 18 

retrievals will be illustrated in section 3.3.  19 

The joint TROPOMI and CrIS retrievals start with the list of the fitting parameters, a priori 20 

values and a priori variance shown in Table 2.  In addition to the initial guess for the trace gas 21 

concentration (CO, H2O, CH4, and N2O), the initial guess for auxiliary parameters used in the 22 

simulation of CrIS radiances (including temperature profile, surface temperature and 23 
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emissivity, cloud extinction and top pressure) are also retrieved from CrIS radiances in order 1 

to take into account their spectral signatures in the CO spectral regions.  2 

When the clouds travel across its field of viewing, a space sensor for atmospheric 3 

composition measurements often faces to the challenge of obtaining high precision and 4 

accuracy measurements of the trace gas vertical distribution due to the possible interfering 5 

among retrieval parameters. MUSES algorithm uses single footprint CrIS L1B radiances into 6 

the retrievals, leading to the 9 times smaller footprint size (Table 1) than that of operational 7 

algorithm (Gambacorta et al., 2014), reducing the impacts of cloud interference on trace gas 8 

retrievals. In addition, MUSES algorithm has been designed to utilize the information from 9 

multiple satellites that provide collocated high quality cloud measurements. The high 10 

resolution VIIRS aboard Suomi NPP will provide access to high spatial resolution visible and 11 

IR information that can be used quantify cloud impact. This convoy enables cloud-12 

prescreening using Visible Infrared Imaging Radiometer Suite (VIIRS) cloud products 13 

(Platnick et al., 2013), which is a scanning radiometer on the Suomi NPP satellite. This cloud 14 

prescreening improves the efficiency of data processing and the quality of the retrieved 15 

profiles. Cloudy scenes for the CrIS geometry (~14.0 km diameter at nadir) will be 16 

characterized using the mature infrared cloud forward modeling techniques used in the TES 17 

retrievals (Kulawik et al., 2006; Eldering et al., 2008). For the cloud and aerosol radiative 18 

modeling within the Field Of View (FOV) of the TROPOMI sensor, we will adopt the 19 

algorithm that has been used in the production of Orbiting Carbon Observatory 2 (OCO-2) 20 

version 6 Level 2 standard products (Boesch et al., 2015). We will retrieve the Gaussian 21 

parameters that represent the optical depth profiles for water/ice clouds and top two aerosols 22 

specified by the Modern Era Retrospective analysis for Research and Applications aerosol 23 

reanalysis (MERRAero) climatology (2009-2010) (Table 2). We will use VIIRS Level 2 24 

products of surface temperature (Hook et al., 2012), and cloud property (cloud fraction, cloud 25 

optical thickness, and cloud top pressure (Baker 2011a,b; 2012)) as a priori information to 26 

retrieve ancillary parameters.  27 

Optimal estimation theory provides tools characterize the retrievals, e.g., vertical 28 

resolution/sensitivity and uncertainty. The averaging kernel matrix (!) and error covariance 29 

(!) can be calculated as follows (Rodgers, 2000): 30 

     ! = !"    (4) 31 

and  32 
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    ! = !− ! !! !− ! ! + !!!!!    (5) 1 

Where ! is a unitary matrix, !! is the a priori covariance matrix of the full retrieved state, 2 

which contains both atmospheric and auxiliary parameters, !! is the measurement noise 3 

covariance, and !, the gain matrix, can be written as the following equation, 4 

    ! = (!!!!!!!+ !!!!)!!!!!!!!  (6) 5 

 6 

3.2 Carbon monoxide measured from CrIS and MOPITT during an African 7 

biomass burning event 8 

A biomass-burning event is observed in Aqua MODIS fire data products (Giglio et al., 2003; 9 

Davies et al., 2004), collocated with the CrIS and MOPITT ground tracks, on August 27th, 10 

28th 2013 over Africa (Fig. 1). The CO concentration in the LMT during this biomass-burning 11 

event shows a strong latitudinal gradient with local variation, based on the MOPITT data (Fig. 12 

2A). This gradient provides an excellent opportunity to evaluate the performance of CrIS and 13 

future CrIS/TROPOMI retrievals (section 3.3). We applied the MUSES algorithm to retrieve 14 

CO profiles using real CrIS full spectral resolution, single footprint measurements, and then 15 

compared the retrieved profiles to the collocated MOPITT retrievals. When running in the 16 

retrieval mode that only uses CrIS measurements, the TROPOMI terms in the right-hand side 17 

of Eq. 2 and Eq. 3 vanish.  18 

The CrIS measurements clearly capture the CO gradient centered at 10°S and diminishing 19 

poleward to roughly 20°S (Figs. 2C, 2D and 3A), associated with the biomass-burning event 20 

detected by the enhanced MODIS radiative fire power (Fig. 1). Table 3 shows the mean and 21 

RMS (or standard deviation) of the difference between CrIS and MOPITT TIR CO 22 

observations in LMT is -6.9±22.8 ppb, respectively, which is better than the differences 23 

between CrIS and MOPITT multi-spectral observations (-22.9±38.8 ppb, Table 3). The 24 

differences between CrIS and MOPITT observed CO VMR could arise from the following 25 

four sources: [1] a priori CO profiles used in the retrievals  (Figs. 2D, 2E; Fig. 3B); [2] 26 

measurement sensitivity; [3] measurement date/time (MOPITT local time 10:30 am on 27 

August 27th, CrIS local time 1:30 pm on August 28th, 2013), which could lead to different 28 

meteorological conditions; [4] differences in auxiliary retrieved parameters such as surface 29 

temperature, temperature profiles, water vapor and cloud  conditions. 30 
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The diurnal variation of MODIS fire radiative power and fire counts for the time period of 1 

August 27 to 28, 2013, is weak. The retrievals for the same set of soundings were recomputed 2 

using a constant CO a priori profile, which is 100.0 ppb in LMT (Supplemental Material 3 

Figure 1) and representative of clean air conditions. When using common a priori profiles, 4 

both MOPITT and CrIS retrievals still show a latitudinal gradient (Suppl. Figures 1 and 2) 5 

with enhanced CO VMR peaked near 12 degree south, similar to the gradient shown in Fig. 3, 6 

though the amplitude of CO enhanced concentration is smaller. Consequently, it indicates that 7 

the consistency of measurements from two TIR sensors is insensitive to the choice of a priori. 8 

The mean differences between CrIS and MOPITT TIR improved to 2.8 ppb (Suppl. Table 1), 9 

with the RMS (or standard deviation) of the difference changed from 9.7% to 13.9%. Tables 4 10 

and 5 show the measurement characteristics (Table 4 for sensitivity and Table 5 for the 11 

precisions) of the MOPITT and CrIS/TROPOMI. The mean and RMS of the differences 12 

between CrIS and MOPITT multi-spectral CO data products are -23.6±37.6 ppb (or -9.7 13 

±16.8%, Suppl. Table 1), which is greater than the differences between CrIS and MOPITT 14 

TIR (2.8±24.9 ppb or 1.6 ±13.9%, Suppl. Table 1) and also greater than the estimated 15 

measurement uncertainty (CrIS 13.8%; MOPITT joint TIR/NIR 14.3%, Table 5). This 16 

difference is expected between CrIS and MOPITT multispectral sensitivity as quantified by 17 

the averaging kernels, which represent the sensitivity of the CO retrieval to the true state, as 18 

shown in Fig. 4A and Fig. 4B for CrIS and MOPITT, respectively. The higher amplitude 19 

averaging kernels for MOPITT multi-spectral observations in Fig. 4B quantify the enhanced 20 

near surface sensitivity.  21 

3.3 Characteristics of joint TROPOMI and CrIS CO profile retrievals 22 

To access the characteristics of improved tropospheric CO profiling when combining 23 

TIR/NIR observations, we computed the averaging kernels, degrees of freedom for signal 24 

(DOFS, the trace of averaging kernels), and error covariance matrix for both synergistic and 25 

each instrument alone observations. We used the CrIS viewing geometry for the simulation of 26 

TROPOMI measurements (described in section 3.1) since the tandem orbit of Suomi NPP and 27 

TROPOMI is very similar.  28 

Figures 4-6 and Table 4 show the retrieval diagnostics. We find that the CO profiles generated 29 

from joint CrIS/TROPOMI measurements have vertical resolution (Fig. 4D) and sensitivity 30 

(mean total DOFS of 2.22, Table 4) similar to the MOPITT joint TIR/NIR measurements 31 

(Fig. 4A, Fig. 6A; Table 4, mean total DOFS of 1.88), while the estimated total uncertainty 32 
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(magenta lines in Fig. 6B and 6C) are smaller than that of MOPITT joint TIR/NIR 1 

measurements. The synergistic CrIS/TROPOMI observations clearly distinguish the LMT 2 

(green lines in Fig. 4D) and middle troposphere (magenta lines in Fig. 4D). The synergistic 3 

CrIS/TROPOMI measurements show significant improvements on the sensitivity in 4 

comparisons to individual measurements from both CrIS and TROPOMI missions (Fig. 4B/C; 5 

Fig. 5; Table 4). The latitudinal gradient of biomass burning intensity (Fig. 2F, Fig. 3C, fire 6 

counts 0-250; max fire radiative power 0-800 mW), CO concentration (Fig. 3 A, 100-400 7 

ppb), and DOFS (Fig. 5, CrIS 1-1.7; TROPOMI 1-1.5) show similar pattern across the 8 

transect. The synergistic CrIS/TROPOMI, however, has higher DOFS, generally above 2 9 

(Fig. 5A), because of its higher LMT sensitivity (Table 4, DOFS of 0.9 for joint vs. 0.6 for 10 

CrIS, TROPOMI alone). And the sensitivity of MOPITT TIR and CrIS measurements for 11 

LMT are approximately identical (0.56 vs. 0.62). The estimated sensitivity of joint 12 

CrIS/TROPOMI measurements show improvements in comparisons to MOPITT synergistic 13 

TIR/NIR observations, possibly a consequence of TROPOMI’s ‘staring’ viewing mode, 14 

which does not have the issue of geophysical radiance error found by Deeter et al. (2011) for 15 

the MOPITT NIR sensor, which is a ‘dragging’ instrument. It is worth noting that the 16 

minimum spectral SNR of TROPOMI measurements were used in synthetic TROPOMI alone 17 

and joint CrIS/TROPOMI measurements; the actual performances of joint CrIS/TROPOMI 18 

could be even better than that shown in Figs. 4-6.  19 

The total error (or uncertainty) consists of two terms (Equation 5): the first term represents the 20 

smoothing error and the second term is the measurement error. By incorporating radiances 21 

measured by two nadir-viewing instruments (Equation 3), the error characteristics of joint 22 

CrIS/TROPOMI tropospheric CO estimates can be substantially improved, in comparison 23 

with joint CrIS/TROPOMI and each instrument alone. Particularly, in the altitude range from 24 

Surface to 3 km (~700 hPa), we have seen the total uncertainty reduced from 30% (using 25 

measurements from each instrument alone) to 15% (joint TIR/NIR). This increased sensitivity 26 

and decrease in uncertainty are critical for evaluating the role of tropical fires (or pyro-27 

convection) on the CO distribution (Fromm et al., 2005, 2006). 28 

 29 

4 Conclusions 30 

Based upon the MUSES synergistic retrieval algorithm, the combined CrIS/TROPOMI 31 

observations can extend and improve on the EOS-Terra MOPITT multi-spectral carbon 32 
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monoxide profile data products with the higher vertical resolution and accuracy compared to 1 

any single nadir-viewing platform and over 2.5 times higher spatial sampling than MOPITT.  2 

The MUSES algorithm has been applied to retrieve carbon monoxide volume mixing ratio 3 

profiles using full spectral resolution, single footprint CrIS measurements over Africa on 4 

August 28, 2013. The agreement of retrieved carbon monoxide volume mixing ratio in the 5 

lower most troposphere (surface to 3 km; ~700 hPa) between CrIS and MOPITT TIR data 6 

products –August 27th is -6.9±22.8 ppb when using different a priori profiles in retrievals; and 7 

2.8±24.9 ppb when for using common a priori in retrievals.  8 

The simulated synergistic retrievals of CrIS/TROPOMI yields 0.9 degrees of freedom for CO 9 

signals in the LMT and 1.3 above LMT, distinguishing signals from the LMT and that above 10 

LMT in the troposphere, similar to that of MOPITT multiple spectral observation (DOFS 0.8 11 

in the LMT, and 1.1 above LMT). In addition to increased sensitivity, the joint retrievals 12 

reduce measurement uncertainty, especially in the LMT, about 15% error reduction in the 13 

altitude range from surface to 3 km (~700 hPa). The potentials of synergistic CrIS/TROPOMI 14 

observations will be fully exploit using MUSES algorithm when TROPOMI Level 1B 15 

spectral radiances become available. The validation of CO retrievals using aircraft in situ 16 

profiles will be accomplished in the near future. 17 

By achieving information content that rivals the EOS-Terra MOPITT measurements, 18 

synergistic CrIS/TROPOMI CO observations not only demonstrably enhances the scientific 19 

value of S5p TROPOMI and Suomi NPP, but also extends the climate and tropospheric 20 

records needed to continue NASA EOS science. Furthermore, the broad coverage of Suomi 21 

NPP will provide global CO (a key tracer gas in the diagnostics of transport and chemical 22 

reaction processes in the atmosphere) that complements the NASA Decadal Survey GEO-23 

CAPE geostationary sounder (Fishman et al., 2012; http://geo-cape.larc.nasa.gov/). GEO-24 

CAPE is envisaged as a member of the Committee on Earth Observing Systems (CEOS) air 25 

quality constellation, which includes the Korean GEMS (Bak et al., 2013), ESA Sentinel-4 26 

(Ingmann et al., 2012; www.ceos.org/acc ), and possibly Canadian PCW missions (Nassar et 27 

al., 2014; http://www.asc-csa.gc.ca/eng/satellites/pcw/). The joint CrIS/TROPOMI retrieval 28 

algorithm can also be applied to the future joint Sentinel-5 UVNS/IASI-NG observations 29 

from METOP Second Generation satellites, which could provide joint NIR/TIR CO 30 

measurements in the time period of 2022-2045 (Veefkind et al., 2012; Crevoisier et al., 2014). 31 

The joint CrIS/TROPOMI CO profiles will enable the quantification of transport and 32 
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transformation of atmospheric composition in the domains unobserved by this constellation. 1 

This combination of low-earth orbiting and geostationary space sounders would provide an 2 

unprecedented atmospheric composition observing system needed to address long-term 3 

scientific questions in climate, air quality, and atmospheric chemistry.  4 
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 1 

Figure 1. Collocated Suomi-NPP CrIS measurements (blue cross) over Africa on August 28th, 2 
2013 and Terra MOPITT observations on August 27th, 2013. The red stars represent the fire 3 
location measured by Aqua MODIS on August 28th, 2013.  4 

  5 
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 1 
Figure 2. Tropospheric carbon monoxide (CO) volume mixing ratio (parts-per-billion) 2 
profiles measured by Terra MOPITT (version 6.0) on August 27th, Suomi-NPP CrIS on 3 
August 28th 2013, and fire radiative power (milliwatts) measured by Aqua MODIS. (Panel A) 4 
MOPITT joint TIR/NIR CO fields; (Panel B) MOPITT TIR CO fields;  (Panel C) CrIS TIR 5 
CO fields using a priori profiles used in the Aura TES operational retrievals; (Panel D) a 6 
priori CO fields used in CrIS retrievals shown in Panel C. (Panel E) a priori profiles used in 7 
the MOPITT operational retrievals shown in Panels A and B; (Panel F) Fire radiative power 8 
measured by Aqua MODIS over Africa for August 28th, 2013. 9 
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 2 

Figure 3. Averaged carbon monoxide (CO) volume mixing ratio (parts-per-billion) from 3 
surface to 3km (~700 hPa), fire counts and maximum fire radiative power (milliwatts) 4 
measured by Aqua MODIS over Africa for August 28th, 2013.  (Panel A) MOPITT joint 5 
TIR/NIR CO data products (blue stars), MOPITT TIR CO data products (green triangles), and 6 
CrIS TIR CO VMR using a priori profiles identical to those used in the Aura TES operational 7 
retrievals (golden diamonds); (Panel B) a priori CO VMR used in MOPITT (green/blue) and 8 
CrIS (gold) retrievals. (Panel C) Fire counts (black squares) and maximum fire radiative 9 
power (blue plus) among the Aqua MODIS measurements whose data quality confidences are 10 
greater than 70%.  11 
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 1 

Figure 4. Sample averaging kernels of measurements for the target scene near 22.99°E, 2 
8.65°S. In all panels, green lines are the averaging kernels from the surface to 3 km (~700 3 
hPa); magenta lines are the averaging kernels from 3 km (~700 hPa) to 100 hPa. (Panel A) 4 
MOPITT joint NIR/TIR measurements; (Panel B) Suomi-NPP CrIS TIR measurements; 5 
(Panel C) synthetic S5p TROPOMI NIR measurements; (Panel D) synthetic joint 6 
CrIS/TROPOMI (TIR/NIR) measurements. 7 

 8 
 9 

 10 
 11 

 12 
 13 

-0.2 0.0 0.2 0.4 0.6
Averaging Kernel Row

1000

800

600

400

200

Pr
es

su
re

 (h
Pa

) A
MOPITT TIR/NIR

Lat:  -8.646

Lon:  22.995

-0.2 0.0 0.2 0.4 0.6
Averaging Kernel Row

 

 

 

 

 

 

B
CrIS

-0.2 0.0 0.2 0.4 0.6
Averaging Kernel Row

 

 

 

 

 

 

C
TROPOMI

-0.2 0.0 0.2 0.4 0.6
Averaging Kernel Row

 

 

 

 

 

 

D
Joint CrIS/TROPOMI

-0.2 0.0 0.2 0.4 0.6
Averaging Kernel Row

 

 

 

 

 

Pr
es

su
re

 (h
Pa

) E

-0.2 0.0 0.2 0.4 0.6
Averaging Kernel Row

 

 

 

 

 

 

F

-0.2 0.0 0.2 0.4 0.6
Averaging Kernel Row

 

 

 

 

 

 

G



 27 

 1 
Figure 5. Degrees of freedom for CO measurements from CrIS, along with the synthetic 2 
TROPOMI alone and joint CrIS and TROPOMI measurements over the biomass-burning 3 
region. Green stars are the DOFS for joint TROPOMI and CrIS; gold diamonds are for the 4 
DOFS for CrIS; and blue triangles are for DOFS from TROPOMI measurements. 5 
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Figure 6. Uncertainties of the carbon monoxide (CO) volume mixing ratio (VMR) profiles 2 
near 22.99°E, 8.65°S on August 28th, 2013. (Panel A) Uncertainty of the joint MOPITT 3 
multiple spectral CO products (green line), and a priori profile (black line); (Panel B) 4 
Uncertainty of CrIS actual CO measurements (blue line), synthetic TROPOMI (purple line) 5 
and joint CrIS/TROPOMI (magenta line) CO measurements. Black line is the uncertainty of a 6 
priori profile used in the retrievals; (Panel C) The reduction on the uncertainty with respect to 7 
the uncertainty of a priori profile. 8 
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Table 1. Satellite missions that measure tropospheric carbon monoxide. 1 

Mission  
Nominal 

Life Time 
Years after Its 

Design Life Time  
Spectral Resolution  

cm-1 
Footprint 

Size 
Swath 
Width  

Start – End Year TIRA NIRB  km2 km 
CrIS/TROPOMI 2016 – 2023 0 0.625 C 0.458 14 × 14 D 2200 

MOPITT 2000 – 2006 9 ~0.04 eff E ~0.25 eff  E  22 × 22 640 
CrIS 2011 – 2026 0 0.625 C NA π × 441 D,F 2200 
TES 2004 – 2010 5 0.06 C NA 8 × 5 5 

AIRS 2002 – 2008 7 ~ 1.800 NA π × 441 D,F 1600 
TROPOMI 2016 – 2023 0 NA ~ 0.458 7 × 7 2600 

SCIAMACHY 2002 – 2007 Terminated G NA ~ 0.485 30 × 120 960 
IASI-A, B, CH 2006 - 2023 0 0.25 C NA π × 576 F 2200  

ACE-FTSI 2003 – 2005  10 0.02 0.02 NA NA 
A First fundamental band of carbon monoxide, centered around 4.6 µm in the thermal infrared. 2 
B First overtone band of carbon monoxide, centered around 2.3 µm in the near infrared. 3 
C Specified values are the spectral resolution without appodization. 4 
D The spatial resolution of data products from this work are 9 times higher than the existing operational CrIS and AIRS data products, since we use single footprint CrIS 5 

L1B radiances in the retrievals, instead of cloud cleared radiances.  6 
E MOPITT uses gas filter correlation radiometry (GFCR) with estimated effective spectral resolution. 7 
F Estimated footprint sizes of AIRS, CrIS and IASI measurements since both sensors have circular fields of view. 8 
G The measurements from SCIAMACHY ceased in 2012. 9 
H The IASI-A and IASI-B instruments are on-board MetOp-A (launched in 2006) and MetOp-B (launched in 2012) satellites. The third IASI instrument will be on-board 10 

MetOp-C with an estimated launch date in 2018. MetOp-A and B satellites are in a sun-synchronous, 827 km altitude orbit with a 9:30 am equator crossing time 11 
(ascending node), a few hours earlier than that of S5-P satellite. The IASI CO data product was retrieved from the 4.6 µm band (George et al., 2009). 12 

I ACE-FTS on board the Canadian satellite SCISAT, operating in the solar occultation measurement mode at sunrise and sunset, provide high vertical resolution (3-4 km) 13 
profiles in the altitude region from middle troposphere to the thermosphere for over 30 atmospheric trace gases as well as the meteorological variables of temperature 14 
and pressure (Bernath et al., 2005; Boone et al., 2005; Fu et al., 2007; Allen et al., 2009; Fu et al., 2009). The operational ACE-FTS CO data product was jointly 15 
retrieved from the 2.3 and 4.6 µm bands (Clerbaux et al., 2008b). 16 

 17 

 18 
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Table 2. List of parameters in state vector. 1 

Case Selection A Fitting Parameters Number of 
Parameters A Priori A Priori 

Variance 
CrIS/TROPOMI, CrIS, TROPOMI  CO at each pressure level 14 MOZART-3 B MOZART-3 
CrIS/TROPOMI, CrIS, TROPOMI H2O at each pressure level 16 GEOS-5 C NCEP ~30% D 
CrIS/TROPOMI, CrIS N2O at each pressure level 25 MOZART-3 MOZART-3 
CrIS/TROPOMI, CrIS, TROPOMI CH4 at each pressure level 25 MOZART-3 MOZART-3 
CrIS/TROPOMI, CrIS Surface temperature 1 GEOS-5 0.5K 
CrIS/TROPOMI, CrIS Surface emissivity E 5 UOW-M data base F ~0.006 
CrIS/TROPOMI, CrIS Cloud extinction G 3 Initial BT difference 300% 
CrIS/TROPOMI, CrIS Cloud top pressure G 1 500 mbar 100% 
CrIS/TROPOMI, TROPOMI Gaussian parameters of optical depth profile for ice cloud H 3 [0.0125,0.30,0.04] I [7.4,0.2,0.01] I 
CrIS/TROPOMI, TROPOMI Gaussian parameters of optical depth profile for water cloud H 3 [0.0125,0.75,0.10] I [7.4,0.4,0.01] I 
CrIS/TROPOMI, TROPOMI Gaussian parameters of optical depth profile for primary aerosols H 3 [MERRAJ,0.90,0.05] I  [7.4,0.4,0.01] I 
CrIS/TROPOMI, TROPOMI Gaussian parameters of optical depth profile for secondary aerosols H 3 [MERRAJ,0.90,0.05] I [7.4,0.4,0.01] I 
CrIS/TROPOMI, TROPOMI Surface albedo zero order term 1 from Spectra K 0.2 
CrIS/TROPOMI, TROPOMI Surface albedo first order term  1 0 0.0005/cm−1 
CrIS/TROPOMI, TROPOMI Radiance/irradiance wavelength shifts 2 0 0.5 cm−1 
A The parameters are included in the retrievals for different cases (CrIS only, TROPOMI only, and joint CrIS/TROPOMI). 2 
B Model for OZone and Related chemical Tracers (MOZART) 3 (Brasseur et al., 1998; Park et al., 2004). 3 
C Goddard Earth Observing System, version 5 (GEOS-5) (Rienecker et al., 2008). 4 
D National Center for Environmental Prediction (NCEP) reanalysis (Kalnay et al., 1996). 5 
E Retrievals over land, spectral surface emissivity is included. 6 
F Global infrared land surface emissivity database at University of Wisconsin-Madison (UOW-M) (Seemann et al., 2008). 7 
G For cloud treatment in TIR spectral region, we adopt the approach used in the TES Level 2 full physics retrieval algorithm (Kulawik et al., 2006; Eldering et al., 2008).  8 
H For cloud treatment in NIR spectral region, we adopt the approach used in the OCO-2 Level 2 full physics retrieval algorithm (Pages 28-31, 44-45, Boesch et al., 2015). 9 
The wavelength-dependent optical property would be scaled to that of TROPOMI.   10 

I Gaussian parameters represent the total optical depth, peak altitude, and profile width. The peak altitude and profile width are normalized to the pressure at surface.   11 
J Modern Era Retrospective analysis for Research and Applications aerosol reanalysis (MERRAero) climatology (2009-2010) (Rienecker et al., 2011; Buchard et al., 2015) 12 
K The surface is assumed to be Lambertian with a variable slope in wavelength to the albedo, such that the albedo can vary linearly across the spectral band. A priori value 13 
of surface albedo for zero order term are estimated from the measured continuum radiances, using the following equation: A = !!

!!!!
, where, I is the measured Earth shine 14 

radiance in the continuum, I! is the solar continuum spectral irradiance, !! is the cosine of the solar zenith angle.  15 
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Table 3. The differences of carbon monoxide volume mixing ratio in the lower troposphere (surface to 3km (~700 hPa)) between CrIS and 1 
MOPITT measurements shown in Figure 3A. 2 

Data Product 
Mean RMS 

ppb % ppb % 
CrIS  - MOPITT TIR -6.9 -2.9 22.8 9.7 
CrIS  - MOPITT Joint TIR/NIR -22.9 -8.8 38.8 15.2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 
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Table 4. Degrees of freedom for MOPITT, CrIS, and TROPOMI carbon monoxide measurements. 1 

Altitude Range Sensor TIR NIR Joint TIR/NIR 

 MOPITT 1.44 0.51 1.88 
Surface to Top of Atmosphere CrIS 1.57 - 

2.22A 
 TROPOMI - 1.32 
 
 
 

MOPITT 0.56 0.30 0.77 
LMT: Surface to 3 km (~700 hPa) CrIS 0.62 - 

0.91 A 
 TROPOMI - 0.61 
 
 

MOPITT 0.89 0.21 1.11 
3 km (~700 hPa) to Top of Atmosphere CrIS 0.94 - 

1.32 A 
 TROPOMI - 0.71 

A It is the synergistic CrIS/TROPOMI product. 2 

Table 5. Estimated percentage uncertainty for MOPITT, CrIS, and TROPOMI carbon monoxide measurements. 3 

Altitude Range Sensor TIR NIR Joint TIR/NIR 

 MOPITT 8.4 9.9 8.2 
Surface to Top of Atmosphere CrIS 3.1 - 

2.9A 
 TROPOMI - 3.2 
 
 
 

MOPITT 14.1 17.1 14.3 
LMT: Surface to 3 km (~700 hPa) CrIS 13.8 - 

9.2A 
 TROPOMI - 13.5 
 
 

MOPITT 9.5 11.3 9.7 
3 km (~700 hPa) to Top of Atmosphere CrIS 3.1 - 

3.0 A 
 TROPOMI - 3.2 

A It is the synergistic CrIS/TROPOMI product. 4 
 5 


