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Abstract. A standardized approach for the definition and reporting of vertical resolution of the ozone and 15 

temperature lidar profiles contributing to the Network for the Detection for Atmospheric Composition Change 

(NDACC) database is proposed. Two standardized definitions describing homogeneously and unequivocally the 

impact of vertical filtering are recommended. 

The first proposed definition is based on the width of the response to a Finite Impulse-type perturbation. The 

response is computed by convolving the filter coefficients with an impulse function, namely, a Kronecker Delta 20 

function for smoothing filters, and a Heaviside Step function for derivative filters. Once the response has been 

computed, the proposed standardized definition of vertical resolution is given by Dz = dz*HFWHM, where dz is the 

lidarôs sampling resolution and HFWHM is the full-width at half-maximum (FWHM) of the response, measured in 

sampling intervals. 

The second proposed definition relates to digital filtering theory. After applying a Laplace Transform to a set of 25 

filter coefficients, the filterôs gain characterizing the effect of the filter on the signal in the frequency-domain is 

computed, from which the cut-off frequency fC, defined as the frequency at which the gain equals 0.5, is computed. 

Vertical resolution is then defined by Dz = dz/(2fC). Unlike common practice in the field of spectral analysis, a factor 

2fC instead of fC is used here to yield vertical resolution values nearly equal to the values obtained with the impulse 

response definition using the same filter coefficients. When using either of the proposed definitions, unsmoothed 30 

signals yield the best possible vertical resolution Dz = dz (one sampling bin). 

Numerical tools were developed to support the implementation of these definitions across all NDACC lidar groups. 

The tools consist of ready-to-use ñplug-inò routines written in several programming languages that can be inserted 

into any lidar data processing software and called each time a filtering operation occurs in the data processing chain. 
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When data processing implies multiple smoothing operations, the filtering information is analytically propagated 

through the multiple calls to the routines in order for the standardized values of vertical resolution to remain 

theoretically and numerically exact at the very end of data processing. 

1 Introduction  

As part of the Network for the Detection of Atmospheric Composition Change (NDACC, website: 5 

http://www.ndsc.ncep.noaa.gov/), over 20 ground-based lidar instruments are dedicated to the long-term monitoring 

of atmospheric composition and to the validation of space-borne measurements of Earthôs atmosphere from 

environmental satellites (e.g., EOS-Aura, ENVISAT, NPP, the Sentinels). In networks such as NDACC, the 

instruments use a wide spectrum of methodologies and technologies to measure key atmospheric parameters such as 

ozone, temperature, water vapor, etc. One ensuing caveat is the difficulty to archive measurement and analysis 10 

information consistently within such a varied ensemble of passive and active remote-sensing instruments. Yet the 

need for consistent definitions has strengthened as datasets of various origin (e.g., satellite and ground-based) need 

higher quality control and thorough validation before they can be used for long-term trend studies or be assimilated 

into global systems. For example, recommendations were recently made for the use of specific effective vertical 

resolution schemes within the European Aerosol Research Lidar Network (EARLINET; Iarlori et al., 2015), and 15 

efforts were made to produce aerosol lidar retrievals with a prescribed level of standardization (DôAmico et al., 

2015). Within the NDACC Lidar Working Group, a few studies have shown the impact on ozone concentration and 

uncertainty of using different definitions of vertical resolution (e.g., Beyerle and McDermid, 1999; Godin et al., 

1999), or have estimated the impact of various corrections on temperature (e.g., Leblanc et al., 1998), but little work 

was done to facilitate a standardization of the definitions and approaches relating to vertical resolution and 20 

uncertainty budget in NDACC lidar retrievals. 

To address these and other lidar retrieval issues a group of lidar experts formed an International Space Science 

Institute Team of Experts in 2011 (http://www.issibern.ch/aboutissi/mission.html). The objective of this working 

group (henceforth the ñISSI Teamò) was to provide scientifically meaningful recommendations for the use of 

standardized definitions of vertical resolution and standardized definitions and approaches for the treatment of 25 

uncertainty in the NDACC ozone and temperature lidar retrievals. Ultimately, the recommendations compiled in an 

ISSI Team Report (Leblanc et al., 2016a) were designed to be implemented consistently by all NDACC ozone and 

temperature lidar investigators. 

The present article is the first of three companion papers that provide a comprehensive description of the 

recommendations made by the ISSI Team to the NDACC lidar community for the standardization of vertical 30 

resolution and uncertainty. The present article (Part 1) is exclusively dedicated to the description of the proposed 

standardized vertical resolution. A second paper (Part 2) (Leblanc et al., 2016b) reviews the proposed standardized 

definitions and approaches for the ozone differential absorption lidars uncertainty budget. The last paper (Part 3) 

(Leblanc et al., 2016c) reviews the proposed standardized definitions and approaches for the NDACC temperature 

lidars uncertainty budget. Details that appear beyond the scope of the present three companion papers may be found 35 

in the ISSI Team Report (Leblanc et al., 2016a). 

http://www.ndsc.ncep.noaa.gov/
http://www.issibern.ch/aboutissi/mission.html
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Though the ISSI Team focus has been on the retrieval of ozone by the differential absorption technique (Mégie et 

al., 1977), and temperature by the density integration technique (Hauchecorne and Chanin, 1980; Arshinov et al., 

1983), most recommendations made in the present and two companion papers can be followed for the retrieval of 

other NDACC lidar species such as water vapor (Raman and differential absorption techniques), temperature 

(rotational Raman technique), and aerosol backscatter ratio. One exception is when using an Optimal Estimation 5 

Method (OEM) for the retrieval of temperature or water vapor mixing ratio as recently proposed by Sica and 

Haefele (2015, 2016), for which vertical resolution is implicitly determined from the full-width at half-maximum of 

the OEMôs averaging kernels. 

Vertical resolution, as provided in the lidar data files, is an indicator of the amount of vertical filtering applied to the 

lidar signals or to the measured species profiles. This filtering is applied in order to reduce high frequency noise 10 

typically produced at the signal detection level. A higher vertical resolution means that the instruments is able to 

detect features of small vertical extent, while a lower vertical resolution implies a reduced ability to detect features 

of small vertical scale. Typically, vertical resolution is provided in a unit of vertical length (e.g., meter). Because the 

lidar signal-to-noise ratio strongly varies with altitude, the amount of filtering typically applied also varies with 

altitude, with more filtering applied at higher altitude ranges unless specific geophysical processes are investigated 15 

(e.g., gravity waves, stratospheric intrusions). 

Here the word filtering is preferred to the word smoothing because it is more general and applies to both smoothing 

and differentiation processes, the former process being relevant to both temperature and ozone lidar retrievals, and 

the latter process being relevant to the ozone differential absorption technique. To optimize the useful range of lidar 

measurements, most lidar signals or profiles are digitally filtered at some point in the retrieval process. Over the 20 

years, NDACC lidar investigators have provided temperature and ozone profiles using a wide range of vertical 

resolution schemes and values, where the definition of vertical resolution appears to differ significantly. The 

objective of the present work is not to recommend a specific vertical resolution scheme, but instead to ensure that 

the definition used by the data providers to describe their scheme is reported and interpreted consistently across the 

entire network. The approaches and recommendations in this article were designed so that they can be implemented 25 

consistently by all NDACC lidar investigators and beyond (e.g., the Tropospheric Ozone Lidar Network, TOLNet, 

website: http://www-air.larc.nasa.gov/missions/TOLNet/, or the GCOS Reference Upper Air Network, GRUAN, 

website: http://www.dwd.de/EN/research/international_programme/gruan/home.html). We therefore recommend 

two well-known definitions, one definition based on the full-width at half-maximum (FWHM) of a finite impulse 

response, and the other definition based on the cut-off frequency of digital filters. These definitions allow a clear 30 

mapping of the amount of filtering applied to the lidar signal or species profile with the values of vertical resolution 

actually reported in the data files.  

Section 2 summarizes the basics of digital signal filtering, and provides a few examples of how vertical resolution 

can be expressed in terms of impulse response and digital filter cut-off frequency. Section 3 reviews a number of 

vertical resolution definitions used by the NDACC ozone and temperature lidar community. The results from 35 

sections 2 and 3 are used in section 4 to recommend and detail two practical, well-known definitions of vertical 

resolution that can be easily linked to the underlying filtering processes. The numerical values of vertical resolution 

http://www-air.larc.nasa.gov/missions/TOLNet/
http://www.dwd.de/EN/research/international_programme/gruan/home.html
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computed using these two definitions are compared for several types of digital filters. For the sake of completeness, 

a supplement to the present manuscript provides additional characteristics of several commonly-used smoothing and 

derivative filters. 

Numerical tools were developed by the ISSI Team to facilitate the implementation of the proposed standardized 

definitions. The tools consist of subroutines written in four scientific programming languages (IDL, MATLAB, 5 

FORTRAN and Python) which can be inserted in the lidar investigatorsô data processing software in order to 

compute the numerical values of the standardized vertical resolution. The plug-in routines are available upon request 

to the corresponding author.  

2 Brief review of signal filtering theory 

In this section we briefly review the mathematical background that allows us to link vertical resolution to the lidar 10 

signal (or profile) filtering process. Signal filtering for lidar data processing consists of either smoothing, 

differentiating or smoothing and differentiating at the same time. To describe the filtering process a signal S is 

defined in its general sense, i.e., it can be either a raw lidar signal from a single detection channel, or the ratio of the 

corrected signals from two detection channels, or an unsmoothed ozone profile, temperature profile, calibrated or 

uncalibrated water vapor profile, etc. The only common requirement is that the signal is formed of a finite number of 15 

equally-spaced samples in the vertical dimension S(k) with k=[1,nk]. The constant interval between two samples, dz 

= z(k+1)-z(k) for all k, is the sampling width, or sampling resolution, and corresponds to the smallest vertical interval 

that can be resolved by the lidar instrument.  

The signal filtering process at an altitude z(k) consists of convolving a set of 2N+1 coefficients cn with the signal S 

over the interval Dz = 2Ndz of boundaries z(k-N) and z(k+N) (e.g., Hamming, 1989): 20 

ä
-=

+=
N

Nn

nf nkSckS )()(          (1) 

where Sf is the signal after filtering. The transformation associated with this process is known as a non-recursive 

digital filter and is the simplest kind of digital filters. The elements of the vector, cn, are the coefficients of the filter. 

A simple example of this type of filter is the arithmetic average, for which all coefficients take the same value cn = 

1/(2N+1). Several other filter names exist for this particular example, for example boxcar smoothing filter, boxcar 25 

function, or ñsmoothing by [2N+1]sò (Hamming, 1989). 

The number of filter coefficients and the values of these coefficients determine the actual effect of the filter on the 

signal. Three critical aspects of the effect of the filter on the signal are 1) the amount of noise reduction due to 

filtering, 2) the nature and degree of symmetry/asymmetry of the coefficients around the central value which 

determines whether the filterôs function is to smooth, sum, differentiate, or interpolate, and 3) whether the 30 

magnitude of specific noise frequencies are being amplified or reduced after filtering. In the particular case of an 

unfiltered signal comprised of independent samples and assuming that the variance of the noise for the unfiltered 

signal is constant through the filtering interval considered (sS
2(kô) = s2 for all kô in the interval [k-N,k+N]), we 

obtain a simple relation that estimates the variance of the output signal:  
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This relation reveals the importance of the sum of the squared-coefficients to determine the amount of noise 

reduction. However, it does not provide any information on the ability of the filter to distinguish what is noise and 

what is actual signal. To illustrate this problem, Fig. 1 shows an example of a noisy signal before and after filtering, 

processed using two different filters. We start from a modeled signal represented by the green dash-dot curve. To 5 

this ideal signal, we add random noise whose amplitude is distributed following Poisson statistics (signal detection 

noise). The noisy ñunfilteredò signal is represented in this figure by a dark-grey dotted curve. The signal is then 

processed using two different filters, i.e., two different sets of coefficients. The blue curve shows the filtered signal 

using least squares linear fitting (identical to boxcar average, labeled LS-1), while the red curve shows the filtered 

signal this time using least squares fitting with a polynomial of degree 2 (LS-2). The number of terms used by both 10 

filters is the same (2N+1=11). The values of the coefficients, and not the number of coefficients, are responsible for 

the observed performance trade off, here the trade-off between a smoother signal and a noisier signal where the dip 

in the measurements is better reproduced. 

In the real world, we typically do not know the exact nature or behavior of the measured signal. Consider the 

example in Fig. 1, if the definition used to report vertical resolution in the data files was based on the number of 15 

points used by the filter, we would not be able to attribute the differences observed between the blue and red curves 

to a difference in the filtering procedure. We therefore need to find some analytical way to characterize a specific 

filter if we want to understand its exact effect on the signal, and properly interpret features observed on the 

smoothed signal. We will see thereafter that it is indeed possible to determine the resolution of the filter by either 

quantifying the response of a controlled impulse in the physical domain, or by using a frequency approach and 20 

studying the frequency-response of the filter. 

2.1 Classical approach: Unit impulse response and unit step response 

The impact of a specific filter on the signal can be characterized by computing the unit impulse response in the 

physical domain (usually called the time domain in time series analysis). This can be done by using a well-known, 

controlled input signal, e.g., an impulse, and by studying its response after being convolved by the filter coefficients. 25 

Considering a finite impulse response is equivalent to considering the output signal IOUT formed by the convolution 

of an impulse I INP with a finite number of coefficients cn: 
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For smoothing, non-derivative filters, this impulse is the discrete Kronecker delta function dk0 (also called unit 

impulse function), which takes a value of 1 at coordinate k=k0 and 0 elsewhere: 30 

1)(0 =kkd  for 0kk=  

0)(0 =kkd  for all 0kk¸          (4) 
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Using our smoothing interval of 2N+1 points centered at altitude z(k), the input impulse for which the response is 

needed will have a value of 1 at the central point, and 0 at all other points: 

1)( =+nkI INP   for 0=n  

0)( =+nkI INP  for Nn ¢<0         (5) 

For derivative filters, it is more adequate to calculate the response of a discrete Heaviside step function HS (also 5 

called unit step function), which takes a value of 0 for all strictly negative values of k, and a value of 1 elsewhere: 

0)( =kHS   0<k  

1)( =kHS   0²k          (6) 

Again using an interval of 2N+1 points centered at z(k), the input step for which the response is needed will have a 

value of 0 for all samples below the central point z(k), and a value of 1 for the central point and all samples above it: 10 

0)( =+nkI INP  0<¢- nN  

1)( =+nkI INP   Nn¢¢0         (7) 

Though we considered an impulse (delta function) for smoothing filters and a step function (Heaviside step) for the 

derivative filters, for brevity we will hereafter call both types of response an ñimpulse responseò. For each altitude 

location considered, the impulse response consists of a vector whose length is at least as large as twice the number 15 

of filter coefficients used to smooth the signal at this location. The magnitude of the impulse response typically 

maximizes at the central point z(k) of the filtering interval, and then decreases apart from this central value to a value 

of 0 for points outside the smoothing interval. Unlike the number of coefficients used by the filter, the width of the 

response (measured in number of bins) provides a quantitative measure of the actual smoothing impact of the filter 

on the signal at this location. The impulse response of a boxcar average is shown in Fig. 2 for several filter widths. 20 

Additional examples of impulse response for several smoothing and derivative filters are provided throughout this 

article and in the Supplement. Later in this paper, we will link vertical resolution as it is often reported in lidar data 

files to the impulse response width, and more precisely to its full-width-at-half-maximum (FWHM). 

2.2 The frequency approach: Transfer function and gain 

As in many signal processing applications, the frequency approach applied to lidar signal filtering or lidar-retrieved 25 

profile filtering is convenient mathematical framework. . It is a more abstract, but very powerful tool allowing us to 

understand many hidden features of the smoothing and differentiation processes. A succinct, yet clear discussion of 

the required mathematical background is provided by Hamming (1989). Here, we will provide a brief review of this 

background relevant to our applications. 

1) Aliasing: Any signal consisting of a finite number of equally-spaced samples in the physical domain is an aliased 30 

representation of a sine and cosine function of frequency w. Using the usual trigonometry formulae and the Euler 

identity, we can therefore express a single-frequency signal with unity amplitude in complex form: 

kiekS w=)(            (8) 
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In the case of lidar, the signal (or the ozone or temperature profile) is a function of altitude range. The discretized 

independent variable is the vertical sampling bin k. The angular frequency w (unit: radian.bin-1) is then connected to 

the frequency f (unit: bin
-1
) and vertical wavelength L (unit: bin) by the relations: 

L
f

p
pw

2
2 ==            (9) 

2) Eigen-functions and eigenvalues of a linear system: Any vector x of length M can be formed by linear 5 

combination of M linearly independent (orthogonal) eigenvectors xi: 

i

M

i

ia xx ä
=

=
1

           (10) 

Furthermore, any non-zero and non-unity matrix A of dimension M by M multiplied by this vector can be expressed 

as the sum of the products of its elements by the corresponding eigenvalues li: 
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3) Invariance under translation: The property of invariance under translation for the sine and cosine functions 

implies a direct relation between the signal expressed in its complex form and the eigenvalue l(w) for a given 

translation: 

)()()( )( kSeeenkS kininki wlwww ===+ +
       (12) 

Using the above mathematical background, the filtered signal Sf presented in its classical form as a linear 15 

combination of the input signal S (Eq. (1)) can be re-written in its frequency-approach form: 
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The eigenvalue l(w) is independent of k, and is called the transfer function, which can be computed in the frequency 

domain over a full cycle [-p,p], or over half a cycle [0,p] without losing information (symmetry of translation): 
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We can express the transfer function more conveniently as a function of the frequency f: 
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The maximum value f = 0.5 bin-1 is the Nyquist frequency, which corresponds to L=2 bins, and which expresses the 

fact that the lidar instrument is unable to exactly reproduce any feature of vertical wavelength smaller than twice the 

sampling resolution (2dz). The transformation described in Eq.       25 

 (15) can easily be recognized as a well-known discrete Laplace Transform, applied to the filter coefficients.  

For a typical smoothing filter, the coefficients have even symmetry, i.e., cn = c-n for all values of n. The complex 

transfer function can then be reduced to its real part. The gain of the filter G, which is the ratio of the actual transfer 

function  H(f) to the ideal transfer function I(f) can then be written: 
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For a derivative filter, the 2N+1 coefficients have odd symmetry, i.e., cn = -c-n for all values of n and c0 = 0. The 

complex transfer function is then reduced to its imaginary component: 
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With the complex notation of Eq. (8), the ideal vertical derivative of the signal can be written: 5 
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The gain of the filter, then takes the form: 
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Referring back to Eq. (1), the gain provides a quantitative measure of the actual smoothing impact of the filter on 

the signal at a particular location z(k) and for a given spectral component f.   10 

Examples of gain for several smoothing and derivative filters are shown in Fig. 2 (right) , and throughout the rest of 

this article as well as in the Supplement. Just like for the impulse response, later in this paper we will link vertical 

resolution as it is often reported in lidar data files to the cut-off frequency of digital filters, which is computed from 

the gain (see sections 3 and 4). 

2.3 Example 1: Least squares fitting and boxcar average 15 

Least-squares fitting is a well-established numerical technique used for many applications such as signal smoothing, 

differentiation, interpolation, etc.. The relation between the number and values of the filter coefficients and the type 

of polynomial used to fit the signal can be found in many text books and publications (e.g., Birge and Weinberg, 

1947; Savitsky and Golay, 1964; Steinier et al., 1972). In this paragraph we show that least-squares fitting with a 

straight line, and boxcar averaging are the same filter. We start with the simple case of fitting five points with a 20 

straight line. We therefore look for the minimization of the following function: 
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This minimization is done by differentiating F with respect to each coefficient a0 and a1 and finding the root of each 

corresponding equation: 

î
î

í

î
î

ì

ë

+=+

+=+

ä

ä

-=

-=

2

2

10

2

2

10

)(100

)(05

n

n

nknSaa

nkSaa

         (21) 25 

The value of the signal after filtering Sf is the mid-point value of the fitting function a0+a1n which corresponds to the 

value of a0 (n=0): 
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Identifying this equation to the generic Eq. (1), we deduce the five coefficients of the filter: 

5

1
=nc          22 ¢¢- n          (23) 

We recognize this result as the coefficients of a 5-point boxcar average (5-pts running average).  The impulse 

response of this filter takes a value of 1 for all |n| comprised between 0 and N, and a value of 0 elsewhere (see Fig. 2 5 

left plot). Not surprisingly, all impulse response curves maximize at the central point (n=0), and their full-width at 

half-maximum (FWHM) increases with the number of filter coefficients used. 

Now switching to the frequency domain and using Eq. (14), the transfer function l(w) can be written in complex 

form: 
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The gain of the filter can be expressed as a function of frequency f: 
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which simplifies to: 
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We can generalize the above equation by fitting 2N+1 points with a straight line, and we find: 15 
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Or in function of frequency: 
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which simplifies to 20 
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The gain functions for 3-point through 25-point boxcar average filters are plotted on the right-hand side of Fig. 2. 

The gain provides a more complete description of the smoothing ability of the filters because it provides a measure 

of noise attenuation as a function of frequency. All curves show a gain close to 1 for frequency values near 0 (low-

pass filters), but they also show large ripples at larger frequencies when we approach the Nyquist frequency. The 25 

frequency f0 of the first zero-crossing (zero-gain) is determined by the number of points used: 
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The ripples observed on the right-hand side plot of Fig. 2 (the Gibbs phenomenon) are undesirable if the filterôs 

objective is to remove the highest frequencies from the signal, which is the case for the lidar signal impacted by 

detection noise. The Gibbs ripples are predicted by the Fourier theory because these digital filters have a finite 

number of coefficients, the equivalent in the physical domain of truncated Fourier series in the frequency domain. 5 

The strength of the frequency approach is to use the Fourier theory, often refined by the concept of windowing, to 

minimize the Gibbs ripples. Detailing the underlying theory behind this behavior is beyond the scope of the present 

paper. Instead, we simply provide below and in the Supplement the most common examples of modifications made 

to the filter coefficients allowing an optimized design of a noise-reduction filter. More details on filters windows can 

be found in, for example, Rabiner and Gold (1975). 10 

2.4 Example 2: Low-pass filter and cut-off frequency 

If we were to consider an ideal low-pass filter with an infinite number of terms, the theoretical transfer function 

would have values between 0 and 1 representing the perfect gain of the filter (no ripples). The so-called transition 

region corresponds to the region where we want the transfer function to drop from a value of 1 at lower frequencies 

to a value of 0 at higher frequencies. The width of the transition region is the bandwidth. We can define the cut-off 15 

frequency of a low-pass filter as the frequency at which the transfer function equals 0.5. For most low-pass filters 

this is at the center of the transition region.  To design a low-pass filter with the desired cut-off frequency fC, we start 

with the initial conditions defining an ideal low-pass filter: 

1)( =fG  for Cff <<0  

0)( =fG  for 5.0<< ffC         (32) 20 
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Without getting into mathematical details, we find that these conditions are always true for a family of un-truncated 

Fourier series with the following transfer function (Hamming, 1989): 
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Since we have to work with a finite number of samples, we truncate the series to a finite number of terms at the 25 

expense of producing Gibbs ripples. The real-world low-pass filter thus created has the following 2N+1 coefficients 

and transfer function: 
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An example, for fc=0.15, is shown for reference in Fig. 3. The impulse response (left) and gain (right) are shown for 

a filter full-width comprised between 3 and 25 points. The first few Gibbs ripples always have the largest amplitude. 

Using a higher number of terms causes the ripples to be more concentrated near the transition region, and causes 

higher ordersô ripples with a smaller amplitude to occur near the Nyquist frequency. 

The gain curves show that the transition region is narrower than that observed for the boxcar average filters, but the 5 

Gibbs ripples appear on both sides of the transition region. Just like for the modified least squares fitting, we can 

reduce the magnitude of the Gibbs ripples by modifying the filter coefficients, specifically by applying additional 

weights to the filter coefficients, a process called windowing. Several examples of smoothing filters using Lanczos, 

von Hann, Hamming, Blackman, and Kaiser windows are provided for reference in the Supplement. 

2.5 Example 3: Central difference derivative filter  10 

The simplest approximation of the derivative of a signal S at altitude z(k) without a phase shift is the so-called 3-

point central difference which can be written: 

( ))1()1(
2

1
)( --+= kSkSkSf         (36) 

Here we work in units of sampling bins rather than physical units, i.e., we assume the sampling resolution is dz=1. 

We recognize the set of coefficients: 15 

2

n
cn =   11 ¢¢- n         (37) 

The transfer function, obtained from Eq. (36) is: 
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        (38) 

Following the notation of Eq. (19) (odd symmetry) and using the values of the coefficients cn (Eq. (37)), we then 

compute the gain, i.e., the ratio of the value approximated by the central difference (Eq.(38)) to the value of the 20 

ideal derivative (Eq. (18)) and find: 
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This equation shows that the central difference conserves the slope of the original signal for f=0 only, and 

underestimates this slope for all other frequencies. Figure 4 shows the transfer function H (red solid curve) and gain 

G (blue solid curve) for the 3-point central differences. Just like for the smoothing filters, we can design derivative 25 

low-pass filters that will conserve the slope of the signal for low values of frequency and attenuate the slope (or 

noise) for higher frequency values. Several examples are given in the Supplement. 
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3 Review of vertical resolution definitions used by NDACC lidar investigators 

The filtering schemes or methods of several NDACC lidar investigators have been reviewed and compared in 

previous works, e.g., Beyerle and McDermid (1999) and Godin et al., (1999). These studies concluded that vertical 

resolution was not consistently reported between the various investigators. Here we briefly review the filtering 

schemes or methods used by various NDACC lidar investigators, and how vertical resolution is reported in their data 5 

files, as of 2011. This review provided critical input to the ISSI Team to determine which definitions of vertical 

resolution is appropriate for use in a standardized way across the entire network (see section 4). 

- Observatoire de Haute-Provence (OHP, France), stratospheric ozone differential absorption lidar: 

A 2nd degree polynomial derivative filter (Savitsky-Golay derivative filter) is used (Godin-Beekmann et 

al., 2003). Vertical resolution is reported following a definition based on the cut-off frequency of the digital 10 

filter. 

- Table Mountain (California) and Mauna Loa (Hawaii) stratospheric ozone and temperature lidars operated by JPL: 

Filtering is done by applying a 4th degree polynomial least-squares fit (Savitsky-Golay derivative filter) to 

the logarithm of the signals for ozone retrieval. For the temperature profiles, a Kaiser filter is applied to the 

logarithm of the relative density profile. In both ozone and temperature cases, the cutoff frequency of the 15 

filter, reversed to the physical domain, is reported as vertical resolution (Leblanc et al., 2012). 

- NASA-GSFC mobile ozone DIAL STROZ instrument (USA): 

For ozone, a least-squares 4th degree polynomial fit derivative filter (Savitsky-Golay derivative filter) is 

used. The definition of vertical resolution in the NDACC-archived data files is based on the impulse 

response of a delta function, by measuring the FWHM of the filterôs response. For the temperature retrieval 20 

(Gross et al., 1997), the profiles are smoothed using a low-pass filter (Kaiser and Reed, 1977), and a simple 

ad hoc step function is used to define the values of the vertical resolution. 

- Lauder (New Zealand) ozone lidar operated by RIVM (Netherlands): 

The definition of vertical resolution is based on the width of the fitting window used for the ozone 

derivation (Swart et al., 1994). 25 

- OHP and Reunion Island (France) tropospheric ozone DIAL: 

A 2nd degree polynomial least-squares fit (Savitsky-Golay derivative filter) is used to filter the ozone 

measurements. The vertical resolution is reported as the cut-off frequency of the corresponding digital 

filter.  

- Reunion Island (France) temperature lidar: 30 

A Hamming filter is applied on the temperature profile. The width of the window used is reported as the 

vertical resolution. 

- University of Western Ontario (Canada) Purple Crow Lidar (PCL): 

For climatology studies, the temperature algorithm applies a combination of 3-point and 5-point boxcar 

average filters or a Kaiser filter on the temperature profiles (e.g. Argall and Sica, 2007). Similar filters are 35 

used in space or time for spectral analysis of atmospheric waves (e.g. Sica and Russell 1999). Filter 

parameters are reported in the data files locally produced and distributed to the scientific user community. 
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Previously files were distributed to users with the type of filter and full bandwidth of the filter. The 

variance reduction of the filter is folded into the random uncertainties provided. The product of the data 

spacing and the filter bandwidth gives the full influence of the filter at each point. With the development of 

a temperature retrieval algorithm based on an optimal estimation method, vertical resolution of the 

temperature profile is now available as a function of altitude (Sica and Haefele, 2015). 5 

- Tsukuba (Japan) ozone DIAL and temperature lidar: 

The algorithm uses 2nd and 4th degree polynomial least-squares fits (Savitsky-Golay derivative filter). The 

vertical resolution is calculated from a simulation model that determines the FWHM of the impulse 

response to an ozone delta function. The FWHM is then mapped as a function of altitude. For temperature a 

von Hann (or Hanning) window is used on the logarithm of the signal (B. Tatarov, personal 10 

communication, 2010). 

- Garmisch-Partenkirchen (Germany) tropospheric ozone DIAL operated by IFU: 

The algorithm  initially used linear and third degree polynomial fits (Kempfer et al., 1994), and then since 

1996 a combination of a linear fit and a Blackman-type window (Eisele and Trickl, 2005; Trickl, 2010). 

The latter filter has a reasonably high cut-off frequency and do not transmit as much noise as the derivative 15 

filters used earlier at IFU (Kempfer et al., 1994). To report vertical resolution in the data files, a Germany-

based standard definition of vertical resolution is used, following the Verein Deutscher Ingenieure DIAL 

guideline (VDI, 1999). This definition is based on the impulse response to a Heaviside step function. The 

vertical resolution is given as the distance separating the positions of the 25% and 75% in the rise of the 

response, which is approximately equivalent to the FWHM of the response to a delta function. In the case 20 

of the ozone DIAL the vertical resolution of both the Blackman-type filter used and the combined least-

squares-derivative plus Blackman filter. A vertical resolution of 19.2 % of the filtering interval was 

determined, respectively. For small intervals the latter value may change, i.e., the least-squares fit for 

determining the derivative is executed over just a few data points. For comparison, an arithmetic average 

yields a vertical resolution of 50 % of the filtering interval. 25 

Having reviewed the vertical resolution definitions and schemes used across NDACC and elsewhere, three 

definitions or approaches can be clearly identified. The first definition is the number of filter coefficients used, the 

second definition is based on the cut-off frequency of the filter used, and the third definition is based on the width of 

the impulse response of the filter used. Those definitions were already mentioned by Beyerle and McDermid (1999), 

but no decision was made within NDACC to find a standardized approach across the network.  The present article 30 

and its Supplement show that not all filters have the same properties, and that the characteristics of a filter do not 

simply depend on the number of coefficients used, but instead on a combination of the number of coefficients and 

their values. Indeed, Fig. 5 below shows the gain of several filters having the same number of coefficients (5-pts for 

the smoothing filters on the left hand plot, and 7-pts for the derivative filters on the right hand plot). It is obvious 

that, depending on the filter and/or window used, the transition region between pass-band and stop-band is located at 35 

very different frequencies. In the examples shown, it is located between f=0.12 and f=0.35 for smoothing filters, 

while the derivative filters show considerably more variability. 
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Finding transition regions at different frequencies means that the smoothing effect of the filters on the signal is 

different even though the number of coefficients is the same. A vertical resolution definition based on the number of 

coefficients is therefore not reliable. Instead we need to choose a standardized definition based on objective 

parameters that are directly related to the effect a filter has on the signal. Two such definitions are proposed 

thereafter, definitions that are similar or closely related to the two remaining definitions identified in the present 5 

section. 

4 Proposed standardized vertical resolution definitions for the NDACC lidar s 

The two definitions proposed here were chosen because they provide a straightforward characterization of the 

underlying smoothing effect of filters (see section 2), and they appear to be already used by a large number of 

NDACC investigators (see section 3). The first definition is based on the width of the impulse response of the filter. 10 

The second definition is based on the cut-off frequency of the filter. Further justification for the choice of either 

definition is provided at the end of the present section. 

4.1 Definition based on the FWHM of a finite impulse response  

The full-width-at-half-maximum (FWHM) of an impulse response, as introduced in section 2, is computed by 

measuring the distance (in bins) between the two points at which the response magnitude falls below half of its 15 

maximum amplitude. The NDACC-lidar-standardized definition of vertical resolution proposed here is computed 

from the response IOUT of a Kronecker delta function for smoothing filters, and a Heaviside step function for 

derivative filters. Because of the dynamic range of the lidar signals (or ozone or temperature profiles), we assume 

that the number of filter coefficients could vary with altitude. Therefore, the standardized vertical resolution is 

estimated separately for each altitude z(k) in the following manner: 20 

1) Define and/or identify the 2N(k)+1 filter coefficients c(k,n) used to perform the smoothing or differentiation 

operation on the signal (lidar counts, ozone or temperature profile): 
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2) Construct an impulse function of finite length 2M(k)+1 to be convolved with the filter coefficients. The value of 

M(k) is not critical but has to be greater or equal to N(k). For smoothing filters, the impulse function is the 25 

Kronecker delta function which can be written: 
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This function equals 1 at the central point (m=0) and equals 0 everywhere else. For derivative filters, the impulse 

function is the Heaviside step function which can be written: 
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This function equals 0 at all locations below the central point (m<0) and equals 1 everywhere else. 
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3) Convolve the filter coefficients with the impulse function in order to obtain the impulse response IOUT: 
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4) Estimate the full width at half-maximum (FWHM) of the impulse response IOUT, by measuring the distance DmIR, 

in bins, between the two points (located on each side of the central bin) where the response magnitude falls below 

half of the maximum amplitude: 5 

( )),(max5.0))(,( 1 iOUTOUT mkIkmkI =   for all 0)( ¢¢- imkM  
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For a successful identification of the FWHM, the impulse response should have only two points where its value falls 

below half of its maximum amplitude, which is normally the case for all smoothing and derivative filters used within 10 

their prescribed domain of validity (see examples in section 2 and in the Supplement). In the event that more than 

two points exist, the two points farthest from the central bin should be chosen in order to yield the most conservative 

estimate of vertical resolution.  

5) Compute the standardized vertical definition DzIR as the product of the lidar sampling resolution dz and the 

estimated FWHM: 15 

)()( kmzkz IRIR D=D d           (46) 

Figure 6 summarizes the estimation procedure. The unsmoothed signal yields a FWHM of 1 bin. This result is 

derived by considering null coefficients everywhere except at the central point (m=0), where the coefficient equals 

1. The intercept theorem within the triangles formed by the impulse response at the central point and its two adjacent 

points (m=-1 and m=1) yields a FWHM of 1 bin, and the standardized vertical resolution using the present impulse 20 

response-based definition will always be greater or equal to the sampling resolution: 

zkzIR d²D )(  for all k          (47) 

When several filters are applied successively to the signal, the response of the filter must be computed each time a 

filtering operation occurs, and vertical resolution needs to be computed only after the last filtering occurrence. The 

process can be summarized as follows: a first impulse response is computed with the first filtering operation. If no 25 

further filtering occurs, the impulse response is used to determine the FWHM and vertical resolution. If a second 

filtering operation occurs, the impulse response is used as input signal, and a second response is computed from the 

convolution of this input signal with the coefficients of the second filter. If no further filtering occurs, the second 

response is used to determine the FWHM and vertical resolution. If a third filtering operation occurs, the response 

output from the second convolution is used as input signal of the third convolution, and so on until no more filtering 30 

is applied to the signal. Vertical resolution is always computed from the final output response, i.e., after the final 

filtering operation. Figure 7 summarizes the procedure.  
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4.2 Definition based on the cut-off frequency of digital filters  

The cut-off frequency of digital filters is defined as the frequency at which the value of the filterôs gain is 0.5, 

typically located at the center of the transition region between the passband and the stopband (see section 2). The 

NDACC-lidar-standardized definition proposed here is computed from the cut-off frequency fC, which is determined 

from the gain of the filter obtained by applying a Laplace Transform to the coefficients of the filter used. Once 5 

again, because of the dynamic range of the lidar signals, filtering a lidar signal (or ozone/temperature profile) often 

requires using a number of filter coefficients which varies with altitude. Starting with a lidar signal (or ozone or 

temperature profile) S composed of nk equally-spaced elements in altitude, the standardized vertical resolution is 

estimated separately for each altitude z(k). The procedure can be summarized as follows for each altitude 

considered: 10 

1) Define and/or identify the 2N(k)+1 filter coefficients c(k,n) used to perform the smoothing or differentiation 

operation on the lidar signal (or on the ozone or temperature profile) at altitude: 
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2) Apply the Laplace Transform to the coefficients to determine the filterôs transfer function and gain. For non-

derivative smoothing filters, the coefficients have even symmetry, i.e., c(k,n)=c(k,-n), and the gain is written: 15 
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For derivative filters, the coefficients have odd symmetry, i.e., c(k,n)=-c(k,-n), and if dz is the sampling resolution, 

the gain can be written: 
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For a successful cut-off frequency estimation process, the gain must be computed with normalized coefficients cn, 20 

that is, the coefficients must meet the following normalization condition: 
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3) Estimate the cut-off frequency, i.e., the frequency fC at which the gain equals 0.5: 

( ) 5.0)(, =kfkG C   5.0)(0 ¢< kfC       (52) 25 

For a successful identification, the gain should have only one crossing with the 0.5-line, typical for the smoothing 

and derivative filters used within their prescribed domain of validity for lidar retrieval systems. In the event that 

several crossings exist, the frequency closest to zero should be chosen to ensure that the most conservative estimate 

of vertical resolution is retained.  
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4) Calculate the cut-off length DmFC (unit: bins), i.e., the inverse of the frequency fC normalized to the sampling 

width: 
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5) Compute the standardized vertical definition DzFC as the product of the lidar sampling resolution dz and the cut-

off length DmFC at that altitude: 5 
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Figure 8 summarizes this estimation procedure. The factor of 2 present in the denominator of Eq. (53) is usually not 

used in spectral analysis, when it is normally assumed that the minimum vertical scale that can be resolved by the 

instrument is twice the sampling resolution (Nyquist criterion). However, it is included here in order to harmonize 

the numerical values with the values computed using the impulse response definition. Using the present proposed 10 

definition, an unsmoothed signal yields a vertical resolution of dz and the standardized vertical resolution will 

always be at least equal to the sampling resolution: 

zkzFC d²D )(   for all k         (55) 

When several filters are applied successively to the signal, the transfer function must be computed each time a 

filtering operation occurs, but vertical resolution needs to be computed only after the last filtering occurrence. The 15 

process can be summarized as follows: a first transfer function (or gain) is computed with the first filtering 

operation. When the second filtering operation occurs, the gain computed using the coefficients of the second 

operation is multiplied by the gain computed during the first filtering operation. If no further filtering occurs, the 

result of this product is the gain that should be used to determine the cut-off frequency and vertical resolution. If a 

third filtering operation occurs, the product of the first and second gain must be multiplied by the third gain, and so 20 

on until no more filtering occurs. When the final filtering operation is reached, vertical resolution can be computed 

from the final output gain. Figure 9 summarizes the procedure. 

4.3 Comparison between the impulse response-based (IR) and cut-off frequency-based (CF) definitions 

In sections 4.1 and 4.2, we showed that, when using the proposed definitions based on impulse response and cut-off 

frequency, the standardized vertical resolution of an unsmoothed lidar signal (or profile) is equal to the lidar 25 

sampling resolution. However this equality between the two definitions is not perfect for all filters. Here, we show 

that for most filters, there is a well-defined proportionality relation between the two definitions, but we also show 

that the proportionality factor depends on the type of filter used. In the rest of this section, for convenience we will 

work with vertical resolutions normalized by the sampling resolution (unit: bins). The results are therefore shown as 

cut-off width DmFC and impulse response FWHM DmIR instead of DzFC and DzIR respectively, which is equivalent to 30 

assuming dz=1. 

Figure 10 shows, for the smoothing filters introduced in section 2 and in the Supplement, the correspondence 

between the standardized vertical resolutions (in bins) computed using the cut-off frequency and using the impulse 
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response, for full -widths comprised between 3 and 25 points. The black solid circle at coordinate (1,1) indicates the 

vertical resolution for the unsmoothed signal (or profile). The grey horizontal and vertical dash-dotted lines indicate 

the highest possible vertical resolutions for the impulse response-based and cut-off frequency-based definitions 

respectively. The grey dotted straight lines indicate the result of the linear regression fi ts between the two 

definitions, and the numbers at their extremity are the values of the slope for three of the four types of filters used. 5 

There is no proportionality between the two definitions for the low-pass filters (diamonds) because the cut-off 

frequency is prescribed for this type of filter. Note that the factors of 1.2 and 1.39 do not correspond to the ratio of 

1.0 that is assumed for the unsmoothed signal. Very similar conclusions can be drawn for the derivative filters, as 

demonstrated by Fig. 11 (which is similar to Fig. 10 but for the derivative filters introduced in section 2 and in the 

Supplement). 10 

Figure 12 is similar to Fig. 10, but this time after the filters were convolved with the windows introduced in the 

Supplement. The windows change the proportionality constant between the two definitions, but this constant 

appears to be approximately the same for a given window, specifically around 1.04 for Lanczos, 1.0 for von Hann, 

0.92 for Blackman, and 1.0 for Kaiser (50-dB). Table 1 summarizes the proportionality constants for all filters and 

all windows introduced in section 2 and in the Supplement. 15 

Figure 13 shows, for the filters introduced in section 2 and in the Supplement, the correspondence between the two 

proposed standardized vertical resolutions (in bins) and the number of filter coefficients used (full -widths comprised 

between 3 and 25 points). The dashed grey line represents unity slope (i.e., 1 bin for 1 filter coefficient), and the 

numbers at the end of the red and blue dotted straight lines indicate the slope of the linear fit applied to the paired 

points for each definition. As expected for a boxcar average, the impulse response-based definition yields a vertical 20 

resolution (in bins) that is equal to the number of terms used (see Fig. 2). This is a particular case for which 

reporting vertical resolution using the number of filter terms yields a result identical to the impulse response-based 

standardized definition. Note that for low-pass filters with a prescribed cut-off frequency, the vertical resolution 

does not depend at all on the number of filter terms used (right hand plot). 

Figure 14 is similar to Fig. 13, this time after convolution by a von Hann window. Except for the low-pass filter, 25 

there is a factor of approximately 2 between the number of terms used by the filter and the vertical resolution for 

both definitions. Figure 15 is similar to Fig. 13, but for three selected derivative filters. 

The factors between the vertical resolutions (in bins) and the number of filter coefficients are compiled in Table 2 

and Table 3 for the cut-off frequency-based and the impulse response-based definition respectively. 

In this section, it was shown that each recommended definition of vertical resolution yields its own numerical 30 

values, i.e., for a same set of filter coefficients, the reported standardized vertical resolution will likely have two 

different numerical values, depending on the definition used. Unfortunately, there is no unique proportionality factor 

between the two definitions that could be used for all digital filters in order to obtain a ñunifiedò homogenous 

definition yielding identical values. However, after reviewing this homogeneity problem, the ISSI Team concluded 

that both definitions should still be recommended because the computed values remain close, specifically within 35 

10% if using windows and within 20% if not using windows, and because each definition is indeed useful for 

specific applications. For example, the cut-off frequency-based definition is particularly useful for gravity waves 
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studies from lidar temperature measurements, because it can provide, through the transfer function, spectral 

information that can help interpreting quantitative findings on the amplitude and wavelength of lidar-observed 

waves. This type of information is not available when using the impulse response-based definition. On the other 

hand, the impulse response-based definition is widely used in atmospheric remote sensing, and provides information 

in the physical domain similar to that provided through the averaging kernels of optimal estimation methods (e.g., 5 

microwave radiometer measurement of ozone or temperature). 

4.4 Additional r ecommendations to ensure full traceability  

When archiving the ozone or temperature profiles, reporting values of vertical resolution using a standardized 

definition such as DzFC or DzIR constitutes an important improvement from other, non-standardized, methods such as 

the number of points used by the filter. However, using one standardized definition or even both standardized 10 

definitions proposed here, still does not characterize the complete smoothing effect of the filter on the signal. For 

full  traceability, it is necessary to provide for each altitude point, either the set of filter coefficients used (for one-

time smoothing cases) or to provide the complete transfer function or impulse response. This information can be 

critical when comparing the lidar profiles with profiles from other instruments, or when working with averaging 

kernels used for other measurements.  15 

If the data provider chooses to report standardized vertical resolution information based on the impulse response 

definition, the complete vertical resolution information should include: 

1) A vector DzIR of length nk containing the standardized vertical resolution values at each altitude, as 

proposed in section 4.2 

2) A two-dimensional array of size nk × nm containing the full impulse response used to estimate the FWHM 20 

(nm=2M+1 is the full-length of the impulse function convolved with the filter coefficients, and a 

recommended value is nm=nk) 

3) A vector m of length nm containing the distance (in bins) from the central bin at which the response is 

reported 

4) Meta data information describing clearly the nature of the reported vectors and arrays 25 

If the data provider chooses to report standardized vertical resolution information based on the cut-off frequency 

definition, the complete vertical resolution information should therefore include: 

1) A vector DzFC of length nk containing the standardized vertical resolution values at each altitude, as 

proposed in section 4.1 

2) A two-dimensional array of size nk × nf containing the gain used to estimate the cut-off frequency (nf is the 30 

number of frequencies used when applying a Laplace transform to the filter coefficients, and a 

recommended value is nf=nk) 

3) A vector f of length nf containing the values of frequency at which the gain is reported 

4) Meta data information describing clearly the nature of the reported vertical resolution vector, frequency 

vector, and two-dimensional gain array 35 
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If the data provider chooses to report standardized vertical resolution based on both the impulse response definition 

and the cut-off frequency definition, the complete vertical resolution information should include: 

1) A vector DzIR of length nk containing the standardized vertical resolution values at each altitude, as 

proposed in section 4.2 

2) A two-dimensional array of size nk x nm containing the full impulse response used to estimate the FWHM 5 

(nm=2M+1 is the full-length of the impulse function convolved with the filter coefficients, and a 

recommended value is nm=nk) 

3) A vector m of length nm containing the distance (in bins) from the central bin at which the response is 

reported 

4) A vector DzFC of length nk containing the standardized vertical resolution values at each altitude, as 10 

proposed in section 4.1 

5) A two-dimensional array of size nk x nf containing the gain used to estimate the cut-off frequency (nf is the 

number of frequencies used when applying a Laplace transform to the filter coefficients, and a 

recommended value is nf=nk) 

6) A vector f of length nf containing the values of frequency at which the gain is reported 15 

7) Meta data information describing clearly the nature of all reported vectors and arrays 

4.5 Practical implementation within NDACC 

Numerical tools were developed and provided to the NDACC PIs in order to facilitate the implementation of the 

network-wide use of the proposed standardized definitions. These tools consist of easy-to-use plug-in routines 

written in IDL, MATLAB and FORTRAN, which convert a set of filter coefficients into the needed standardized 20 

values of vertical resolution following one or the other proposed definitions. The tools are written in such a way that 

they can be called in a lidar data processing algorithm each time a smoothing and/or differentiating operation occurs. 

The routines can handle multiple smoothing and/or differentiating operations applied successively throughout the 

lidar data processing chain, as described in sections 4.1 and 4.2. The routines are available on the NDACC Lidar 

Working Group website (http://ndacc-lidar.org/), or upon request to the first author (thierry.leblanc@jpl.nasa.gov). 25 

The routine ñNDACC_ResolIRò computes vertical resolution values with a definition based on the FWHM of the 

filterôs impulse response. When the routine is called for the first time in the data processing chain, the sampling 

resolution and the coefficients of the filter are the only input parameters of the routine. The routine convolves the 

coefficients with an impulse (delta function for smoothing filters and Heaviside function for derivative filters) to 

obtain the filterôs impulse response, and then identifies the full-width at half-maximum (FWHM) of this response. 30 

The response and the value of vertical resolution are the output parameters of the routine. The product of the 

response full width by the sampling resolution is performed inside the routine. When a second call to the routine 

occurs (second smoothing occurrence), the vertical resolution output from the first call is no longer used. Instead, 

the response output from the first call is used as input parameter for the second call, together with the sampling 

resolution and the coefficients of the second filter. The input response is convoluted with the coefficients of the 35 

second filter to obtain a second response. The routine identifies the FWHM of this new response. Once again the 

http://ndacc-lidar.org/
mailto:thierry.leblanc@jpl.nasa.gov
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vertical resolution is computed inside the routine by calculating the product of the new FWHM and the sampling 

resolution. The new response and the new vertical resolution are the output parameters of the routine after the 

second call. The procedure is repeated as many times as needed, i.e., as many times as a smoothing or differentiation 

operation occurs. 

The routine ñNDACC_ResolDFò computes vertical resolution values with a definition based on the cut-off 5 

frequency of a digital filter. When the routine is called for the first time in the data processing chain, the sampling 

resolution and the coefficients of the filter are the only input parameters of the routine. The routine applies a Laplace 

transform to the coefficients to obtain the filterôs gain, and then identifies the cut-off frequency. The inverse of the 

doubled cut-off frequency is multiplied by the sampling resolution to obtain the vertical resolution. The gain and the 

vertical resolution are the output parameters of the routine. When a second call to the routine occurs (i.e., a second 10 

smoothing operation occurs), the cut-off width output from the first call is not used anymore.  Instead, the gain 

output from the first call is used as input parameter for the second call, together with the sampling resolution and the 

coefficients of the second filter. The product of the input gain and gain computed from the second filter is the new 

gain from which the routine identifies the cut-off frequency. A new vertical resolution is obtained by multiplying the 

inverse of the newly-computed doubled cut-off frequency by the sampling resolution. The new gain and the new 15 

vertical resolution are the output parameters of the routine after the second call. The procedure is repeated as many 

times as needed, i.e., as many times as a smoothing or differentiation operation occurs. 

The standardization tools became available in summer 2011. They were distributed to several members of the ISSI 

Team for testing and validation. Using simulated lidar signals and a series of Monte-Carlo experiments, their 

implementation was validated for several NDACC ozone and temperature lidar algorithms. Several examples of this 20 

validation are provided in the ISSI Team Report (Leblanc et al., 2016a). Ideally, an NDACC-wide implementation 

should follow. The implementation will not be considered complete until the vertical resolution outputs of all 

contributing data processing software have been quantified and validated following the same procedure as that 

described in Leblanc et al. (2016a). 

5. Summary and discussion 25 

In the present work, we recommended using one or two standardized definitions of vertical resolution that can 

unequivocally describe the impact of vertical filtering on the ozone and temperature lidar profiles. The coefficients 

of the filter used in the vertical smoothing operation are chosen by the lidar investigator, and therefore constitute the 

key information for the derivation of vertical resolution using a standardized definition. 

The first ñstandardizedò definition recommended for use in the NDACC ozone and temperature lidar algorithms is 30 

based on the width of the response to a Finite Impulse-type perturbation. The response is computed by convolving 

the filter coefficients with an impulse function, namely, a Kronecker Delta function for smoothing filters, and a 

Heaviside Step function for derivative filters. Once the response has been computed, the standardized definition of 

vertical resolution proposed by the ISSI Team is given by Dz = dz*HFWHM, where dz is the lidarôs sampling 

resolution and HFWHM is the full-width at half-maximum (FWHM) of the response, measured in sampling intervals. 35 

Following this definition, an unsmoothed signal yields the best possible vertical resolution Dz = dz (one sampling 
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bin). This definition was recommended by the ISSI Team because it is already widely used within the NDACC 

community, and it has many points of commonality with the averaging kernels reported for the retrieval of 

atmospheric species using optimal estimation methods. This definition also allows multiple smoothing occurrences 

to be treated analytically in a simple and exact manner. 

The other recommended definition relates to digital filtering theory. After applying a Laplace Transform to a set of 5 

filter coefficients, we can derive the filter transfer function and gain, which characterize the effect of the filter on the 

signal in the frequency-domain. A cut-off frequency value fC can be defined as the frequency at which the gain 

equals 0.5, and vertical resolution can then be defined by the relation Dz = dz/(2fC). Unlike common practice in the 

field of spectral analysis, a factor 2fC instead of fC was indeed used here to yield values conveniently close to that 

obtained with the impulse response definition. The present definition therefore yields vertical resolution values 10 

expressed as multiples of sampling intervals rather than multiples of Nyquist intervals, and an unsmoothed signal 

yields the best possible vertical resolution Dz = dz (one sampling interval). This results maps to the frequency 

domain as twice the Nyquist frequency. Like in the impulse response case, the values of vertical resolution 

computed for multiple, successive smoothing operations is conceptually, theoretically and numerically exact. 

The ISSI-Team developed numerical tools to support the implementation of these definitions across the NDACC 15 

lidar groups. The tools consist of ready-to-use ñplug-inò routines written in IDL, FORTRAN, MATLAB , C++, and 

PYTHON that can be inserted into any lidar data processing software each time a smoothing operation occurs in 

their data processing chain. The routineôs input parameters are the lidar sampling resolution and the coefficients of 

the smoothing filter locally applied, and the output parameter is the vertical resolution following the impulse 

response-based standardized definition, or the cut-off frequency-based standardized definition. When multiple 20 

smoothing operations occur within the same data processing chain, the plug-in routines must be called each time 

smoothing occurs, but the final vertical resolution to be reported is computed only at the final occurrence. The 

values output by the routines after the last call are reported in the lidar data files together with the ozone or 

temperature profiles. These standardized values of vertical resolution are theoretically and numerically exact, even 

after multiple filtering occurrences. Using simulated lidar signals and a series of Monte-Carlo experiments, their 25 

implementation was validated for several NDACC ozone and temperature lidar algorithms. Examples of this 

validation are provided in the ISSI Team Report (Leblanc et al., 2016a). 

6. Conclusion 

Over the years, NDACC lidar PIs have been providing temperature and ozone profiles using a wide range of vertical 

resolution schemes and values, and these values were reported using different definitions. Here we did not 30 

recommend using a specific vertical resolution scheme, but instead we recommended using standardized definitions 

of vertical resolution that can be used consistently across lidar observation networks. The proposed approach was 

designed so that the standardized definitions can be implemented easily and consistently by all lidar investigators 

(e.g., NDACC, TOLNet, etc.). Though the recommendations apply to the retrieval of ozone by the differential 

absorption technique and temperature by the density integration technique, they can likewise apply to the retrieval of 35 

other NDACC species such as water vapor (Raman and differential absorption techniques), temperature (rotational 
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Raman technique), and aerosol backscatter ratio at the exception of the Optimal Estimation Method (OEM) for the 

retrievals of temperature and water vapor recently proposed by Sica and Haefele (2015, 2016), for which vertical 

resolution is determined from the FWHM of the OEMôs averaging kernels. 

In our two companion papers (Leblanc et al., 2016b; 2016c), the ISSI Team provided recommendations on the 

standardized treatment of uncertainty for the NDACC ozone and temperature lidars (Part 2 and Part 3 respectively). 5 

It is anticipated that the widespread use of the standardized definitions and approaches proposed in our three 

companion papers will significantly improve the interpretation of atmospheric measurements, whether these 

measurements are made for validation purposes (e.g., comparison of correlative measurements) or scientific 

purposes (e.g., studies of vertical structures observed in the measured profiles). 
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Table 1: Proportionality factor between the impulse response-based and the cut-off frequency-based definitions of vertical 
resolution for the filters and windows introduced in section 2 and in the Supplement 

Ratio DzIR/DzFC 
LS and MLS 

deg. 0-1 

LS 

deg. 2-3 

LS deriv. 

deg. 1-2 

LS deriv. 

deg. 3-4 

LS derive. 

deg. 5-6 

No window 1.20 1.39 1.12 1.23 1.24 

w/ Lanczos window 1.03 1.04 0.98 0.97 1.07 

w/ von Hann window 1.00 0.98 / / / 

w/ Blackman window 0.92 0.94 0.92 0.92 0.95 

w/ Kaiser 50-dB window 0.98 1.02 0.97 0.98 1.05 

 

 5 

Table 2: Proportionality factor between the number of filter coefficients (full-width) and vertical resolution based on cut-

off frequency (in bins) for the filters and windows introduced in section 2 and in the Supplement 

Ratio DmFC/(2N+1) 
LS and MLS 

deg. 0-1 

LS 

deg. 2-3 

LS deriv. 

deg. 1-2 

LS deriv. 

deg. 3-4 

LS derive. 

deg. 5-6 

No window 0.83 0.40 0.63 0.34 0.26 

w/ Lanczos window 0.58 0.42 0.51 0.40 0.30 

w/ von Hann window 0.50 0.43 / / / 

w/ Blackman window 0.43 0.36 0.40 0.35 0.30 

w/ Kaiser 50-dB window 0.57 0.41 0.50 0.39 0.30 

 

 

Table 3: Proportionality factor between the number of filter coefficients (full-width) and vertical resolution based on 10 
impulse response FWHM (in bins) for the filters and windows introduced in section 2 and in the Supplement 

Ratio DmIR/(2N+1) 
LS and MLS 

deg. 0-1 

LS 

deg. 2-3 

LS deriv. 

deg. 1-2 

LS deriv. 

deg. 3-4 

LS derive. 

deg. 5-6 

No window 1.00 0.56 0.71 0.42 0.33 

w/ Lanczos window 0.60 0.43 0.50 0.38 0.32 

w/ von Hann window 0.50 0.39 / / / 

w/ Blackman window 0.41 0.34 0.37 0.31 0.29 

w/ Kaiser 50-dB window 0.56 0.42 0.49 0.37 0.31 

 

 

  



27 

 

 

 
Figure 1: Example of the differing impact of two smoothing filters of identical number of terms (2N+1=11). The green 

dot-dash curve is the modelled signal (with no noise), the grey dotted curve is the modelled input signal containing 

Poisson noise, the blue and red curves are the smoothed signal using a 11-pts boxcar average (LS-1) and the Least ï5 
squares fitting method with a polynomial of degree 2 (LS-2), respectively 
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Figure 2: Impulse response (left) and gain (right) for a digital filter equivalent to fitting an unsmoothed signal 

with a polynomial of degree 1 or 2 using the least-squares method over an interval comprising 2N+1 points 

(full width). Full widths represented in this figure range from 3 to 25 points. This least-squares filtering 5 
procedure is equivalent to a running average over 2N+1 points (full width)  
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Figure 3: Impulse response and gain of low-pass filters using 2N+1 coefficients (full width), and designed to 

have a cut-off frequency fc=0.15. Full widths range from 3 to 25 points.  

 5 
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Figure 4: Transfer function (TF) and gain of the central difference digital filter. The gain (blue curve) is the 

transfer function (red curve) normalized by 2pf, which is the real part of the ideal differentiator iw  
 5 
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Figure 5: Transfer function (gain) of several smoothing (left) and derivative (right) filters, all having the exact 

same number of coefficients 2N+1 (5-pts full -width for the smoothing filters and 7-pts full -width for the 

derivative filter s) 5 
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Figure 6: Schematics summarizing the procedure to follow to compute the standardized vertical resolution 

with a definition based on the impulse response FWHM DzIR 
 5 
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Figure 7: Schematics summarizing the procedure to follow to compute the standardized vertical resolution 

with a definition based on impulse response when the signal or profile is filtered multiple times 
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