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Abstract. The Tropospheric Monitoring Instrument (TROPOMI) onboard the European Space

Agency Sentinel-5 Precursor mission is scheduled for launch in the last quarter of 2016. As part

of its operational processing the mission will provide CH4 and CO total columns using backscat-

tered sunlight in the shortwave infrared band (2.3 µm). By adapting the CO retrieval algorithm, we

have developed a non-scattering algorithm to retrieve total column HDO and H2O from the same5

measurements under clear sky conditions. The isotopologue ratio HDO/H2O is a powerful diag-

nostic in the efforts to improve our understanding of the hydrological cycle and its role in climate

change, as it provides insight in the source and transport history of water vapour, nature’s strongest

greenhouse gas. Due to the weak reflectivity over water surfaces we need to restrict the retrieval

to cloud-free scenes over land. We exploit a novel two-band filter technique, using strong-vs-weak10

water or methane absorption bands, to pre-filter scenes with medium-to-high level clouds, cirrus or

aerosol and to significantly reduce processing time. Scenes with cloud top heights . 1 km or very

low fractions of high-level clouds, or scenes with an aerosol layer above a high surface albedo are

not filtered out. We use an ensemble of realistic measurement simulations for various conditions to

show the efficiency of the cloud filter and to quantify the performance of the retrieval. The single15

measurement precision in terms of δD is better than 15–25‰ for even the lowest surface albedo (2–

4‰ for high albedos), while a small bias remains possible of up to ∼ 20‰ due to remaining aerosol

or up to ∼ 70‰ due to remaining cloud contamination. We also present an analysis of the sensitiv-

ity towards prior assumptions, which shows that the retrieval has a small but significant sensitivity

to the a priori assumption of the atmospheric trace gas profiles. Averaging multiple measurements20

over time and space, however, will reduce these errors, due to the quasi-random nature of the pro-
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file uncertainties. The sensitivity of the retrieval with respect to instrumental parameters within the

expected instrument performance is < 3‰, which represents only a small contribution to the overall

error budget. Spectroscopic uncertainties of the water lines, however, can have a larger and more

systematic impact on the performance of the retrieval and warrant further reassessment of the water25

line parameters. With TROPOMI’s high radiometric sensitivity, wide swath (resulting in daily global

coverage) and efficient cloud filtering, in combination with a spatial resolution of 7×7 km2, we will

greatly increase the amount of useful data on HDO, H2O and their ratio HDO/H2O. We show-

case the overall performance of the retrieval algorithm and cloud filter with an accurate simulation

of TROPOMI measurements from a single overpass over parts of the USA and Mexico, based on30

MODIS satellite data and realistic conditions for the surface, atmosphere and chemistry (including

isotopologues). This shows that TROPOMI will pave the way for new studies of the hydrological

cycle, both globally and locally, on timescales of mere days and weeks instead of seasons and years,

and will greatly extend the HDO/H2O datasets from the SCIAMACHY and GOSAT missions.

1 Introduction35

Water vapour, being the strongest natural greenhouse gas, plays a vital role in our understanding

of climate change. It is part of a positive atmospheric feedback mechanism (Soden et al., 2005;

Randall et al., 2007), and it plays a role in the mechanisms of cloud formation, of which the feedback

mechanisms are still poorly understood (Boucher et al., 2013). A correct understanding of the many

interacting processes that control atmospheric humidity are crucial for General Circulation Models40

(GCMs) to come to accurate climate projections (Jouzel et al., 1987; Yoshimura et al., 2011; Risi

et al., 2012a,b).

Measurements of stable water isotopologues, such as HDO, can be a unique diagnostic to improve

our knowledge of the hydrological cycle (Dansgaard, 1964; Craig and Gordon, 1965). Different iso-

topologues have different equilibrium vapour pressures, which leads to a temperature dependent45

isotope fractionation whenever phase changes occur. The ratio HDO/H2O of an air parcel is there-

fore dependent on the source region’s location and temperature and the entire transport history of

the air parcel, including all evaporation, condensation and mixing events. This makes measurements

of the ratio HDO/H2O a valuable benchmark for the evaluation and further development of GCMs

and explains why isotopologues have been used for decades in the fields of paleoclimatology, either50

using ice cores (Dansgaard et al., 1969; Jouzel et al., 1997) or speleothems (Lee et al., 2012), and

hydrology in general (Mook, 2000; Aggarwal et al., 2005).

In the last decade there has been a rise in the application of water isotopologues to the atmo-

spheric component of the hydrological cycle. This is directly related to improved remote-sensing

techniques that can accurately measure water vapour isotopologues from ground-based networks,55

such as the Total Carbon Column Observing Network (TCCON, Wunch et al., 2011) and the Net-
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work for Detection of Atmospheric Composition Change (NDACC, formerly the Network for Detec-

tion of Stratospheric Change, Kurylo and Solomon, 1990; Schneider et al., 2016), as well as global

measurements from space with instruments such as the Interferometric Monitor for Greenhouse

gases (IMG, Zakharov et al., 2004), the Thermal Emission Spectrometer (TES, Worden et al., 2007),60

the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY,

Frankenberg et al., 2009; Scheepmaker et al., 2015), the Infrared Atmospheric Sounding Interfer-

ometer (IASI, Herbin et al., 2009) and the Greenhouse gases Observing Satellite (GOSAT, Franken-

berg et al., 2013; Boesch et al., 2013). These new techniques allow for more frequent and global

measurements of the ratio HDO/H2O in water vapour, and show the clear potential to further our65

understanding of the atmospheric hydrological cycle through comparisons with GCMs (Frankenberg

et al., 2009; Yoshimura et al., 2011; Risi et al., 2012a,b).

Here, we present an algorithm and performance analysis for new measurements of total col-

umn HDO and H2O using the Tropospheric Monitoring Instrument (TROPOMI, Veefkind et al.,

2012), onboard the European Space Agency (ESA) Sentinel-5 Precursor (S5P) mission, scheduled70

for launch in Q4 2016. Like SCIAMACHY, TROPOMI will measure HDO and H2O in a 2.3 µm

shortwave infrared (SWIR) band of backscattered sunlight, which provides a high sensitivity near

the surface. TROPOMI, however, will have a higher spatial resolution with 7× 7 km2 ground pix-

els, better radiometric performance, a larger swath and shorter revisit time, resulting in daily global

coverage and many more measurements over cloud-free land pixels, while also demanding more75

efficient processing. With TROPOMI we have the opportunity to extend and improve the existing

global HDO/H2O time series, and study spatial and temporal gradients with higher spatial sampling

and resolution.

In Sect. 2 we describe how we adapted TROPOMI’s CO algorithm to retrieve HDO, H2O and

their respective averaging kernels and how we filter for cloudy scenes. We then describe the perfor-80

mance of the algorithm in Sect. 3, as tested on a series of synthetic measurements with systemati-

cally varying scattering layers. A sensitivity analysis of the various input parameters is presented in

Sect. 4. The performance on a realistic scenario of measurements above North America is presented

in Sect. 5. Finally, in Sect. 6 we discuss our results in the context of other studies and we formulate

our conclusions.85

2 Retrieval algorithm description

Due to the large difference in atmospheric abundance between HDO and H2O, the measurement

sensitivity, reflected in the averaging kernels, is very different for HDO and H2O. This makes

the interpretation of their ratio very challenging under conditions of light scattering by clouds. We

therefore have to pre-filter for the most cloudy conditions, which at the same time reduces processing90

time. This cloud filter will be described in Sect. 2.3. After cloud filtering we use a non-scattering
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retrieval algorithm, adapted from the SICOR algorithm that has already been developed as part of

ESA’s operational CO algorithm, which is described by Landgraf et al. (2016) in this issue. By using

this heritage of TROPOMI’s CO processing, we benefit from an algorithm optimised for speed,

while also leveraging already existing expertise and software. Sections 2.1 and 2.2 describe the95

specific implementation of the algorithm needed to retrieve both the H2O and HDO total column

densities.

2.1 Forward model and averaging kernels

Throughout this paper we consider all water isotopologues present in the SWIR range, i.e. H16
2 O,

H18
2 O and HD16O, as separate absorbing species. For readability, however, we will simply write100

“H2O” when in fact we refer to the main isotopologue H16
2 O, and “HDO” when we refer to HD16O.

To simulate the SWIR radiance measurement, we employ a non-scattering forward model F that

simulates the reflected Earth radiance at its spectral sampling point λi by the spectral convolution

of the simulated radiance at the top of the model atmosphere ITOA with the instrument spectral

response function (ISRF) si,105

Fi = si ∗ ITOA . (1)

Here, we assume that sunlight is scattered only at the Earth surface into the satellite line of sight

(LOS) and is attenuated by atmospheric absorption along its path. Using this approximation, the

simulated radiance at wavelength λ is given by:

ITOA(λ) =As(λ)
µ0F0(λ)

π
exp

(
− 1
µ̃
τtot(λ)

)
, (2)110

where As is the Lambertian surface albedo, µ0 = cos(Θ0) with the solar zenith angle Θ0. For low

solar zenith angles, µ0 is corrected for the sphericity of the Earth according to Kasten and Young

(1989). F0 is the solar irradiance inferred from TROPOMI solar measurements (van Deelen et al.,

2007; Landgraf et al., 2016) and

µ̃=
µ0µv

µ0 +µv
(3)115

indicates the air mass factor with µv = cos(Θv) and viewing zenith angle Θv . The total optical

thickness τtot is given by

τtot(λ) =
∑

k

zTOA∫

0

σk(z,λ) ρk(z) dz , (4)
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where z indicates the altitude ranging from the surface z = 0 to the top of the model atmosphere

zTOA. Index k represents the relevant absorbers: CO and CH4 including all their isotopologues,120

and H2O, H18
2 O and HDO. ρk(z) is the concentration of absorber k at altitude z and σk(z,λ) are

the corresponding wavelength- and altitude-dependent absorption cross sections.

The retrieval relies on a priori concentration profiles for CO and CH4 from the TM5 chemistry

model (Krol et al., 2005) and specific humidity profiles from the European Centre for Medium-

Range Weather Forecast (ECMWF, Dee et al., 2011). These profiles are interpolated to the higher125

resolution of the TROPOMI pixels, using a digital elevation model to account for variations in air

mass due to orography. Specific humidity is converted into concentration profiles for the absorbers

H2O, H18
2 O and HDO using their natural abundance ratios.

In Fig. 1 we show a simulated transmission spectrum for the entire TROPOMI SWIR spectral

range (2305–2385 nm). The top panel shows the total transmission, while the lower four panels130

show the individual transmissions of the main absorbing species (H2O, HDO, CH4 and CO). For

the retrieval of the HDO and H2O total column densities we chose the spectral window between

2354.0–2380.5 nm (indicated with the grey band), as a trade-off between inclusion of the strongest

HDO absorption lines with only minor overlap with the strongest H2O absorption lines. The smaller

spectral windows in respectively blue (H2O) and red (CH4) indicate the weak and strong absorption135

bands used for cloud filtering (see below). Although we additionally fit H18
2 O to improve the fit

quality of the other species, its absorption lines are weaker than those of HDO (not shown). An

accurate retrieval of total column H18
2 O in this spectral range is not yet feasible and therefore not

part of the final retrieval product.

For the following analysis, we define two relative profiles:140

ρrel
k =

ρk

ck
(5)

and

ρrel
k,k′ =

ρk′

ρk
, (6)

where ρrel
k is the relative profile of absorber k with respect to the vertically integrated total column

ck =
∫
ρk(z)dz , (7)145

and ρrel
k,k′ is the relative profile of absorber k′ with respect to absorber k. Assuming that the abun-

dance of trace gas k changes by a scaling of the reference profile ρrel
k , the derivative of the total

optical depth with respect to the trace gas column density is given by

∂τtot
∂ck

=
1
ck

∫
σk(z,λ) ρk(z) dz (8)
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Fig. 1. Simulated spectral transmittance in the SWIR spectral range, showing the total transmittance (top panel)

as well as the absorption features of the individual species (lower 4 panels). The simulation was performed

assuming a solar zenith angle of 0◦ and a viewing zenith angle of 40◦. The 2354.0–2380.5 nm retrieval window

is indicated in grey. The coloured windows highlight the weak and strong absorption bands of H2O (blue) and

CH4 (red), used for cloud filtering.

and thus150

∂ITOA

∂ck
=−I

TOA

µ̃ck

∫
σk(z)ρk(z)dz . (9)

Corresponding expressions hold for the radiance derivative with respect to the trace gas concentra-

tion at a certain altitude level. Finally, the derivative of ITOA with respect to surface albedo As

is

∂ITOA

∂As
=
µ0F0

π
exp

(
− 1
µ̃
τtot

)
. (10)155
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After the spectral convolution in equation (1), we have a linearised forward model,

F(x,b) = F(x0,b) + K{x−x0}+O(x2) (11)

with de Jacobian K = ∂F
∂x (x0,b). Here, we distinguish between the state vector x that comprises in

its components the parameters to be retrieved and forward model parameters b describing param-

eters other than the state vector that influence the measurement. Equation (11) represents a Taylor160

expansion of the forward model around state vector x0 truncated to first order.

2.2 Inversion

To determine the column density of water vapour isotopologues from SWIR measurements, we ad-

just the state vector x to fit the forward model to the measurement vector y, with spectral residuals

ey , by a least squares fitting approach. The state vector x includes the total columns of CO, CH4,165

H2O, H18
2 O and HDO, two coefficients to describe the linear spectral dependence of the surfacae

albedo As, and a spectral shift of the ISRF to adjust the spectral calibration of the TROPOMI in-

strument per retrieval. We apply the profile scaling approach as described by Borsdorff et al. (2014)

employing a Gauss-Newton iteration scheme. The least squares minimisation problem

x̂ = min
x
||S−1/2

y (F(x)−y)||2 (12)170

is solved per iteration step with the solution

x̂ = x0 + G(y−F(x0)) (13)

with the gain matrix

G = (KT S−1
y K)−1KT S−1

y (14)

and the measurement covariance matrix Sy.175

After convergence, the column averaging kernel can be calculated in a straight forward manner:

Ak,k′ =
dcret,k
dρk′

= gkK
prof
k′ . (15)

gk is the row vector of the gain matrix G that belongs to the trace gas k and Kprof
k′ is the forward

model Jacobian with respect to the trace gas profile ρk′ . The height dependence of the profile ρk′ is180

omitted for a clear presentation. For the full mathematical proof, the reader is referred to Borsdorff

et al. (2014). For k 6= k′, Ak,k′ describes the interference of the retrieved column ck with the real

trace gas vertical distribution of another trace gas k′. For k = k′, it is the standard column averaging

kernel and we use the more simple notation Ak = Ak,k.

The relation between our retrieval product cret,k (the retrieved total column of species k) and the185

true state (concentration profile ρk) of the atmosphere is given by

cret,k = Akρk +
∑

k′ 6=k

Ak,k′ρk′ + ex , (16)
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where ex is the error on the retrieved total column due to the forward model and measurement errors

ey . In the case of a single trace gas retrieval the interference terms Ak,k′ do not exist. In such case,

the meaning of the remaining column averaging kernel Ak is related to the proper choice of the190

reference profile and the effective null-space of the regularisation (see the discussion in Borsdorff

et al. (2014) and Wassmann et al. (2015)). If the chosen reference profile is correct, the equation is

equal to a geometrical integration of ρk. In the case of multiple trace gas retrievals we need to assess

Eq. 16 in more detail. Using Eq. 6 the above equation can be written as

cret,k =


Ak +

∑

k′ 6=k

ρrel
k,k′Ak,k′


ρk + ex , (17)195

showing that the contribution of the interference kernel can be interpreted as an error term for every

level of the averaging kernel. Because atmospheric humidity can show strong variability (in both

time and space), and the variability of HDO is (to first order) strongly correlated to the variability of

the main water isotopologue, we are particularly interested in possible interferences between H2O

and HDO. We want to be certain that a measured variability in HDO is truly caused by variations200

in HDO, and not a result of the interferences between H2O and HDO. Therefore, we need to test if

the interferences are small for the cases k = H2O and k′ = HDO and vice versa.

Figure 2 shows an example of the column averaging kernels AH2O and AHDO, including the

interference kernels multiplied with the relative profiles as in Eq. 17. The averaging kernel for

H2O (AH2O, top left panel) shows that the retrieval is only sensitive to H2O in the lower atmo-205

sphere. This is a result of strong pressure broadening of the H2O absorption lines (Frankenberg

et al., 2009). Since the HDO lines are weaker, the averaging kernel for HDO (AHDO, lower left

panel) is more uniform, showing only slightly lower sensitivity at high layers. The interference

kernels show that above ∼ 10 km variations of HDO have a minor impact on the retrieval of H2O

(ρrel
H2O,HDOAH2O,HDO ≈ −0.02, top right panel in Fig. 2), and variations of H2O have a small im-210

pact on the retrieval of HDO (ρrel
HDO,H2O

AHDO,H2O ≈ − 0.04± 0.01, lower right panel in Fig. 2).

Since the column averaging kernels AH2O and AHDO are much larger, and the density profiles ρH2O

and ρHDO will be very low higher in the atmosphere, the induced errors on the total columns due to

this interference are practically negligible.

For a proper error characterisation of the retrieval product, we calculate the error covariance matrix215

Sx by

Sx = GSyGT . (18)

This allows us to quantify the retrieval noise standard deviation σk of the individual column densities

and a possible correlation between those.

For data interpretation, it is common to consider the relative abundance of HDO with respect to220

H2O: r = cret,HDO/cret,H2O, and to reference the ratio to the Vienna Standard Mean Ocean Water
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Fig. 2. Top left: total column averaging kernel for H2O. Lower left: total column averaging kernel for HDO.

Top right: the sensitivity of total column H2O to variations in HDO at different altitudes. Lower right: the

sensitivity of total column HDO to variations in H2O at different altitudes.

(VSMOW) ratio rs = 3.1153 · 10−4:

δD =
[
r

rs
− 1
]
, (19)

where δD is typically given in units of per mil. The first studies that measured δD in the atmosphere

(as mentioned in the introduction) have shown that typical variations in δD over time or space are of225

the order of 50–100‰, which we therefore regard as the required accuracy for a useful product. The

diagnostic tools of the individual columns can be used to derive the corresponding quantities for δD.

For example, the standard deviation of the retrieval noise is given by

σδD =
r

rs

√
σ2

H2O

c2H2O

+
σ2

HDO

c2HDO

− 2SHDO,H2O

cH2OcHDO
(20)

and in a similar manner the column averaging kernel with respect to the H2O and HDO abundance230

can be derived.
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2.3 Two-band cloud filtering

Since the HDO and H2O retrieval algorithm does not account for clouds nor any other scattering

layers, we need to filter for clouds to avoid large retrieval inaccuracies. This filtering is achieved

using the retrieved columns in a weak and strong absorption band of either CH4 or H2O. The235

bands used are indicated in Fig. 1. Elevated scattering layers not accounted for in the forward model

generally cause a retrieval bias by scattering photons directly into the instrument. This optical path

length shortening leads to negative biases in the retrieved total columns. The two-band cloud filter

relies on the fact that a total column measurement using a strong absorption band is more strongly

affected by this “shielding bias” than the measurement using a weak absorption band. As a result,240

the relative difference in the retrieved total column between the weak and strong absorption band

can be used to indicate the presence of clouds. Using a set of simulated measurements for varying

cloudy conditions (as will be described in Sect. 3.1), we have tested that using a threshold < 6% for

the relative difference in total column CH4 between the weak and strong bands we filter for ground

scenes that have a cloud fraction of more than 10–20% (cloud top height ≥ 1 km). Scenes with245

low-level clouds (cloud top heights < 1 km) are not affected by this filter. Since low-level clouds

above sea pass the filter, the retrieval allows for measurements over sea above these clouds due to

their high albedo. The albedo of the sea surface itself is too low in the shortwave infrared for a

meaningful retrieval above cloud-free sea pixels.

As an example, Fig. 3 shows how the relative difference in retrieved methane absorption between250

the strong and weak absorption bands (shown in red in Fig. 1) changes for the scenarios with clouds

(left panel), cirrus (middle panel) and aerosol (right panel). Scenes with strongest effects on the light

path of the observed signal will also show the largest relative difference. We find that with a relative

difference in methane absorption < 6% we effectively filter for clouds and cirrus, as well as for low

surface albedo scenes affected by aerosol. For example, not affected by the filter are scenes with255

a cloud top height . 1 km or scenes with a low fraction of higher-level clouds (i.e. the contours

with the two darkest shades of blue in the left panel of Fig. 3). A similar performance is achieved

with a two-band water filter, using the weak and strong water bands as shown in blue in Fig. 1 and

a threshold for the relative difference in water absorption in these bands of 8%. In the next sections

the impact of this cloud filter on the retrievals of HDO and H2O will be shown.260

The two-band cloud filtering will be part of TROPOMI’s operational methane pre-processing

pipeline (Hu et al., 2016), and so synergies with the operational data processing can be used to

reduce the processing time significanty, as we have estimated that on average 20% of all the measured

ground scenes will pass the cloud filter above land, and 14% above sea.

10
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Table 1. Overview of the generic scenarios used for the performance analysis. For the scenarios where the SZA

was not variable, it was fixed at 50◦. For the clouds scenario the surface albedo was fixed at 0.05.

Scenario Variable X Variable Y

cloud free surface albedo: 0.03–0.6 SZA: 0.0–70.0◦

clouds cloud top height: 1–8 km cloud fraction: 0.0–1.0

cirrus surface albedo: 0.03–0.6 τcir (2300 nm): 0.0–1.0

aerosol surface albedo: 0.03–0.6 AOT (550 nm): 0.0–1.0

3 Performance analysis for generic scenarios265

To assess the performance of the retrieval algorithm, we applied the retrieval to simulated measure-

ments for various generic scenarios. For each scenario, we systematically varied two variables such

as surface albedo, solar zenith angle (SZA), cloud parameters (cloud top height, cloud fraction and

cloud optical thickness (τcld)) and aerosol optical thickness (AOT). An overview of the scenarios is

given in Table 1.270

3.1 Measurement simulations

The measurement simulations for the generic scenarios were created using the S-LINTRAN radiative

transfer model (Schepers et al., 2014). The implementation of S-LINTRAN for TROPOMI simula-

tions, including the instrument model, is described in detail in Landgraf et al. (2016), as the same

simulations have been used to assess the performance of the CO retrieval algorithm. A summary of275

the implementation is provided in the following two paragraphs.

The model is a scalar plane-parallel radiative transfer model that fully accounts for multiple elastic

light scattering by clouds, cirrus, air molecules and the reflection of light by the Earth surface.

The optical properties of water clouds are calculated using Mie theory with microphysical cloud

properties given in Table 2. For ice clouds the ray tracing model of Hess and Wiegner (1994); Hess280

et al. (1998) is employed assuming hexagonal, columnar ice crystals randomly oriented in space.

Cirrus and water clouds are described by a cloud top and base height, and a cloud optical thickness.

While cirrus fully cover the observed ground scene, water clouds can show partial cloud coverage

by utilising the independent pixel approximation (Marshak et al., 1995) for the simulation.

Measurement noise was superimposed on the radiance spectra using the TROPOMI noise model285

(Tol et al., 2011). This assumed an observed ground scene of 7× 7 km2 and a telescope aperture of

6 · 10−6 m2. The resulting signal to noise ratio is 120 in the continuum of the spectrum for a dark

reference scene (surface albedo As = 0.05, viewing zenith angle VZA = 0◦ and solar zenith angle

SZA = 70◦).

The atmospheric model assumed the US standard atmosphere (1976) for the profiles of dry air290
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Table 2. Microphysical properties of water and ice clouds: n(r) represents the size distribution type, reff and

veff are the effective radius and variance of the size distribution, m= n− ik is the refractive index. The ice

cloud size distribution follows a power-law distribution as proposed by Heymsfield and Platt (1984).

water clouds ice clouds

n(r) gamma (r/ri)
−3.85

reff [µm] 20 -

veff 0.10 -

n 1.28 1.26

k 4.7 · 10−4 2.87 · 10−4

density, temperature, pressure, water and CO. The CH4 profile is taken from the CAMELOT Eu-

ropean background profile scenario (Levelt and Veefkind, 2009), interpolated to the same pressure

grid and converted from mixing ratios to densities using the air densities from the US standard at-

mosphere. We separated the water profile into individual profiles for the three isotopic components

with absorption features in the TROPOMI SWIR range: H16
2 O, H18

2 O and HDO. First, the water295

profile was scaled with the VSMOW abundance of the respective species. Additionally, a realistic

altitude-dependent depletion of HDO and H18
2 O was assumed. For HDO we assumed a linear de-

crease from δD =−100 ‰ at the surface to δD =−600 ‰ at 15 km, followed by a linear increase

to δD =−400 ‰ at the top of the atmosphere at an altitude of 48 km (Ehhalt, 1974; Ehhalt et al.,

2005; Schneider et al., 2010). We further assumed that the concentration of H18
2 O is related to the300

concentration of HDO according to the empirically determined “global meteoric water line” (Craig,

1961)

δD = 8 · δ18O + 10‰ , (21)

where δ18O is defined in the same way as δD (Eq. 19). All the atmospheric profiles used for the

measurement simulations are shown in Fig. 4.305

In the following subsections, we characterise the retrieval performance for the generic scenarios

considering separately the retrieval statistical errors (i.e. the single measurement noise) σH2O, σHDO

and σδD (neglecting the small HDO–H2O cross-correlation term for σδD) and the biases in the

total columns cret,H2O, cret,HDO and their ratio δD. The retrieval statistical error estimate for δD is

given by Eq. 20. For the bias in δD, which we refer to as “∆δD”, we first determine δDretrieval by310

removing the noise on the retrieved total columns HDO and H16
2 O using linear error propagation for

the particular noise realisation. We need to compare δDretrieval with δDmodel, where δDmodel is δD
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of the “true” model atmosphere:

δDmodel =
ctrue,HDO

ctrue,H2O

1
rs
− 1 . (22)

Finally, the retrieval bias on δD is defined as:315

∆δD = δDretrieval− δDmodel . (23)

3.2 Cloud-free conditions

In Fig. 5 we show the simulated cloud-free retrieval bias for the total column H2O (left panel), total

column HDO (middle panel) and their ratio (∆δD, right panel), as a function of surface albedo and

SZA (no clouds or aerosol present). The figure shows that the retrieval performs very well for the320

majority of the scenes, with ∆δD less than 0.8‰. Only for the lowest surface albedos (0.03–0.05)

the bias in δD increases to a few per mil, due to slightly more negative bias in H2O compared to

HDO.

The corresponding statistical error estimates are shown in Fig. 6. σH2O reaches maximum values

of 1.6–2.0% for the lowest surface albedos and highest SZAs and σHDO is about a factor 2 larger325

due to the weaker HDO absorption features. Combined, it results in values for σδD of the order

of 15–25‰ for the lowest surface albedos. For high surface albedo regions such as deserts (surface

albedo ∼ 0.3 in the SWIR) typical values for σδD are 2–4‰. This is roughly an order of magnitude

better than what is achieved with SCIAMACHY (Scheepmaker et al., 2015).

3.3 Clouds and cirrus330

As the retrieval algorithm does not account for scattering, any clouds, cirrus and aerosol present in

the observed scene will lead to biases in the retrieval of the total columns HDO and H2O. We have

tested the performance of the retrieval under cloudy conditions with a scenario assuming a cloud

with an optical thickness of τcld = 5, with varying cloud top heights (between 1–8 km in steps of

1 km) and varying cloud fractions (between 0.0–1.0 in steps of 0.1). The same scenario was used to335

demonstrate the two-band cloud filter in the left panel of Fig. 3. Due to differences in their retrieval

sensitivities, the observed bias is stronger for H2O than for HDO, leading to significant biases in

their ratio, increasing with both cloud fraction and cloud top height (although not shown, we find

that ∆δD can reach values > 900‰ for clouds above 7 km with 100% cloud coverage). Similarly,

by simulating scenarios with varying surface albedos and a uniform cirrus or aerosol layer with340

varying optical thickness (see Table 1), we find that this bias increases with the optical thickness of

the layer and with lower surface albedos, as both lead to a lower contribution of photons from below

the scattering layer reaching the instrument. As described in Sect. 2.3, the two-band cloud filtering

technique will be used to pre-filter the scenes most affected by this shielding bias. We find that, after
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applying the two-band methane filter to scenes affected by clouds and cirrus, ∆δD . 70‰ and345

σδD = 10–20‰ (for scenes with a low surface albedo of As = 0.05).

3.4 Aerosol

An aerosol layer will typically have a lower optical thickness than clouds, and occurs lower in

the atmosphere, leading to a different impact on our non-scattering retrieval. Our aerosol scenario

assumes a uniform layer of a sulphate-type aerosol in the boundary layer between 0–2 km. Figure 7350

shows how this induces a bias in the total columns H2O, HDO and their ratio, as a function of aerosol

optical thickness and surface albedo. We see that for very low surface albedos, direct reflection off

the aerosol layer leads to path length shortening and a corresponding negative (shielding) bias for

the total column H2O. This effect is weaker for HDO due its more uniform averaging kernel. For

higher surface albedos, however, we see that the bias becomes positive, likely due to an increased355

amount of light scattering in the boundary layer. The contribution of photons from the brighter

surface increases and a fraction of these photons undergo multiple scattering events between the

aerosol layer and the surface, enhancing the path length. The net effect on δD is that its bias due

to aerosol is highest for the lowest surface albedos and highest AOT (right panel in Fig. 7). If we

take the two-band cloud filter into account (right panel in Fig. 3) to filter the lowest surface albedos360

affected by aerosol, we are left with ∆δD . 20‰ due to boundary layer aerosol with AOT = 1.0 (at

550 nm). The statistical error (not shown) does not depend significantly on AOT, but varies primarily

with surface albedo, reaching similar peak values as in the cloud free scenario (σδD ≈ 20‰).

3.5 Summary of the general performance

In summary, we can conclude that the retrieval performs well under cloud-free conditions. The bias365

∆δD will be less than 2‰, even for the lowest surface albedos, and the statistical errors vary from

2–4‰ for high albedos to 15–25‰ for the lowest albedos. Under conditions with clouds, cirrus or

aerosol the retrieval performs less well and we generally find a positive bias in δD. To restrict this

bias we need strict filtering against clouds and aerosol by applying the two-band cloud filter either

to methane or water (which additionally leads to a great reduction in the computational effort).370

Applying a two-band methane threshold of 6%, we restrict the bias in δD to ∆δD < 70‰ for all

simulated measurements. Averaging multiple single measurements over time and space will further

reduce the statistical error and will improve the accuracy to better than the maximum 70‰, bringing

the measurements within the requirements to study typical temporal and spatial gradients (which are

of the order of 50–100‰).375
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Table 3. Summary of the sensitivity to the meteorological input and instrument parameters, expressed as the

mean difference in δD between the perturbed and default retrievals for the 45 scenes with the three lowest

surface albedos (0.03, 0.05 and 0.075).

Prior parameter Systematic error in δD [‰]

Temp −0.5 K −6.9 ± 0.74

Temp +0.5 K +7.0 ± 0.11

Temp −1 K −14 ± 0.74

Temp +1 K +14 ± 0.17

Pressure ×0.99 −4.5 ± 0.74

Pressure ×1.01 +4.5 ± 0.54

Rad. offset +0.1% −0.054 ± 0.11

Rad. offset +0.5% −0.20 ± 0.16

ISRF FWHM −1% +0.36 ± 0.85

ISRF FWHM +1% −0.33 ± 0.84

4 Sensitivity to prior assumptions

Similarly to what was done for the CO TROPOMI retrievals (Landgraf et al., 2016), we have tested

the sensitivity of the H2O and HDO total column retrievals to the prior assumptions, including the

impact on δD. These so-called forward modelling errors were tested on the cloud-free scenario

(with varying SZA and surface albedo) using the same measurement simulation as described in380

Sect. 3. A perturbation in one of the input assumptions was introduced, after which the retrievals

were performed and compared with the default retrievals without the perturbation. The impact of

the perturbation is expressed as a systematic error and standard deviation, where we define the

systematic error as the mean difference in δD between the perturbed and default retrievals for the 45

scenes with the three lowest surface albedos (0.03, 0.05 and 0.075). The results are summarised in385

Table 3.

The retrieval uses a priori temperature profiles and surface pressures from the ECMWF. To test the

impact of uncertainties in the temperature profile, we have varied this profile by ±0.5 K and ±1 K.

This is primarily affecting the retrieved total column H2O, while the total column HDO is not very

sensitive to temperature variations. A perturbation of +1 K (−1 K) leads to a decrease (increase)390

in the retrieved H2O column of 1.8%, inducing a systematic error in δD of +14‰ (−14‰). This

error is constant for all surface albedos and SZAs and scales linearly with the size of the temperature

perturbation.

The atmospheric pressure profile is derived from the surface pressure. To test the impact on
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inaccuracies in the ECMWF surface pressure, we applied a perturbation of ±1%. This leads to395

systematic errors of about 0.5% in H2O and 0.13% in HDO (with reversed sign), together inducing

errors of about 4.5‰ in δD.

The retrieval algorithm requires a reflectance spectrum, acquired by dividing the radiance spec-

trum measured from the Earth’s surface by the irradiance spectrum measured directly from the Sun.

Differences in the radiometric offset between these spectra could induce spectral features in the re-400

flectance spectrum, leading to systematic errors. The TROPOMI instrument requirement for the

radiometric offset on the radiance is 0.1% of the continuum level. We have tested the impact of an

offset on the radiance of 0.1% and 0.5% of the maximum value in the retrieval window. However,

the retrieval fits for an offset in the reflectance spectra, which partly mitigates the effects of an offset

in the radiance or irradiance. The systematic errors due to uncertainties in the radiometric offset are405

therefore very small (errors in δD less than 0.5‰).

For the default retrieval and measurement simulations we have assumed a Gaussian slit function

(ISRF) with a FWHM of 0.25 nm. We have tested the impact of perturbing this FWHM by ±1%

and find that the induced systematic errors are strongly dependent on surface albedo and SZA. The

largest errors in δD reach±3‰ and are found for high albedos and low SZAs. The mean systematic410

error for the lowest albedos is 0.36± 0.85‰.

In summary (also see Table 3), we find that the retrieval algorithm is most sensitive to uncertainties

in the a priori temperature profiles, followed by the pressure profiles. The sensitivity to uncertainties

in the instrument parameters is about an order of magnitude smaller. The uncertainties in the input

profiles are expected to be mostly quasi-random in nature, which means their impact on the error in415

δD will diminish when taking averages in time and space.

More structural systematic errors (i.e. those that will not diminish by averaging) are potentially

caused by uncertainties in the water spectroscopy. Recent studies have shown that spectroscopic un-

certainties of water can have a large impact on total column retrievals of CO (Galli et al., 2012), CH4

(Frankenberg et al., 2008; Schneising et al., 2009), H2O (Schrijver et al., 2009) and the HDO/H2O420

ratio (Scheepmaker et al., 2013). As a test of the possible impact of uncertainties in the water line

parameters, we have repeated the retrievals of the simulated clear-sky scenario after replacing the

line parameters of the water isotopologues. For the simulated spectra the parameters from HITRAN

(Rothman et al., 2009) were used. We then performed the retrievals using the water line parame-

ters from Scheepmaker et al. (2013). Table 4 shows the induced systematic errors for replacing a425

single isotopologue at a time, and for replacing all modelled water isotopologues simultaneously.

It shows that the retrieval of HDO and H2O can be very sensitive to spectroscopic uncertainties,

especially in the ratio HDO/H2O, since HDO and H16
2 O can show sensitivities with opposite sign,

which strengthen each other when taking the ratio (as can be seen from replacing only the H16
2 O

parameters). The differences in spectroscopy between HITRAN and Scheepmaker et al. (2013) can430

lead to differences in δD of up to 128‰. Although we find that the differences do not depend on
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Table 4. Sensitivity to a change of water line parameters from HITRAN2008 to the parameters from Scheep-

maker et al. (2013).

Isotopologue Systematic Error

H16
2 O [%] HDO [%] CH4 [%] δD [‰]

H16
2 O +8.0± 0.55 −4.6± 0.50 +1.3± 0.35 −97± 1.5

HDO −0.069± 0.036 −4.2± 0.043 −0.040± 0.037 −34± 0.29

H18
2 O +0.011± 0.017 −0.11± 0.0090 −0.029± 0.017 −0.97± 0.21

All +7.9± 0.53 −8.7± 0.50 +1.3± 0.37 −128± 1.5

surface albedo or SZA, we cannot exclude a dependency on the total amount of water vapour, that

might lead to seasonal and latitudinal biases. Similar to the retrieval of CO (Galli et al., 2012), the

HDO/H2O retrieval will very likely benefit from a reassessment of the spectroscopic line parameters

of water, a study which is currently on-going (Loos et al., 2015). Regardless of such reassessments,435

validation studies will be needed to verify spectroscopy and to define corrections that might mitigate

spectroscopy related biases.

5 Performance analysis for a realistic scenario

To show the capabilities of the TROPOMI H2O and HDO total column retrievals, we have sim-

ulated an ensemble of measurements that reflect a realistic scenario as accurately as possible. In440

Sect. 5.1 we describe the input data and measurement simulations in more detail. In Sect. 5.2 we

discuss the results of retrieving the simulated measurements, in terms of retrieval bias, precision,

and effectiveness of the cloud filtering.

5.1 Measurement simulations

The simulated measurement ensemble covers a region over the South-West part of the US and the445

North-East part of Mexico as TROPOMI would observe it on August 4th 2009. Figures 8 and 9

show the region in terms of various input fields. This region comprises a clear gradient in the rela-

tive abundance of HDO with respect to H2O due to the transport of humid air from coastal regions

inland. We have combined data from the MODIS Aqua satellite (clouds, land/water coverage, sur-

face albedo, aerosol) with data from ETOPO5 (elevation), ECMWF (surface pressure, temperature450

profiles, specific humidity), TM5 (CO and CH4 profiles) and LMDZiso (HDO and H18
2 O profiles)

to simulate 27405 TROPOMI measurements on a grid of 135 by 203 ground pixels. This ensemble

represents roughly what TROPOMI will observe in five minutes with a daily revisiting cycle.

The viewing and solar geometry and ground pixel size were adapted from MODIS Aqua granule

2009216 (19h45m UT), where the MODIS information was spatially resampled on a pixel size of455
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10×10 km2 at sub-satellite point. The pixel distortion towards the outer swath was adopted from

the MODIS observation. The surface reflection was estimated from the MODIS MCD43C4 data

product at 2105–2155 nm for the same period (Strahler et al., 1999) in combination with the surface

elevation from ETOPO5 (NOAA, 1988). Furthermore, the MODIS MYD06 cloud product (Platnick

et al., 2015) was used to estimate cloud cover and cloud top height for the individual TROPOMI460

ground pixels. Only clouds with top height above 100 meters were used. We derived cirrus op-

tical thicknesses from the MODIS cirrus reflectance product employing the algorithm by Dessler

and Yang (2003). For all pixels, the cirrus was located between 9–10 km. For the aerosol optical

thickness (at 550 nm) we used the MODIS MYD08 M3 global monthly mean product (Platnick,

2015), resampled to the above mentioned granule with a pixel size of 10×10 km2 at sub-satellite465

point. For some pixels with missing aerosol data the optical thickness was set to 0.1. We assumed

three different aerosol types: “oceanic” above water, “dust” above land and “urban” above all land

regions with AOT > 0.23. The corresponding model fields are depicted in Fig. 8.

The distribution of atmospheric trace gases was estimated using TM5 chemistry model simula-

tions (Krol et al., 2005), which yields the CO and CH4 abundances. Moreover, we used data from470

ECMWF (Dee et al., 2011) for the atmospheric pressure, temperature and humidity profiles. For

realistic HDO/H2O ratios we derived δD profiles from LMDZiso model simulations (Risi et al.,

2010) and for the δ18O profiles we assumed correlation to δD according the global meteoric water

line (also see Eq. 21, Craig, 1961). Figure 9 shows the resulting total columns for the most impor-

tant species for our ensemble. Based on this input and the TROPOMI instrument model as described475

in Sect. 3.1, we simulated for each individual pixel the TROPOMI SWIR observations using the

S-LINTRAN radiative transfer model.

5.2 Results

Using the simulated measurement ensemble we retrieved the water vapour abundances using the

SICOR retrieval algorithm including the retrieval of the two methane and water bands used for cloud480

filtering. In Fig. 10 the results are shown in terms of the retrieved bias in total column H2O, HDO

and δD. We also show the relative difference in the weak vs strong water bands that was used for

cloud filtering. The cloud filter panel (lower-left panel in Fig. 10) shows that the algorithm retrieved

some pixels above the Gulf of Mexico, even though these pixels did not contain low-level clouds. In

reality such pixels will be removed by pre-filtering for very low albedo regions. Once the two-band485

cloud filter threshold is applied (keeping only pixels with a relative difference < 8% using the water

bands), practically all ocean pixels are removed, as well as all the lands pixels affected by clouds,

resulting in 54.5% of the pixels remaining for further study. Using the two methane bands as a cloud

filter with a threshold of 6% resulted in slightly less strict filtering (60.7% of the pixels remaining),

as certain pixels with low and optical thin clouds in the west above Mexico and in the east above490

Alabama were not removed (not shown). The few rejected pixels in the centre and south of Texas
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show that the cloud filter effectively removed high isolated clouds with low optical thickness (cf. the

lower two panels in Fig. 8 with Fig. 10), but left pixels with clouds < 1 km intact (as is preferred).

The large group of pixels in the north-east of the ensemble were rejected based on the presence of

high and optically thick clouds, or the presence of aerosol above low surface albedo regions.495

The other three panels in Fig. 10 show the remaining biases in total column H2O, HDO and δD

after cloud and ocean filtering. Both H2O and HDO show a positive bias of a few percent above

the higher surface albedo regions in the west and a small negative bias over the lower surface albedo

regions in the east. Careful inspection of the states of Louisiana and Mississippi show that even the

albedo contrast caused by the Mississippi and Red River basins can be observed in the H2O and500

HDO bias maps. We also see that the biases are slightly larger for H2O, compared to HDO. The

cause for these biases is aerosol, as the aerosol bias shows the same patterns as a function of surface

albedo and AOT, and the effect is slightly larger for H2O, as discussed in Sect. 3.4 and shown in

Fig. 7. Combined into a ratio, the lower-right panel in Fig. 10 show that the retrieval bias in δD

is slightly negative above the highest albedos and increases to a positive bias with a maximum of505

∼ 20‰ above the lowest albedo regions. Areas at high altitudes usually have a lower humidity and

therefore a lower δD compared to areas at lower altitudes. This gradient is visible in the bottom

right panel in Fig. 9. Furthermore, areas at higher altitude generally have a higher surface albedo.

Because the retrieval bias in δD is negative for high surface albedos and positive for low surface

albedos, the altitude gradient in δD is overestimated by the retrieval. This will likely be the case for510

all scenarios with a gradient between higher elevated (or drier) areas and lower elevated (or more

humid) areas.

Figure 11 shows the same maps in terms of single measurement precision error (1σ). As expected,

the dominant factor to determine the precision error is surface albedo. The error of the strong ab-

sorbers H2O and CH4 is 0.05–0.15% for the highest surface albedos, and increases to 0.35% for the515

lowest surface albedos. The precision errors of the weak absorber HDO are larger, reaching 0.50%

for the lowest surface albedos. This translates into precision errors in δD of at most 5‰ above the

lowest albedos.

This realistic scenario demonstrates the capabilities of TROPOMI and the SICOR algorithm to

retrieve accurate patterns in total column H2O, HDO and δD above land from a single overpass.520

After the two-band cloud filter effectively removed all measurements above water and high clouds,

a small bias remains due to aerosol, which correlates with surface albedo. The bias is smaller (and

of opposite sign) compared to the temporal or spatial gradients in δD expected for typical science

cases (e.g., as observed by SCIAMACHY in Yoshimura et al., 2011; Lee et al., 2012; Risi et al.,

2012a; Okazaki et al., 2015). This ensures the ability to detect and study patterns in δD on much525

smaller timescales and at higher spatial resolution compared to previous satellite missions, but it

should also be kept in mind to be careful when using the data over regions with strong gradients in

surface albedo.
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6 Discussion and conclusions

We have presented an algorithm and performance analysis for the retrieval of total column H2O530

and HDO from TROPOMI measurements onboard the Sentinel-5 Precursor mission. By adapting

ESA’s operational CO algorithm (Landgraf et al., 2016), we developed a relatively simple approach

that is fast but relies on strict filtering for clouds, cirrus and aerosol using a two-band methane or

water retrieval. The ratio HDO/H2O will be a useful scientific product in the fields of hydrology

and climate research, with the potential to improve our understanding of the processes controlling535

atmospheric humidity and transport.

The first studies in these directions that used a similar type of column-averaged satellite product

were using SCIAMACHY data (Frankenberg et al., 2009; Yoshimura et al., 2011; Lee et al., 2012;

Risi et al., 2012b,a; Scheepmaker et al., 2015). These studies showed that the typical seasonal or

spatial gradients in δD are about 50–100‰. The measurement precision and accuracy needs to be540

higher than this in order to contribute significantly to the science. For SCIAMACHY, this implied

either taking monthly averages or binning to a spatial resolution of at least 1×1◦ in order to bring the

statistical error down to about 20‰ (the single measurement precision being∼ 115‰, Scheepmaker

et al., 2015). The newer GOSAT measurements show an improvement in precision by a factor

of about two, compared to SCIAMACHY (Frankenberg et al., 2013; Boesch et al., 2013). Both545

SCIAMACHY and GOSAT products show a negative bias of about 30–70‰ compared to ground-

based Fourier-transform spectroscopy (FTS) networks.

Our analysis has shown that TROPOMI is expected to deliver a much better performance than

SCIAMACHY and GOSAT in terms of δD in only a single overpass. The single measurement noise

will be better than 15–25‰ for even the lowest surface albedos, while at the same time the spatial550

resolution of 7× 7 km2 is much higher than SCIAMACHY’s 120× 30 km2 and provides a better

coverage than GOSAT’s sparse spatial sampling. Even though we still need to filter for clouds,

due to this higher spatial resolution TROPOMI will observe many more useful scenes in between

clouds compared to SCIAMACHY or GOSAT. This allows for new opportunities of studying the

hydrological cycle on timescales of mere days or weeks instead of seasons or years, or over longer555

periods if a high spatial resolution is desired.

Mainly due to the presence of low-level aerosol in the atmosphere, the cloud-filtered TROPOMI

measurements of total column HDO and H2O are not expected to be completely bias free. Changes

to the light paths of the reflected photons due to any scattering particles remaining after filtering are

not accounted for in the retrieval algorithm, and lead to biases of a few percent in total column HDO560

and H2O, and up to∼ 20‰ in δD, depending on surface albedo, as shown by our simulated scenario

of measurements above the USA and Mexico.

After launch and commissioning of the instrument in Q4 2016, validation using ground-based FTS

data from the TCCON and NDACC networks is needed to test the performance of the algorithm on

real measurements. Ideally, the HDO/H2O products from these networks should first be intercom-565
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pared, both using the results from the on-going reassessment of the water spectroscopy (Loos et al.,

2015), and for a range of atmospheric conditions and geographical locations. Any possible differ-

ences due to either spectroscopy or location (e.g. as found by Scheepmaker et al., 2015) need to

be understood before the next generation of HDO and H2O global retrievals from space can be ex-

ploited to come to a better understanding of the atmospheric hydrological cycle and the role it plays570

in our changing climate.
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Fig. 3. Two-band CH4 filter results for clouds (top), cirrus (middle) and aerosol (bottom). Plotted is the relative

difference in total column CH4 retrieved from the weak and strong bands: CH4 (weak - strong) / strong (%).

The cloud scenario assumed a cloud optical thickness of τcld = 5 and a variable cloud-top-height (x-axis) and

cloud fraction (y-axis). The cirrus scenario assumed a cloud fraction of 100% for a layer between 9 and 10 km

and a variable surface albedo (x-axis) and cirrus optical thickness (y-axis). The aerosol scenario assumed a

sulphate-type aerosol in the boundary layer between 0–2 km and a variable surface albedo (x-axis) and aerosol

optical thickness (y-axis). 27
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Fig. 4. Atmospheric profiles for the number densities of the absorbers (bottom axis, normalised to the surface

value) and temperature (top axis) used as input for the model atmosphere.
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Fig. 5. Cloud free rerieval bias as a function of surface albedo and SZA for the total columns of H2O (top),

HDO (middle) and the HDO/H2O ratio (bottom).
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Fig. 6. Cloud free statistical error estimates (single measurement noise) as a function of surface albedo and

SZA for the total columns of H2O (top), HDO (middle) and the HDO/H2O ratio (bottom).
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Fig. 7. Rerieval bias for an aerosol layer between 0–2 km as a function of surface albedo and AOT for the total

columns of H2O (%) (top), HDO (%) (middle) and the HDO/H2O ratio (‰) (bottom). Applying the two-band

methane cloud filter with a threshold of 6% to this scenario would result in filtering of the scenes with surface

albedo < 0.1.
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Fig. 8. A selection of the input for the realistic scenario simulation. Top: SWIR surface albedo. Second:

Aerosol optical thickness at 550 nm. Third: Cloud optical thickness. Bottom: Cloud top height.
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Fig. 9. Input total columns for the most important absorbing species for the realistic scenario simulation. Top:

H2O. Second: HDO. Third: CH4. Bottom: the resulting total column HDO/H2O ratio expressed in δD.
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Fig. 10. Retrieval biases for water in the realistic scenario simulation. Except for the bottom left panel, the

results are cloud filtered using a weak-vs-strong water band threshold of 8%. Top: H2O bias. Second: HDO

bias. Third: relative difference in the weak-vs-strong water bands used for cloud filtering. Bottom: bias in the

derived HDO/H2O ratio. 34
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Fig. 11. Retrieved, cloud-filtered, single measurement precision of H2O (top), HDO (second), CH4 (third) and

of the derived HDO/H2O ratio (bottom). 35
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