Quantification of Uncertainties in OCO-2 Measurements of XCO₂: Simulations and Linear Error Analysis

5 Brian Connor¹, Hartmut Bösch^{2,6}, James McDuffie³, Tommy Taylor⁴, Dejian Fu³, Christian Frankenberg⁵, Chris O'Dell⁴, Vivienne H. Payne³, Michael Gunson³, Randy Pollock³, Jonathan Hobbs³, Fabiano Oyafuso³, and Yibo Jiang³

¹BC Scientific Consulting, Stony Brook, NY, USA

 ² EOS Group, Department of Physics and Astronomy, University of Leicester, Leicester, UK
³ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
⁴ Cooperative Institute for Research in the Atmosphere, Fort Collins, CO, USA
⁵ California Institute of Technology, Pasadena, CA, USA
⁶National Centre for Earth Observation NCEO, University of Leicester, Leicester, UK

Correspondence to: Brian Connor (bc.scientific.consulting@gmail.com)

Supplementary Material:

20

The following figures show the sensitivity of retrieved XCO2 to interference error caused by aerosol. Five composite aerosol types are shown, dust (DU), sea salt (SS), black carbon (BC), organic carbon (OC), and sulfate (SO). Each aerosol is considered separately in 2 layers, at $\sigma = 0.95$ and $\sigma = 0.5$. See section 3.3.1 of the paper for

25 details of the aerosol definitions and calculations.

In the figure labels, interference in the lower layer is referred to as 'Interference_1' while the upper layer is 'Interference_2'. All figures show the response of XCO2 to an error, or variability, of AOD = 0.1 in the relevant layer and aerosol type. All

30 figures are plotted on the same scale and with the same color sequence, to aide comparability.

35

50 Figure 1. Dust (DU) in the layer surface - 750 hPa

Figure 2. Dust (DU) in the layer 750 hPa – top of atmosphere

Figure 3. Sea salt (SS) in the layer surface - 750 hPa

Figure 4. Sea salt (SS) in the layer 750 hPa - top of atmosphere

Figure 5. Black carbon (BC) in the layer surface - 750 hPa

80 Figure 6. Black carbon (BC) in the layer 750 hPa – top of atmosphere

Figure 7. Organic carbon (OC) in the layer surface - 750 hPa

Figure 8. Organic carbon (OC) in the layer 750 hPa - top of atmosphere

Figure 9. Sulfate (SO) in the layer surface - 750 hPa

105 Figure 10. Sulfate (SO) in the layer 750 hPa – top of atmosphere