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Abstract. We present an analysis of uncertainties in global measurements of the 20 

column averaged dry-air mole fraction of CO2 (‘XCO2’) by the NASA Orbiting 

Carbon Observatory-2, (‘OCO-2’). The analysis is based on our best estimates for 

uncertainties in the OCO-2 operational algorithm and its inputs, and uses simulated 

spectra calculated for the actual flight and sounding geometry, with measured 

atmospheric analyses. The simulations are calculated for land nadir and ocean glint 25 

observations. We include errors in measurement, smoothing, interference, and 

forward model parameters. All types of error are combined to estimate the uncertainty 

in XCO2 from single soundings, before any attempt at bias correction has been made. 

From these results we also estimate the ‘variable error’ which differs between 

soundings, to infer the error in the difference of XCO2 between any two soundings. 30 

The most important error sources are aerosol interference, spectroscopy, and 

instrument calibration. Aerosol is the largest source of variable error. Variable errors 

are usually < 1 ppm over ocean and ~0.5 – 2.0 ppm over land. The total error due to 

all sources is ~1.5 – 3.5 ppm over land, ~1.5 – 2.5 ppm over ocean. 

 35 
 
 
 
 
 40 
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1. Introduction 
 

The Orbiting Carbon Observatory-2 (OCO-2) was launched on July 2, 2014 and has 45 

been making global measurements of CO2 and O2 spectral bands in reflected sunlight 

since early September 2014.  Spectra are recorded in two CO2 bands at 1.61 µm and 

2.06 µm (‘WCO2’ and ‘SCO2’, respectively), and the O2 A-band at 0.76 µm with a 

resolving power between 17000 and 20000. These measurements are analyzed to 

provide estimates of the column-averaged dry-air mole fraction of CO2, known as 50 

XCO2. Details of the OCO-2 mission, measurement technique, and XCO2 retrieval 

may be found in Crisp et al, (2008) and O’Dell et al, (2012). The instrument 

calibration is detailed in Rosenberg et al, (2016) and Lee et al, (2016).  These 

measurements are motivated primarily by the need to infer regional carbon fluxes, and 

to constrain global models of the carbon cycle. Characterizing the uncertainties in 55 

XCO2 as measured, and in how these uncertainties vary in space and time, is critical 

for this purpose. The present study is part of the ongoing effort at uncertainty 

quantification for the OCO-2 mission. 

In this paper we assess the uncertainty in a single XCO2 sounding by ‘bottom-up’ 

analysis, using the best available estimates of errors in the algorithm and its inputs 60 

(‘error sources’), computing the contribution of each error source to uncertainty in 

XCO2, and combining them to estimate net uncertainty. We further estimate the 

uncertainty in the difference of XCO2 between any two soundings, by excluding the 

mean error produced by error sources which are constant in themselves. We compare 

XCO2 uncertainties and their variability over land (nadir) and ocean (glint) for both 65 

June and December simulated data sets. Finally, we summarize the effect of all error 

sources globally, and identify those which are largest and most variable. 

 

Our methodology is described in detail in Sections 2 and 3 below. In overview, 

simulations of OCO-2 spectra were run with the CSU orbit simulator (O’Brien et al., 70 

2009), retrievals were performed with the operational Level-2 (L2) code, and a linear 

error analysis was performed using a dedicated off-line code. This study used 

simulations to allow full control of the calculations and their inputs.  The use of 

simulations for this analysis should not significantly affect its overall conclusions or 

their applicability to OCO-2 operational measurements, since the simulations are 75 
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calculated from ‘true states’ drawn from a realistic atmosphere. 

 

Simulated spectra were calculated for 3 days in June and 3 in December. Only nadir 

spectra were calculated over land, and only glint spectra over ocean. Calculations 

were done for a single footprint (as opposed to 8 footprints for the flight data), with 80 

the sounding frequency set at 1 Hz (as compared to 3 Hz in operation). The resulting 

reduction in data volume (factor of 24) was done purely for convenience and should 

not affect conclusions from this study. After cloud screening using the Oxygen A-

Band Preprocessor (ABP) (Taylor, et al, 2016), the operational L2 code was run on 

the simulations, and the results screened for convergence. A second screen was 85 

performed to minimize the occurrence of outliers, by restricting the accepted range of 

some sounding and retrieved parameters. More than 20 thousand soundings passed 

these screens, and those were run with the L2 code a second time, using an extended 

state vector including a set of interfering aerosols.  The interfering aerosols are tightly 

constrained to very small values in this step, but are included to force the L2 code to 90 

calculate their Jacobians. The Jacobian matrix, K, for the extended state vector was 

saved for later analysis. (The Jacobian matrix contains the first order partial 

derivatives of the forward model with respect to the state vector elements, i.e., 

K=dF(x)/dx). In addition, Jacobians were evaluated for a range of forward model 

errors, and also saved. 95 

 

Linear error analysis (Rodgers, 2000, Rodgers & Connor, 2003) was performed on the 

extended L2 output, using an off-line code developed for the purpose (Connor et al, 

2008).  We calculate actual uncertainties using estimates of true error in the measured 

spectrum, the variability of the atmospheric ensemble, and forward model errors.  100 

These calculations are intended to apply to a comparison of L2 results to the true 

atmospheric values, without applying a ‘bias correction’ (Wunch, et al, 2011) to the 

L2 results. 

  

The paper is organized as follows. In Sect. 2 we briefly discuss the L2 retrieval 105 

algorithm and then present details of the error analysis methodology. This is followed 

by an enumeration and discussion of the error sources to be considered in Sect. 3. Sect. 

4 contains the results of the linear error analysis. Sect. 5 is a discussion of the results, 

and Sect. 6 identifies needs for future research. 
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2. Background and Methodology  110 

 

The OCO-2 level 2 full physics retrieval algorithm (‘L2’), consists of a forward model 

and inverse method, described in full detail in JPL (2015). The forward model is a 

radiative transfer model of the atmosphere coupled to a model of the solar spectrum to 

calculate the monochromatic spectrum at the top of the atmosphere, which is then 115 

convolved with the response function as measured for the OCO-2 instrument. The 

inverse method is a maximum a posteriori likelihood method of a type which has been 

widely used in the community (Rodgers, 2000; Rodgers & Connor, 2003; Connor et 

al, 2008, O’Dell et al, 2012).  Uncertainty in the OCO-2 measurements of XCO2 has 

been assessed using an off-line error analysis code developed for the purpose (Connor 120 

et al, 2008).  

 

2.1 Formulation 

The error analysis algorithm performs a linear analysis using Jacobians calculated by 

the operational OCO-2 forward model.  This section closely follows the discussion in 125 

Connor et al, (2008). 

 

As defined in JPL (2015), Sa is the a priori covariance matrix, Sε is the measurement 

error covariance matrix, and K is the weighting function (Jacobian) matrix. The off-

line calculations are more detailed and more realistic than error estimates performed 130 

operationally. For example, if forward model errors are included in the Sε  matrix 

used operationally, the retrieved state may be systematically biased by the a priori 

state. Thus we evaluate the effect of forward model errors off-line. Further, evaluation 

of the smoothing and interference errors strictly requires the covariance of the 

ensemble of true states, Sc, which is not necessarily equal to the a priori covariance Sa 135 

(Rodgers & Connor, 2003). The authors’ experience with other remote sensing 

retrievals suggests that the a priori constraint, embodied in Sa, should be as uniform 

as practical over all soundings, to avoid introducing an additional source of 

variability. However, the covariance of true states, Sc, varies with latitude, longitude, 

and season. Estimates of Sc are readily included in the off-line error estimates. (See 140 

for example section 3.3.1.) 
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Equations 1 through 6 follow the definitions of Rodgers (2000) and Rodgers & 

Connor (2003). Given K, Sε, and Sa, we first characterize the operational retrieval by 

calculating the gain function Gy and the averaging kernel matrix A: 145 

 

Gy = (KT Sε

-1 K + Sa
-1)-1 KT Sε

-1             (1) 

and 

A = GyK              (2) 

  150 

We then specify a list of estimated errors to include in the calculation, and where 

possible the correlation between errors. We will refer to these as ‘error sources.’ Next 

we assemble these into an ensemble covariance Sc (for elements in the state vector) 

and a forward model parameter covariance Sb (for elements not included in the state 

vector).  Finally, we calculate the Jacobian matrix with respect to the forward model 155 

parameters, denoted Kb.  

 

For each error in the list, we calculate the resulting covariance of the retrieved state 

vector, as follows. For measurement error, 

 160 

Ŝ m = Gy Sδ Gy
T               (3) 

 

where Sδ may be equal to Sε, or an alternative estimate of the actual measurement 

covariance. In the work presented here, Sδ = Sε. 

 165 

 

For forward model error, 

 

Ŝ f = Gy Kb Sb Kb
T Gy

T              (4) 

 170 

For smoothing error,   

 

Ŝ s = (A – I) Sc(A – I)T              (5) 
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where I is the identity matrix.  175 

 

And for interference error, which refers to error in CO2 caused by non-CO2 

components of the state vector 

 

Ŝ i = Aue Sec Aue
T              (6) 180 

 

where Sec is the ensemble covariance for the non CO2 elements e, and Aue  is the off-

diagonal block of the averaging kernel matrix which relates e to the CO2 profile u. 

 

Finally, the total covariance is  185 

 

Ŝ = Ŝ m + Ŝ s + Ŝ i + Ŝ f           (7)  

 

and the resulting variance of XCO2 is σ2
XCO2 =  hTŜ h, where h = ∂XCO2 /∂x  

represents the pressure weighting function. Alternatively, one may calculate the 190 

variance in XCO2 due to a given error source, r, as σr
2 = hT Ŝr h and sum the variances 

for all r. 

 

The discussion of the preceding paragraph makes two assumptions. One, that the 

retrieval is approximately linear within the region bounded by its uncertainty, and 195 

two, that the error sources considered are themselves uncorrelated. Whenever error 

sources are correlated, the correlations must be included in, e.g. Eq (4) or (6), and the 

net effect on XCO2 calculated for the combined correlated sources. 

 

2.2 Treatment of Fixed Error Sources 200 

Many of the error sources we will consider do not vary randomly, and some do not 

vary at all.  Spectroscopic errors belong to the class of error sources which are truly 

fixed. Unfortunately, due to the varying amount of information in each measured 

spectrum relative to the a priori constraint, embodied in changes in the gain function, 

Gy, the resulting errors in retrieved XCO2 are not fixed. We will treat such errors as 205 

follows. 
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We note that the gain function, Gy, represents the sensitivity of the state vector to the 

measured radiances. Combining that with the definition of Kb, and considering for the 

moment a single scalar parameter, the error caused by parameter b is 210 

 

x̂ - x = hTGyKbdb          (8) 

 

where x̂ - x  is the retrieved XCO2 minus the true XCO2, or we may write 

 215 

x̂ - x = (hTGyKbdb
2Kb

TGy
Th)1/2        (9) 

 

Replacing db2  with its matrix equivalent Sb , then for an ensemble of retrievals,  

 

σ x = rms(x̂ - x) = rms[(h
TGyKbSbKb

TGy
Th)1/2 ]               (10) 220 

 

So if db is a constant, the error x̂ - x caused by it will vary about a mean value given 

by σ x .  While the true error in parameter b is an unknown constant, we assume that 

error is equal to the uncertainty in b. 

 225 

2.3 Variable Error 

Sources and sinks of CO2 and the circulation of the atmosphere produce temporal and 

spatial gradients in the XCO2 field, which are quantitatively predicted by carbon cycle 

models. Measuring these gradients is a strong test of such models. Thus, errors which 

vary from sounding to sounding limit the efficacy of the OCO-2 measurements in 230 

constraining carbon cycle models. On the other hand, an error which is constant, or at 

least has a well-defined mean value, can be subtracted from all soundings with 

minimal or no effect on gradients of XCO2. Therefore, we have attempted to 

distinguish the uncertainty which differs between soundings, i.e. applies to a 

difference in two soundings, from the total accuracy. 235 

The term ‘variable error’ will be used to refer to a composite error calculated from a 

selection taken from all error sources described above. Variable error will be 
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calculated from all error sources, but will exclude the mean error produced by fixed 

error sources as discussed in Sect. 2.2. Then a first approximation to the predicted 

error in the difference of XCO2 between two soundings will simply be the variable 240 

error multiplied by √2, assuming remaining errors are uncorrelated in space or time. 

This should be equivalent to estimating the net uncertainty in each sounding, and 

assuming a simple bias correction relative to validation observations has been 

performed.   

 245 

3. Error Types 

 

We will consider four types of error: measurement, smoothing, interference, and 

forward model.  

 250 

3.1 Measurement error 

The first and most obvious error is random noise in the measured spectrum. This is 

calculated based on the operational noise model (JPL, 2015), and its direct effect on 

XCO2 is calculated, and tabulated as ‘measurement error.’  

 255 

However, it is observed that spectral residuals do not decrease with averaging as 

would be expected for pure random noise, but instead have a systematic structure. 

Because of this it was decided to derive empirical orthogonal functions (EOFs) 

representing this systematic structure, and to retrieve scale factors for these functions 

at every sounding. (See Section 3.3.2.6 of JPL, (2015)).  Uncertainties in this process 260 

are to be addressed as interference error, below.  

 

3.2 Smoothing error 

This represents error due to the a priori constraint of the state vector. As suggested by 

Rodgers & Connor (2003), we have separated this into two components. The first, 265 

smoothing by the true CO2 profile, which we simply refer to as ‘smoothing’, is 

discussed here. The second component is error introduced into XCO2 by the non-CO2 
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elements of the state vector, which we call ‘interference’, discussed in the following 

section. 

 270 

The error due to the true atmospheric CO2 profile would be best estimated by using 

the covariance of the ensemble of true states, Sc. Exactly which states to include in the 

ensemble is not well defined. We have chosen to use the a priori covariance Sa, which 

is intended to represent the variability of CO2 globally throughout the year. We will 

systematically overestimate the smoothing error as a result. However, the smoothing 275 

error is always small, as we will see, and the use of Sa is fundamentally conservative. 

 

3.3 Interference error 

 

3.3.1 Aerosol and Cloud 280 

 

We apply the Modern Era Retrospective analysis for Research and Applications 

(MERRA) aerosol reanalysis climatology for daytime (local time 10:00 AM, 1:00 

PM, and 4:00 PM) in June and December, to represent the aerosol related variability 

in the OCO-2 spectral measurements (Rienecker et al., 2011). MERRA aerosol data 285 

consisting of five composite types, namely dust (DU), sea salt (SS), sulfate (SU), 

black carbon (BC), and organic carbon (OC), have nearly zero bias and a correlation 

coefficient of ~0.9 with respect to the collocated Aerosol Optical Depth (AOD) 

measurements from AErosol RObotic NETwork (AERONET), Multi-angle Imaging 

SpectroRadiometer (MISR), and Ozone Monitoring Instrument (OMI) (Buchard et al., 290 

2015). At each sounding location, the two composite types most common at that 

location are included in the state vector for the operational retrieval, along with liquid 

water and ice cloud, and are retrieved by the L2 algorithm. For the analysis presented 

here we take into account the variability of all five type of aerosols, including those 

not retrieved, as described next. 295 

 

The L2 calculations for linear error analysis are performed at each sounding with the 

operational state vector and a priori uncertainties, augmented as follows. Ten 

additional aerosol quantities are added to the state vector, namely the AOD for each 

of the 5 composite MERRA aerosols, integrated over two layers. Using the relative 300 
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pressure scale σ, defined as the fraction of surface pressure, the lower layer is at σ = 

0.95 with width 0.05, while the upper layer is at σ = 0.5 with width 0.2. The a priori 

amount and uncertainty for each of these 10 aerosol quantities is set equal to a small 

positive number, non-zero to avoid singularity, but small enough to have negligible 

effect on the algorithm. The L2 algorithm then calculates the Jacobians for each of 305 

these 10 interfering aerosol species. 

 

Subsequently, the linear error analysis combines the Jacobians for all of the aerosol 

and cloud quantities (liquid water, ice, the 2 types retrieved, and the 10 additional 

interfering aerosols) with estimates of the ensemble variability of their total 310 

atmospheric AOD, to calculate the resulting error in XCO2. For this step, we have 

created a database of the standard deviation of each of the 5 MERRA composite 

types, in 2 layers defined as the surface to 750 hPa and 750 hPa to top of atmosphere, 

on a 2.5 x 2.5 degree lat/lon grid, for each month. For each sounding location, our 

error analysis algorithm looks up the standard deviation at the nearest grid point for 315 

all 10 aerosols, and uses that as the estimated ensemble variability. For liquid water 

and ice cloud, we assume the ensemble variance equals the a priori variance. The a 

priori uncertainty of liquid water and ice (approximately a factor 6 (1σ)) was 

deliberately set large enough to minimize its effect on retrieved XCO2.  

 320 

The two retrieved aerosol types are counted twice by this procedure, once in the 

operational state vector and again in the part of the state vector as augmented for the 

error analysis. To avoid an error due to ‘double counting’, we set the ensemble 

variance for the aerosols in the operational state vector to very small values, ensuring 

they produce negligible error in retrieved XCO2. 325 

 

3.3.2 Empirical Orthogonal Functions (EOFs) 

Interference errors due to the scale factors applied to the operational EOFs are 

calculated as part of the error analysis by including the actual EOF scale factors in the 

state vector. The results show negligible effects on XCO2 uncertainties and degrees of 330 

freedom due to these scale factors.   
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3.3.3 Other Interference Errors 

Other non-CO2 components of the state vector include surface pressure, water vapor 335 

column, an offset to the a priori temperature, a linear dispersion coefficient for each 

spectral band (defining the separation in wavelength between adjacent pixels), albedo, 

and the linear change in albedo across each spectral band. Land (nadir) observations 

also include a coefficient of fluorescence, and ocean (glint) observations include wind 

speed.  These have all been included in the error analysis. 340 

For all of these components, an effort has been made to include an estimate of global 

variability as the a priori uncertainty, and this has been used as the estimated 

ensemble variability in the error analysis. The net effect of these uncertainties is fairly 

small compared to aerosols and forward model errors, so refining this ensemble 

estimate has not been a high priority, but may be considered later. 345 

 

3.4 Forward Model Error 

 

Forward model errors which have been evaluated in this analysis include those due to 

a variety of spectroscopic and calibration parameters.  350 

 

Table 1 shows the estimated uncertainties in spectroscopic parameters used in the L2 

algorithm. The parameters listed are those required for the spectroscopic line shape 

models used within the OCO-2 v7 L2 algorithm. For CO2 this is a speed-dependent 

Voigt line shape with tridiagonal line mixing and for O2, this is a Voigt line shape 355 

with first order line mixing, with a contribution from collision-induced absorption 

(CIA).  The relevant references, describing these parameters and the uncertainty 

estimates, are given in the Table. 

 

The majority of the uncertainties listed in Table 1 are based on published values. The 360 

notable exceptions are speed dependence in the CO2 bands, and line mixing in the O2 

A-band. Fairly large uncertainties have been estimated for these by L. Brown at JPL 

(private communication 2014).  
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It is also worth noting that the exponent of the temperature dependence of the pressure 365 

broadened linewidths in the O2-A band has been measured recently by Droiun et al 

(2015). The absolute value of this parameter differs by ~8% from the previously 

published value (Brown & Plymate, 2000) which was used in the OCO-2 data 

processing up to and including v7. The newer, Drouin et al value will change the 

derived XCO2 values by ~ 1 ppm. 370 

 

Also of note is a discrepancy between recent measurements of the line strength in the 

WCO2 band. The values used by the OCO-2 algorithm are based on Devi et al (2007, 

2016). Values from Polyansky et al (2015) differ from those in Devi et al (2016) by 

~1.2%. 375 

 

Uncertainties in the calibration parameters are shown in Table 2. These are based on 

pre-flight laboratory calibration of the instrument at the Jet Propulsion Laboratory. 

The parameters are defined as follows. The instrument line shape (ILS) in each band 

is assumed to have a single uncertainty, in its width. Its shape as measured in the 380 

laboratory before launch is assumed to be correct. Radiometric gain is the factor 

applied to the measured voltages to convert them to absolute physical units. Finally, 

OCO-2 is only sensitive to one polarization of the incoming radiation, whose angle of 

orientation is the ‘polarization angle’. 

 385 
In applying the uncertainties in polarization angle, we note that the observed spectrum 

S may be written in terms of the Stokes parameters I, Q, U, and V, and Mueller 

matrix coefficients m_I, m_Q, m_U, and m_V: 

 

S = m_I* I + m_Q*Q + m_U*U + m_V*V               (11) 390 

 

Uncertainties in the Mueller matrix coefficients were calculated as follows: 

First, 

  m_I = 0.5 
  m_Q = 0.5 * cos(2*ϕpol) 395 
  m_U = 0.5 * sin(2*ϕpol) 
  m_V = 0 
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The uncertainty in the polarization angle ϕpol is ± 0.5° (Table 2, 1σ) for all 3 bands, 

m_Q and m_U are derived from the same measurement, so have correlation = 1, and 400 

the 3 bands should be independent. From the above, a 3 x 3 covariance matrix can 

readily be calculated which applies to all 3 bands (uncertainty in m_I is assumed to be 

non-zero, but very small, to avoid singularity). Note that V, the circular component of 

polarizaton, is completely ignored in the L2 algorithm as there are very few natural 

sources. 405 

 

4. Results 

  
Figures 1 through 6, and Tables 3 and 4, below, display the summary of results for the 

off-line error analysis. The data are gridded into 10 by 10 degree bins and only bins 410 

with a minimum of 3 soundings are displayed. An overall observation is that there is 

some spatial seasonal dependence in all of the error types due to the shifting sub solar 

point of the sun from summer to winter which drives signal and air mass related 

errors.  

 415 

Figure 1 shows measurement error, due to random noise in the measured spectra. It is 

typically ~0.5 ppm for a single sounding, and is expected to decrease with averaging 

approximately as expected for random error, i.e. in proportion to √N, for N = number 

of soundings in the average. The error is smaller and more uniform for ocean than 

land, presumably due to the increased SNR in glint viewing mode. 420 

 

Forward model error, divided into spectroscopic and instrument error, is shown in 

Figs. 2 and 3, respectively. Spectroscopic and instrument error make roughly equal 

contributions to forward model error.  Spectroscopic error in ocean glint observations 

shows little variation, and is ~ 1.3 ppm. For land nadir it is more variable, typically 1-425 

2 ppm. The most important spectroscopic error is due to uncertainty in the WCO2 

band strength (Tables 3, 4).  Instrument error is somewhat more variable, especially 

over land. It is ~ 1 ppm in ocean glint and ~0.5-2.5 in land nadir. The most important 

instrument error is due to uncertainty in the instrument line shape (ILS). 

 430 
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 Maps of aerosol error are shown in Fig. 4a, and for comparison, the monthly mean 

aerosol optical depth from MERRA is shown in Fig 4b. In most places, aerosol errors 

are surprisingly small, typically ~0.5 ppm. However there are regions where they are 

systematically larger, ~ 2.0 - 2.5 ppm. These regions include east Asia, which has 

highly variable aerosol loading, and the tropical North Atlantic, due to dust (not 435 

shown), presumably from North Africa. There are also systematically large errors 

over the Arctic Ocean. We believe these occur because of high sensitivity of the 

algorithm to small spectral errors at high solar zenith angle. 

 

Variable error is shown in Fig. 5. Comparison to Figs. 3 and 4 shows that variable 440 

error over land is dominated by instrument error (due to instrument line shape), but by 

aerosol error over ocean. It is typically ~0.5 – 2.0 ppm in land nadir, and mostly < 1 

ppm in ocean glint, but as for aerosol, it is 2.0 - 2.5 ppm in glint in some regions. 

 

Total error from all sources is shown in Fig. 6. It is ~1.5 - 3.5 ppm over land and ~1.5 445 

- 2.5 ppm over ocean. 

 
 
 
5.  Discussion 450 

 

Inspection of the global mean and standard deviations in Tables 3 and 4 gives rise to 

some interesting observations.  In general, the fixed, or approximately fixed, error 

sources (spectroscopy and instrument calibration), cause mean errors much larger 

than their standard deviations. This implies that whatever the true value of the error in 455 

the relevant forward model parameter, its main effect can in principle be removed by 

simple bias correction based on validation measurements. Similarly, the error in the 

difference in XCO2 between two soundings is better characterized by the variability of 

that parameter’s effect than by its mean; i.e the mean effect is the same for both 

soundings and is removed by taking their difference. This is the rationale for our 460 

definition and use of Variable Error, as discussed in Sect. 3. It is also worth noting 

that both the mean and standard deviation of errors due to fixed sources is larger for 

land nadir than for ocean glint soundings. 
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As noted above, spectroscopic error varies little over the ocean, and modestly over 465 

land. The main sources of this behavior can be traced to WCO2 and O2 line strength, 

which are the largest error sources but are fairly constant in both regimes, and SCO2 

and O2 line mixing, which have highly variable effects over land, and little variation 

over ocean.  

 470 

Three components of instrument error were analyzed. Error due to uncertainty in the 

polarization angle ϕpol is negligible, < 0.01 ppm (not shown elsewhere). Uncertainty 

in instrument gain is a significant but fairly small source of XCO2 error, averaging 

0.2-0.3 ppm. The behavior of the instrument error is dominated by the ILS; 

uncertainties in XCO2 due to the ILS are the largest single error source over land, with 475 

variability second only to aerosol (~1.4 ± 0.4 ppm). Pre-flight measurements of the 

ILS were done to high accuracy (Table 2), but the sensitivity of XCO2 to the ILS is 

high. Error due to the ILS is larger and much more variable over land than over ocean. 

  

Uncertainty due to smoothing error is fairly small. It is typically ≤ 0.2 ppm. The full 480 

results (not shown) indicate it is rarely if ever larger than 0.4 ppm. The magnitude of 

smoothing error was deliberately minimized by choice of a loose a priori constraint 

on the CO2 profile in the L2 algorithm. It is likely to vary systematically with local 

conditions, since it arises in the difference between the actual and a priori CO2 profile 

shapes. 485 

 

 Tables 3 and 4 also emphasize that the dominant variable error is due to aerosol.  

Although the absolute size of the aerosol error is fairly small, it varies widely from 

place to place, with a standard deviation up to 195% of its mean value (the coefficient 

of variations are 134%, 109%, 195%, and 132% for June nadir-land, Dec nadir-land, 490 

June glint-water and Dec glint-water, respectively). Furthermore, it will depend on the 

actual atmospheric aerosol distribution, which will vary in a complex fashion with 

space and time. Correlation of the aerosol distribution is likely to be a major source of 

correlation in XCO2 error, which will be difficult to characterize quantitatively. 

 495 
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6. Recommendations for Further Research 

 

We envisage a continual ongoing analysis to quantify uncertainties in the OCO-2 500 

measurements. We believe such quantification is critical for using the data to 

constrain the geophysical carbon cycle. Linear error analysis as presented here will be 

a key part of that effort, and it is important to replicate the analysis when future 

versions of the L2 algorithm are released and mission data are re-processed. The error 

analysis should be extended to further examine errors produced by the algorithm 505 

itself. This would include studying the effect of errors in algorithm inputs such as the 

a priori state vector. A more general subject for study is non-linearity of the forward 

and inverse models. Both of these areas are foci of active research. In the particular 

case of nonlinearity, linear error analysis can be supplemented with Monte Carlo 

studies. The Monte Carlo approach can interrogate the probability distribution of 510 

retrieval errors under specified conditions and can characterize correlations between 

multiple error sources, such as interference and nonlinearity, for example. Monte 

Carlo studies require far more computational effort than the linear error analysis, so 

experiments should be designed for a carefully selected subset of conditions.  

 515 

Specific recommendations for linear error analysis include the following. Linear error 

analysis, as applied here to simulations, will be used to estimate uncertainties in 

selected sets of actual OCO-2 measurements. This work will have two main goals. 

First, we will analyze sets of OCO-2 measurements which have been used for ‘top-

down’ error estimates and validation, by comparison to TCCON data and by 520 

examining observed scatter in uniform, local areas. The volume of OCO-2 data has 

provided a large collection of validation datasets for many regions, spanning all 

seasons. The results of these ‘top-down’ estimates will be compared to the ‘bottom-

up’ estimates of linear error analysis. If these two types of estimates are consistent 

they will give us confidence in our overall understanding of measurement uncertainty. 525 

Any inconsistencies will require further investigation. One possible source of 

inconsistencies, already under investigation as described above, is non-linearity of the 

forward model. 

 

Second, the variability of the bottom-up estimates will be systematically compared to 530 

the variation in sounding geometry, atmospheric conditions, and surface type. This 
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will improve insight into the causes of measurement uncertainty, and guide data users 

in quantitative applications.  
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 670 
 
Table 1: Uncertainties in Spectroscopic Parameters Used in the L2 Algorithm 
 
   Band  Uncertainty Reference          
Line Strength  675 
   SCO2  0.40%  Joly et al, 2009 
   WCO2  0.30%  Devi et al 2007, 2016 
   O2 - A  0.40%  Long et al, 2010 
Air Broaden. 
   SCO2  0.15%  Joly et al, 2009 680 
   WCO2  0.10%  Devi et al 2007 
   O2 - A  0.20%  Robichaud et al 2008 
T – Width 
   SCO2  0.45%  Joly et al, 2009 
   WCO2  0.60%  Devi et al, 2007 685 
   O2 – A  1.25%  Drouin, et al., 2016    
CIA 
   O2 – A  0.1*  Long et al, 2012  
H2O Broaden.  
   SCO2  3%  Sung et al, 2009**    690 
   WCO2  3%  Sung et al, 2009**    
Pressure Shift 
   SCO2  2.6%  Joly et al, 2009 
   WCO2  1.5%  Devi et al 2007 
   O2 - A  2%  Robichaud et al 2008 695 
 
Line Mixing 
   SCO2  10%  Benner et al, 2011 
   WCO2  10%  Benner et al, 2011 
   O2 – A  10%  estimate**   700 
Speed Dep 
   SCO2  10%  estimate** 
   WCO2  10%  estimate** 
  
* 10-7 cm-1 amagat-2  705 
** L. Brown private communication, 2014   

 

 
 
 710 
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Table 2: Uncertainties in Calibration Parameters Used in the L2 Algorithm 715 

   Uncertainties   Correlations 
ILS           
O2 - A   0.25%    0.7 to SCO2 and WCO2 
WCO2    0.25%    0.8 to SCO2 
SCO2     0.40% 720 
 
Radiometric Gain 
O2 - A   1.1%    0.5 to WCO2 and SCO2 
WCO2    1.5% 
SCO2    1.6%     725 
 
Polarization Angle 
O2 - A   0.5°     
WCO2    0.5° 
SCO2    0.5°     730 
 
 
 
 
  735 
 
 
 
 
 740 
 
 
 
 
 745 
 
 
 
 
 750 
 
 
 
 
 755 
 
 
 
 
 760 
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Table 3: 765 
Global Mean Errors in XCO2 and Standard Deviations for Land Nadir Observations.  
Also shown is the coefficient of variation (relative standard deviation) 
 
     June    December 
       770 
Measurement   0.55 ± 0.12 22%  0.58 ± 0.12 21% 
 
SCO2 Line Strength  0.23 ± 0.15 65%  0.28 ± 0.18 64% 
WCO2 Line Strength  0.94 ± 0.16 17%  0.92 ± 0.21 23% 
O2 Line Strength  0.55 ± 0.14 25%  0.57 ± 0.09 16% 775 
O2 Line Width   0.27 ± 0.08 30%  0.28 ± 0.05 18% 
O2 Width T Dep.  0.11 ± 0.06 55%  0.19 ± 0.09 47% 
Line Mixing SCO2  0.40 ± 0.26 65%  0.52 ± 0.36 69% 
Line Mixing O2  0.21 ± 0.17 81%  0.22 ± 0.17 77% 
Speed Dep. WCO2  0.32 ± 0.06 19%  0.34 ± 0.10 29% 780 
Total Spectroscopy  1.35 ± 0.17 13%  1.43 ± 0.27 19% 
 
Radiometric Gain  0.15 ± 0.09 60%  0.16 ± 0.09 56% 
ILS    1.39 ± 0.44 32%  1.32 ± 0.32 24% 
Total Instrument  1.40 ± 0.43 31%  1.33 ± 0.32 24% 785 
  
Smoothing   0.15 ± 0.02 13%  0.19 ± 0.04 21% 
Aerosol Interference  0.47 ± 0.63 134%  0.43 ± 0.47 109% 
Interference w/o aerosol 0.18 ± 0.11 61%  0.28 ± 0.16 57% 
 790 
Variable   0.93 ± 0.59 63%  0.94 ± 0.44 47% 
Total    2.16 ± 0.56 26%  2.17 ± 0.42 19% 
  
 
 795 
 
 
  
 
 800 
 
 
 
 
 805 
 
 
 
 
 810 
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Table 4: 815 
Global Mean Errors in XCO2 and Standard Deviations for Ocean Glint Observations 
Also shown is the coefficient of variation (relative standard deviation) 
 
     June    December 
 820 
Measurement   0.35 ± 0.10 29%  0.41 ± 0.07 17% 
 
SCO2 Line Strength  0.27 ± 0.09 33%  0.20 ± 0.10 50% 
WCO2 Line Strength  0.86 ± 0.07 8%  0.91 ± 0.09 10% 
O2 Line Strength  0.74 ± 0.05 7%  0.72 ± 0.03 4% 825 
O2 Line Width   0.37 ± 0.03 8%  0.36 ± 0.02 6% 
O2 Width T Dep.  0.16 ± 0.03 19%  0.22 ± 0.08 36% 
Line Mixing SCO2  0.07 ± 0.05 71%  0.10 ± 0.05 50% 
Line Mixing O2  0.28 ± 0.09 32%  0.23 ± 0.08 35% 
Speed Dep. WCO2  0.31 ± 0.03 10%  0.33 ± 0.03 9% 830 
Total Spectroscopy  1.32 ± 0.04 3%  1.35 ± 0.05 4% 
 
Radiometric Gain  0.28 ± 0.10 36%  0.27 ± 0.07 26% 
ILS    0.88 ± 0.12 14%  0.84 ± 0.16 19% 
Total Instrument  0.93 ± 0.13 14%  0.88 ± 0.15 17% 835 
 
Smoothing   0.15 ± 0.02 13%  0.15 ± 0.02 13% 
Aerosol   0.37 ± 0.72* 195%  0.19 ± 0.25  132% 
Interference w/o aerosol 0.06 ± 0.06 100%  0.08 ± 0.05 63% 
 840 
Variable   0.62 ± 0.67* 108%  0.52 ± 0.23 44% 
Total    1.77 ± 0.54*  31%  1.69 ± 0.18 11% 
 
 
*driven by Sahara dust and high latitude outliers 845 
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Figure 1 – Measurement Error.  865 
 

Top: June, land; second: June, ocean; third: Dec. land; bottom: Dec. ocean 
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 880 
Figure 2 – Error due to spectroscopy 
 

Top: June, land; second: June, ocean; third: Dec. land; bottom: Dec. ocean 
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Figure 3 – Instrument Error 
 

Top: June, land; second: June, ocean; third: Dec. land; bottom: Dec. ocean 900 
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 915 
 
Figure 4a – Aerosol error   
 

Top: June, land; second: June, ocean; third: Dec. land; bottom: Dec. ocean 
 920 
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Figure 4b – Monthly Mean Aerosol Optical Depth (AOD) from MERRA 935 
 

Top: June, land; second: June, ocean; third: Dec. land; bottom: Dec. ocean 
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Figure 5 – Variable error   
 

Top: June, land; second: June, ocean; third: Dec. land; bottom: Dec. ocean 
 950 
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 965 
Figure 6 – Total error 
 

Top: June, land; second: June, ocean; third: Dec. land; bottom: Dec. ocean 
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