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Abstract. In support of the Aerosol, Clouds, Ecosystems missions, simulations of a spaceborne multiwavelength lidar are

performed  based  on  global  model  simulations  of  the  atmosphere  along  a  satellite  orbit  track.  The  yield  for  aerosol

microphysical inversions is quantified and comparisons are made between the aerosol microphysics inherent in the global

model and those inverted from both the model's optical data and the simulated three backscatter and two extinction lidar

measurements, which are based on the model's optical data. We find that yield can be significantly increased if inversions

based on a reduced optical dataset of three backscatter and one extinction are acceptable. In general, retrieval performance is

better for cases where the aerosol fine mode dominates. Lack of sensitivity to coarse mode cases is found, in agreement with

earlier studies. Surface area is generally the most robustly retrieved quantity. The work here points toward the need for

ancillary data to aid in the constraints of the lidar inversions and also for the need for joint inversions involving lidar and

polarimeter measurements.

1 Introduction

NASA's involvement in space lidar systems dates from the Apollo era when a laser altimeter was flown on Apollo 15, 16 and

17 in  1971-72 (http://www.lpi.usra.edu/lunar/missions/apollo/apollo_17/experiments/la/).  Since  that  time,  several  NASA
missions have used laser altimeters for topographic measurements of both the Earth (Garvin et al., 1998) and other planets

(Smith et al., 2001). The first NASA lidar mission that measured the Earth's atmospheric profiles was the Lidar In space
Technology  Experiment  (LITE)  that  flew  on  board  the  space  shuttle  Discovery  in  1994  for  a  10-day  technology

demonstration mission (McCormick et al, 1993). In 2006, the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)
lidar was launched as part of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission and

continues to make profile measurements of aerosols and clouds into 2016. 

A future NASA atmospheric profiling mission, the Aerosol, Cloud, Ecosystems (ACE) Mission, was identified as a priority

in the 2007 National Research Council Decadal Survey and is anticipated to include NASA's most advanced spaceborne
lidar system. The goals of the ACE mission include decreasing the uncertainties associated with the roles of aerosols, clouds

and precipitation in the hydrological cycle and climate change. The candidate suite of instruments proposed for the mission
includes polarimeter, radar, multiwavelength (MW) High Spectral Resolution Lidar (HSRL) and ocean color spectrometer.
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NASA is conducting a pre-formulation study to consider science measurement requirements and measurement capabilities of

the candidate instrumentation. As a part of that pre-formulation study, we consider here the measurement capability of, and
aerosol micro-physical retrievals from, a spaceborne, multiwavelength lidar within the context of the ACE mission. More

information on the ACE mission along with the results of community workshops led by the ACE Science Working group can
be found at http://dsm.gsfc.nasa.gov/ace/.

2 Aerosol microphysical retrievals using the multiwavelength lidar

The  multiwavelength  lidar  technique  has  proven  useful  for  estimating  the  vertical  profile  of  aerosol  microphysical

parameters such as effective radius, volume and refractive index under widely varying conditions (Veselovskii et al., 2009,
Ansmann et al., 2011,  Müller et al., 2013, Veselovskii et al., 2015). The most common configuration of multiwavelength

lidar for such studies is one based on a tripled Nd:YAG laser providing three backscattering and two extinction coefficients
(the so called 3ß+2α dataset). From these data aerosol microphysics can be inverted (Müller et al., 1999 a, b, Veselovskii et

al., 2002, Böckmann et al., 2005) using different inversion approaches (Donovan and Carswell, 1997, Veselovskii et al.,
2012). It is most common for ground-based systems that Raman scattering is used for the measurements from which aerosol

extinction is calculated. However, for spaceborne configurations the HSRL technique (Shipley et al., 1983, Rogers et al.,
2009, Burton et al, 2014) will be considered in the simulations done here due to its much higher signal-to-noise for the pure

molecular measurements. An important consideration in these lidar inversions is that there are only 5 input optical data and,
thus, the inverse problem is under-determined (Veselovskii et al., 2005). The inverse equations are multi-valued implying

that  other  information is needed to constrain the region over which a solution is sought.  Such constraints increase the
stability and accuracy of the inversion and need to be considered an important part of the solution technique. In the context

of the ACE mission, additional information from a polarimeter or from lidar depolarization measurements (Burton et al.,
2012) can also aid the lidar inversion by helping to constrain the search space for a solution although those details were not

considered here.  Additional  assumptions about  size-  and spectrally-independent refractive index are also made in these
retrievals (Müller et al., 1999 a,b; Veselovskii et al., 2002).

3 Hardware configuration

The  main  purpose  of  this  effort  was  to  perform  a  relatively  simple  study  to  assess  the  measurements  and  aerosol

microphysical inversions from a spaceborne multiwavelength HSRL lidar. As such, we did not wish to consider the specific
detailed optical design of any particular system that might be under development to meet the needs of the ACE mission. We

also did not consider clouds. We focused only on the lidar system parameters that determine optical throughput and used
them to simulate performance of the spaceborne lidar in a cloud-free atmosphere. To determine the system parameters, we

consulted  with  various  manufacturers  and  lidar  specialists  to  generate  the  set  of  parameters  shown in  Table  1.  These
parameters are considered to be technically feasible and a reasonable representation of a currently feasible spaceborne HSRL

lidar. 

4 Simulation Approach

The model used in this simulation study is one that was first developed in 1999 (Whiteman et al., 2001) in support of the
Raman Airborne Spectroscopic Lidar (Whiteman et al, 2007) development effort that was funded by NASA's Instrument
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Incubator Program. That model has been used to simulate both airborne and ground-based lidar systems under a wide range

of conditions (Whiteman et al., 2010) and is an implementation of the lidar equation (Measures, 1984) that carries physical
units through the entire simulation chain including for background skylight. Modifications were made to the molecular cross

sections used in the model to permit the simulation of the molecular channels of an HSRL instrument. For all simulated lidar
signals, the model generates a profile of photon count rate based on the lidar instrument parameters and the atmospheric

profile of aerosol and molecular density provided to the model. For validation of the model, consideration was given to using
data from the CALIPSO (Winker et al., 2010) instrument. The CALIPSO lidar uses a 22-bit analog data acquisition system

with gain switching capability so that the raw output is in digital count values that correlate to a voltage scale. To avoid the
complications of converting this voltage value to photon count rate, we chose instead to use Geosciences Laser Altimetry

System (GLAS) (Spinhirne et al., 2005) data from October 9, 2003 since the GLAS system used photon counting electronics.
The measured photon count rate from GLAS could, therefore, be directly compared with the lidar simulator's output. Using

GLAS instrument parameters, the comparisons of GLAS data with the model output were in excellent agreement including
during the passage  of  the instrument  into and out of  the terminator  region where skylight  background is considerable.

Beyond a photon count rate of 10-20 Mhz, however, the comparisons degraded due to the non-linear nature of the photon
counting process of the GLAS electronics. This limitation did not influence the comparisons done here since the candidate

ACE lidar is considered to use an analog detection system which does not possess the non-linear behavior shown in the
GLAS photon counting data. 

As the basis for the simulations, the Goddard Earth Observing System Model, Version 5 (GEOS-5, Rienecker et al. 2008)
was used to simulate the atmospheric conditions along a 24-hr track of the CALIPSO lidar instrument valid for July 24,

2009.  GEOS-5 is an Earth system model, here incorporating an atmospheric general circulation model, representations of
atmospheric physics  including moist  processes,  chemistry,  and aerosols,  and a data assimilation module.   The GEOS-5

simulation  was  run  using assimilated  meteorology from its  own Modern-Era  Retrospective  Analysis  for  Research  and
Applications (MERRA, Rienecker et al. 2011).  Aerosols were run inline and radiatively coupled in GEOS-5 using a version

of  the  Goddard  Chemistry,  Aerosol,  Radiation,  and  Transport  (GOCART)  module  (based  on  Chin  et  al.  2002).   The
GOCART module includes representations of dust, sea salt, black and organic carbon, and sulfate aerosols.  Sulfate and

carbonaceous species are carried as bulk mass tracers with additional partitioning between hydrophobic and hydrophilic
modes for the carbonaceous aerosols.  Sulfate and carbonaceous aerosols are all assumed to be in the fine mode.  Sea salt and

dust are each represented by a series of five size bins spanning 0.1 – 10 microns radius for dust and 0.03 – 10 microns dry
radius for sea salt, allowing for simulation of both the fine and coarse fractions of each.  A more complete description of how

GOCART is implemented in the GEOS models is provided in Colarco et al. (2010), which also includes a detailed evaluation
of the module with respect to MODIS, MISR, and AERONET aerosol optical depth (AOD) observations.  Additionally,

Colarco et al. (2010) evaluated the Angstrom parameter (i.e., spectral dependence of AOD, which is related to particle size)
with respect to AERONET observations, finding a high degree of correlation with the observations but a low bias in the

model (i.e., the model tended toward a small overestimate of the coarse mode contribution to the AOD).  Optical properties
of the aerosols are primarily based on Mie calculations using the particle properties as in Colarco et al. (2010) and Chin et al.

(2002) with spectral refractive indices primarily from the Optical Properties of Aerosols and Clouds (OPAC, Hess et al.
1998) database.   The exception to this is for dust,  updated since Colarco et al.  (2010),  for which non-spherical  optical

properties are derived from an offline database (Meng et al. 2010) following the methodology in Colarco et al. (2014b).

The specific version of GEOS-5 used in this study additionally includes assimilation of MODIS-derived AOT over ocean

and dark land surfaces.  This is the so-called MERRAero aerosol reanalysis (Kessner et al. 2013; Buchard et al. 2014, 2015,
2016;  Colarco  et  al.  2014a).   Emissions for  anthropogenic species  are primarily from the AeroCom Phase 2 emission
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inventories (http://aerocom.met.no/emissions.html), except for biomass burning emissions—based on observed MODIS fire

radiative power (QFED, Darmenov and da Silva, 2015)—and dust and sea salt, which are wind-speed dependent following
Colarco et al. (2010).  Driven by the MERRA meteorology, MERRAero was run for the period 2002 – 2015 at a global 0.5

deg x 0.625deg latitude-by-longitude horizontal resolution with 72 vertical levels extending from the surface to about 85 km.
The aerosol data assimilation step, described in Buchard et al. (2015),  provides a direct observational constraint on the

simulated 550 nm AOD, but  absorption, spectral  AOD, and aerosol  vertical  distribution and compositional  distribution
remain largely driven by the background GEOS-5 simulation.  Buchard et al. (2015) extensively validated the absorbing

AOD with  independent  AERONET and  OMI observations,  finding  generally  good  agreement  between  the  model  and
observations, particularly for dust cases provided the dust was assumed weakly absorbing in the shortwave (subsequently

adopted in a reprocessing of the MERRAero fields used here), but an underestimate in the absorption for biomass burning
aerosols owing to the spectrally flat refractive indices for organic carbon in the OPAC database (not corrected for in the

simulations shown here).  Buchard et al. (2016) evaluated the MERRAero simulation of surface particulate matter (PM) over
the  United  States  with  respect  to  the  IMPROVE  (Interagency  Monitoring  of  Protected  Visual  Environments,

http://vista.cira.colostate.edu/Improve/)  and  EPA observation networks,  showing the  positive  impact  of  the aerosol  data
assimilation on the PM simulation, as  well  as  generally good agreement  with the observations especially for  the rural

IMPROVE network stations but a deficiency in the model owing to its present lack of nitrate aerosols.  Buchard et al. (2015)
also  provided  evaluation  of  the  simulated  vertical  profile  of  the  MERRAero  aerosols  against  CALIPSO observations.

Nowottnick et al. (2015) carried out a more detailed evaluation of the aerosol vertical profile by directly simulating the
CALIPSO vertical feature mask products from the MERRAero fields; their study showed a good consistency between the

simulated aerosol backscatter profiles and the CALIPSO observations, although a higher frequency of occurrence of dust
layers is found in MERRAero than the CALIPSO observations would suggest.

Density and aerosol optical profiles from GEOS-5 were extracted along the CALIPSO track at a 70 km horizontal resolution

and extending up to an altitude of approximately 80 km.  These profiles were then used as input to the lidar simulator. The
vertical resolution of the GEOS-5 profiles ranged from 0.12 km at the lowest levels of the atmosphere to approximately 4 km

at the top of the profile. Scene brightness information was provided by the VLIDORT (Vector LInearized Discrete Ordinate
Radiative Transfer) radiative transfer model (Spurr et al., 2006, Buchard et al., 2015). Using simulated atmospheric profiles

along the CALIPSO track permits the optical measurements of the ACE candidate lidar to be compared with those of the
CALIPSO lidar. Also, we were able to perform microphysical inversions using both the GEOS-5 optical data as well as the

lidar simulations of the GEOS-5 optical data and compare with the aerosol microphysics inherent in the GEOS-5 model.
GEOS-5 generates cloud fields but, as mentioned, they were ignored for the studies done here to simplify the assessment of

basic lidar measurement capability.

A comparison of simulated ACE lidar backscatter and extinction measurements at 532 nm using the parameters listed in

Table 1 (with orbital altitude of 450 km) and the GEOS-5 optical inputs is shown in Fig. 1. We chose to display the mid-
visible wavelength results only to simplify the graph. The atmospheric conditions simulated by GEOS-5, and used as input to

the numerical model, are those from 0102 UT on July 24, 2009 at a point over central Africa. This constitutes a nighttime
simulation with the backscatter comparisons on the left and the extinction comparisons on the right. For both backscatter and

extinction,  the  optical  input  data  from  GEOS-5  are  shown  (“GEOS532”)  along  with  two  simulations  of  the  lidar
measurements; the first without random uncertainty (“NoNoise”) and the second with random uncertainties consistent with

the  lidar  system hardware  and  the  atmospheric  conditions  (“Sim532”).  For  both  backscatter  and  extinction,  the  lidar
simulations without  random uncertainty generally agree  within 1-3% of  the GEOS-5 inputs  except  for  portions of  the
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profiles showing significant gradients where the 150 m and 450 m vertical  resolution of the backscatter and extinction

profiles,  respectively,  can  lead  to  larger  differences.  This  indicates  that  the  lidar  numerical  simulations  can  faithfully
reproduce the input optical data. The lidar simulations that include random uncertainty indicate that for this atmospheric

profile, the simulated lidar system would measure aerosol backscatter and extinction in the boundary layer with generally
less than 3% and 20% random uncertainty, respectively. Such results were found to be typical for a nighttime simulation.

With the lidar simulation model validated by comparison with GLAS data and shown to reliably reproduce the GEOS-5
optical inputs as shown in Fig. 1, a comparison was then made of the lidar-simulated measurements at 532 nm and the actual

532 nm CALIPSO lidar data from July 24, 2009 under both day and night conditions. Examples of such comparisons are
given in Fig.  2,  where daytime profiles are shown on the left  and nighttime on the right.  Because of the difficulty to

determine  photon flux  from the  CALIPSO data,  the  simulated  lidar  profiles  were  normalized  in  the  region  above the
boundary layer. Considering the portions of the profiles above the boundary layer, we estimate that a spaceborne lidar system

with the specifications shown in Table 1 would possess a factor of approximately 3-5 higher signal to noise backscatter
measurements under nighttime conditions than the CALIPSO lidar and more than an order of magnitude higher signal to

noise in the daytime. The mismatch in the height of the planetary boundary layer between the lidar simulations and the actual
CALIPSO lidar measurements shown is not surprising given that boundary layer height is a difficult quantity to forecast in

atmospheric models in general. It is particularly true for a global simulation as was used for these studies.

5 Inversion Schemes and Input Data Used

One of our goals was to study the inversion of simulated spaceborne multiwavelength lidar data to microphysical quantities
such as effective radius, concentration (volume, surface) and index of refraction. We considered two different inversion

techniques, that of regularization (Twomey, 1977, Müller et al., 1999 a,b, Veselovskii et al., 2002) and linear estimation
(Twomey, 1977, Donovan and Carswell, 1997, Veselovski et al., 2012, De Graaf et al., 2013). The regularization technique

uses a linear combination of triangular basis functions in the inversion and, when used with 3ß+2α optical input data, results
in estimates of both the volumetric quantities, such as effective radius and concentration, and the particle size distribution

(PSD). The inversion based on the linear estimation (LE) approach expands the solution directly in terms of the Mie kernels
in order to retrieve volumetric quantities but does not provide a reasonable estimate of PSD. Previous research (Veselovskii

et al, 2012) indicates that reasonable estimates of volumetric quantities are achievable using the LE technique and 3ß+1α
optical input data. Also, the LE technique is computationally much more efficient than the regularization technique, although

computations using the regularization technique can be made more efficient through the use of pre-computed tables of Mie
scattering values. 

In the study here, we performed inversions based both on 3ß+2α input optical data as well as reduced, 3ß+1α optical data
using both the regularization and LE techniques. For the 3ß+1α studies, we removed the 355 nm extinction measurement

leaving just the 532 nm extinction measurement since the 355 nm measurements are more technologically challenging and
thus considered to be higher risk. Whether using regularization or LE with either 5 or 4 optical data as input, it must be

remembered that the inversion problem is significantly under-determined implying that both the method of solution and the
constraints used in the inversion influence the results obtained. Ancillary data that can help to decrease the ranges of allowed

radii and refractive index in the search for a solution can improve the solution obtained. Because of the multi-valued solution
space, in either the regularization or LE approaches, a family of solutions is obtained. The final solution is determined from

this family by averaging ~1% of the solutions nearest to the minimum of discrepancy, where discrepancy refers to the
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difference  between  the  input  optical  data  and  the  optical  data  consistent  with  the  inverted  microphysical  parameters

(Veselovskii et al., 2002).

6 Results

Here we consider what fraction of the simulated lidar measurements would be of sufficient quality to support an inversion to

aerosol microphysics. We consider how the inversions of aerosol microphysics, both for the original GEOS-5 optical data
and for the simulated lidar measurements, compare with the aerosol microphysics inherent in the GEOS-5 model. 

6.1 Yield

According to the draft ACE report from 2010 (http://acemission.gsfc.nasa.gov/documents/Draft_ACE_Report2010%20.pdf),

the ACE lidar data, in some cases aided by or in combination with daytime polarimeter data, will be used to retrieve vertical
profiles of aerosol extinction and backscatter, effective radius and width of size distribution, refractive index, single scatter

albedo and number concentration. Under nighttime conditions, only the lidar will be available to retrieve these parameters so
it is important to study the ability of the lidar to perform microphysical retrievals without ancillary measurements. 

The  draft  ACE report  states  that  3  backscatter  and  2  extinction  coefficients  are  needed  with  15% accuracy  from the
multiwavelength lidar to support inversions of the lidar data to aerosol microphysical parameters. A minimum extinction

threshold  of  0.02  km-1 at  532  nm  was  also  established  to  support  inversions.  The  15%  threshold  is  consistent  with
publications that have studied the influence of various amounts of random uncertainty on the inversions (Veselovskii et al.,

2012, Perez-Ramirez et al, 2013). 

We would  now like  to  calculate  the  “yield”  of  a  multiwavelength  lidar  with the  specifications shown in  Table  1  and

considering the minimum extinction threshold of 0.02 km-1 and maximum of 15% random uncertainty. To do so, we consider
the 24-hr  dataset  from GEOS-5 and  “bins” of  the  atmosphere  measuring 450 m in the  vertical  dimension and  80 km

horizontally. For these calculations and for later inversions, the backscatter data were summed to 450m vertical resolution to
match the extinction data. If a bin has average extinction at 532 nm greater than 0.02 km -1 and the lidar simulations indicate

that all 5 optical data (3ß+2α) possess less than 15% random uncertainty for the bin, then measurements of that bin would
support a 3ß+2α-based microphysical inversion. We also consider the same question but for the 3ß+1α dataset,  where we

exclude the 355 extinction measurement. We perform this yield analysis for the two orbital altitudes of 450 km and 820 km.
The lower altitude is preferred from the standpoint of maximizing the signal-to-noise of a spaceborne lidar system, while the

higher altitude would permit the spaceborne lidar to fly in formation with the A-train constellation, which includes Terra,
Aqua and  other  satellites,  thus increasing possibilities  of  data fusion from different  spaceborne sensors.  In  these  yield

studies,  it  must  be remembered that  cloud-free simulations from GEOS-5 have been considered.  We estimate later  the
influence of a cloudy atmosphere on these results. 

Tables 2 and 3 provide the results of the yield studies for 3ß+2α and 3ß+1α retrievals  where we have considered only
retrievals over land and where various thicknesses of the lower atmosphere are studied. Land-based retrievals were used here

to focus on the larger aerosol events that occur over land and are most likely to be the ones of interest in spaceborne lidar
studies. Considering the lowest 3, 4, 5 km of the 8640 profiles in the GEOS-5 simulation indicates that 36%, 31% and 27%,

respectively,  of the bins over land have extinction at 532 nm of 0.02 km -1 or greater. These are the bins considered to
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“qualify” for a microphysical  inversion if the suite of multiwavelength lidar measurements of that  bin are of sufficient

quality. From an orbital altitude of 450 km, and considering the 3ß+2α (3ß+1α)  measurement suite, approximately 15%
(35%) of those qualifying bins would be measured with uncertainties of 15% or better. The large increase in the number of

bins measured with 15% uncertainty when considering only 3ß+1α is due to the fact that the measurement deleted is the 355
nm extinction, which is the one that possesses the highest  noise in the simulations.  The 355 nm measurements are the

noisiest due to the lower laser output power at 355 and the considerably higher atmospheric attenuation that exists at this
wavelength  versus  532  nm.  From  an  orbital  altitude  of  820  km,  and  considering  3ß+2α  (3ß+1α)  measurements,

approximately 3% (15%) of the qualifying bins are measured with 15% uncertainty or better. One should realize that while
the 3ß+1α based inversions provide a higher yield, the information content of those inversions will be less than those based

on 3ß+2α. 

6.2 Inversion Comparison

GEOS-5 contains information that either directly or indirectly can be converted to aerosol microphysical parameters. The
aerosol module is based on the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) model (Chin et al. 2002;

Colarco et al. 2010).  The GOCART module carries aerosol mass in a series of tracers: 5 tracers representing size of dust, 5
tracers representing size of sea salt, 2 tracers each of black and organic carbon (one for hydrophobic and one for hydrophilic

modes) and 1 tracer for sulfate. The conversion of the resolved species masses to optical quantities is done through pre-
computed lookup tables, where for each tracer a dry particle size distribution is assumed, along with a hygroscopic growth

factor, which is a function of relative humidity (hygroscopic growth is relevant for sulfate, sea salt, and hydrophilic carbon,
and is not considered for dust and hydrophobic carbon). For dust and sea salt, the particle size distribution is explicitly

resolved.  Spectral refractive indices are input for generating the lookup tables, primarily from the OPAC (Optical Properties
of  Aerosols and Clouds)  database (Hess et  al.  1998),  and the lookup tables  are calculated assuming Mie theory.   The

exception is for dust, where a spectrally varying but weakly absorbing dust refractive index is assumed and particle non-
sphericity is considered for determining optical properties using the database from Meng et al. (2010) (see also Colarco et al.

2014b; Buchard et al. 2015).  Further details are provided in Colarco et al. (2010).  The lookup tables therefore establish the
linkage between the bulk mass simulated, the assumed particle microphysical properties, and the optical quantities input to

the lidar retrievals.

In  the  studies  done  here,  we  consider  the  GEOS-5  aerosol  microphysics  as  the  baseline  for  comparing  the  different

inversions  of  optical  data.  For  these  inversions,  we  consider  both  regularization  and  linear  estimation  techniques  and
different sets of input optical data: 1) the optical data contained in GEOS-5 and 2) the simulated lidar optical data. For both

of these optical  data sources we consider 3ß+2α and 3ß+1α. We perform the inversions and then make comparisons of
effective  radius,  volume,  surface  area  and  index  of  refraction.  For  the  inversions  done  here,  we  limited  the  range  of

imaginary refractive index to mI <=   0.01, or low absorbing particles, due to the increase in uncertainty for retrievals of
more highly absorbing particles shown in earlier studies (Veselovskii et al., 2005). All qualifying cases were separated into

fine, mixed and coarse aerosol modes using the fine mode fraction as determined using the spectral deconvolution technique
(O'Neil  et  al.,  2003) applied to  the GEOS-5 optical  data.  Based on this  size classification, the radius  constraints  were

determined as shown below in a similar manner as done in Pérez-Ramírez et al., (2015). For all cases, the real part of the
index of refraction was allowed to vary between 1.35 – 1.65 in steps of 0.0025 and the imaginary index varied between

0.001 and 0.01 with steps of 0.001. 
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Fine Mode Dominant: η > 0.75,Rmin = 0.075 and Rmax = 2 um 

Mixture of Modes: 0.25 < η < 0.75, Rmin = 0.075 and Rmax = 10 um 
Coarse Mode Dominant: η<0.25, Rmin = 0.3 and Rmax = 10 um 

Using the above inversion schemes and input datasets, examples of aerosol volume comparisons are given in Fig. 3, where
both fine mode cases (2098 qualifying cases with random uncertainty less than 15% in all optical channels as done in Table

2) and coarse mode cases (#=1439) are shown. In this figure, the volume directly from GEOS-5 is shown along with the
inverted volume using various combinations of data and inversion scheme as follows:

1. Using simulated Lidar optical data with GEOS-5 optical data as input to the simulator

1. Regularization with 3ß+2α 

2. Regularization with 3ß+1α

3. Linear Estimation with 3ß+2α

4. Linear Estimation with 3ß+1α

2. Using GEOS-5 optical data directly

1. Regularization with 3ß+2α 

2. Regularization with 3ß+1α

3. Linear Estimation with 3ß+2α

4. Linear Estimation with 3ß+1α

To be clear, the GEOS-5 optical data are the ones that are used as inputs to the lidar simulator model and are therefore

inherently noise-free.  An example of the GEOS-5 profile data used in these simulations and inversions is  given as the
“GEOS532” profile in Fig. 1. In Figs. 3 and 4, only qualifying cases have been included. 

Figure 3 shows the comparisons of histograms of aerosol volume retrievals using all the combinations of data and inversion
techniques shown above for the cases (left) where the fine mode fraction is greater than 0.75; indicative of fine mode cases

and (right) where the fine mode fraction is > 0.25 indicative of coarse mode cases. Aerosol volume has proven to be one of
the more robustly retrievable microphysical quantities using the multiwavelength lidar technique due to a generally good

correlation between the measured extinction and particle volume. In these comparisons, we take the GEOS-5 microphysical
data as the reference and compare the histograms of the inverted microphysical data to that of GEOS-5.  In general, for the

fine mode cases shown in Fig. 3, the different volume retrievals agree well with each other and with GEOS-5 although there
is a tendency for the inversions to show a larger number of small volume cases (c.f. the peak around 15-20 μm3 cm-3) and a

smaller number of larger volume cases (c.f in the vicinity of 100 μm3 cm-3) than the GEOS-5 reference. On the right of Fig. 3
is shown the comparison of coarse mode cases where it  is  apparent that  the histograms of all inversion schemes show

considerable disagreement with the GEOS-5 reference. 

We investigate these disagreements further by considering the histograms of effective radius shown in Fig. 4. The fine mode

cases are shown on the left and the coarse mode cases on the right. We consider first the fine mode cases shown on the left.
Close inspection of these cases indicates that the 3ß+2α based retrievals are better able to retrieve particle sizes down to 0.1

μm but  that  all  retrieval  schemes  under-represent  these  small  particles,  consistent  with  the  small  particle  insensitivity
revealed  in  earlier  information  content  studies  (Veselovskii  et  al.,  2005).  The  situation  is  considerably  worse  when
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considering 3ß+1α based retrievals  with all  fine mode case retrievals performing poorly in representing small  particles

although the regularization technique does show more skill in this respect. The loss of the 355 nm extinction measurement
clearly compromises the ability to retrieve the smallest particles sizes. On the right of Fig. 4 is shown the comparison of

coarse mode cases where it is clear that no retrieval scheme is able to capture the sizes associated with the sea salt aerosols
that are present in GEOS-5. Figure 4 can be used to better understand the degradation of agreement between the retrieved

volumes and the GEOS-5 histograms shown in Fig. 3 as particle size increases. 

The preceding discussion concerning volume and effective radius retrievals has been qualitative in nature. To better quantify

the performance of the various retrieval schemes with respect to the GEOS-5 reference we will quantify the comparison of
the  different  retrieval  schemes  in  the  following ways.  For  all  parameters  except  refractive  index,  a  root-mean-square

deviation metric is calculated as a percentage as 

(1)

where XGEOS is the reference microphysical quantity from GEOS-5 and XRet is the inverted microphysical value using one of

the inversion schemes under consideration.  For the refractive index comparisons,  we calculate the fractional  deviation
metric as

(2)

Equations (1) and (2) were evaluated for each individual retrieval and the composite values presented in Tables 4 and 5.
Deviations are color-coded in green, yellow and red based on the magnitude of the deviation metric and consideration of the

desired uncertainty in the retrieved quantities discussed in the ACE draft report of 2010. The color coding scheme is given in
Table 6, where green indicates values fully consistent with the desired uncertainties expressed in the draft report, yellow

indicates marginal consistency, while red indicates uncertainties inconsistent with desired uncertainties. 

Table 4 considers the deviation between inversions based on GEOS-5 optical data and the microphysics inherent in GEOS-5.

To be clear, the profiles used in these inversions are not generated by the lidar simulator but rather are the ones that come
from GEOS-5 and are used as input to the lidar simulator. The results shown in Table 5, by contrast, are based on inversions

of simulated lidar data with varying amounts of random uncertainty. The results shown in Table 4 can be considered as a type
of information content study since there are no random errors in the input optical data; the data are derived from GEOS-5

microphysics using Mie scattering codes. Table 5 considers inversion results based on the simulated lidar profiles that use as
their  input  the  GEOS-5  optical  profiles  that  were  used  to  generate  Table  4.  Table  5  therefore  quantifies  the  retrieval

capability of the candidate spaceborne lidar using the different inversion approaches considered while the comparison of
Tables 4 and 5 can be used to study the influence of random errors on the various retrieval techniques. 

For the fine mode cases shown in Table 4, the regularization retrieval using 3ß+2α input optical data agrees well with the
GEOS-5 microphysics for all quantities, except for the retrieved imaginary index which is slightly outside of the desired

bounds. The other retrieval schemes show progressively poorer agreement with the GEOS-5 microphysics as you consider
regularization (3ß+1α), LE (3ß+2α), LE (3ß+1α). For a mixture of particles, regularization with either 3ß+2α or 3ß+1α input

data perform similarly and generally as well as each other except that the real part of the refractive index shows considerable
deviation from the reference. The imaginary index is closer to the desired values, though, than for the fine mode cases.
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Again, as in the fine mode comparisons, the linear estimation retrievals do not perform as well for these mixed mode cases

as those based on regularization. Considering the coarse mode cases, only surface area, which is highly correlated with the
optical extinction values, can be retrieved by any of the retrieval schemes with good accuracy. In general, Table 4 indicates

that  the  regularization  technique  shows  more  skill  in  inverting  these  noise-free  data  into  the  desired  microphysical
information and performs well for fine and mixed mode cases. 

Table 5 provides the comparison of the reference GEOS-5 microphysics with the inversions based on simulated lidar data for
the system specifications shown in Table 1 and a 450 km orbital altitude. Figure 1 contains examples of the input data used

for these inversion studies. A quick look at Table 5 indicates that these inversions based on simulated lidar data show larger
deviations from the GEOS-5 microphysics than the results shown in Table 4 based on noise-free data. For fine mode cases,

effective radius retrievals show considerable deviation from the GEOS-5 reference although volume is retrieved well when
using the regularization technique. It should be noted that these retrievals of volume are essentially insensitive to random

uncertainties of up to 50%. For the case of mixed mode retrievals using simulated lidar data, the most conspicuous result is
that the regularization technique coupled with 3ß+1α optical data shows considerable skill at retrieving all quantities except

the real part of the refractive index. These comparisons degrade only slightly for increasing random uncertainty up to 50%.
For coarse mode cases, retrievals of surface area are very robust for all inversion techniques and for random uncertainties up

to 50% although the LE based retrievals consistently show slightly smaller deviations than those of regularization. 

7 Discussion and Conclusions

Our work indicates that the spaceborne lidar simulated here would possess substantially improved backscatter measurements
over  previous  spaceborne  lidars  such  as  GLAS and  CALIPSO.  Although  not  tested  here,  these  higher  signal-to-noise

measurements should improve the ability to retrieve boundary layer heights and to detect thin cirrus. The addition of pure
molecular measurements through the HSRL technique will  permit  direct  measurements of aerosol optical  thickness and

extinction.  The  combination  of  backscatter  and  extinction  measurements  permits  retrievals  of  aerosol  microphysical
quantities as shown here. 

The availability of atmospheric profiles along a 24-hr satellite track from GEOS-5 has permitted us to assess the yield of a
spaceborne lidar under realistic conditions globally and with large statistics. In this effort, we defined yield based on a

maximum uncertainty of 15% for aerosol extinction values in excess of 0.02 km -1,  although some results in this paper
indicate that inversions can tolerate considerably higher amounts of random uncertainty for certain quantities such as 1)

surface area for mixed and coarse mode aerosols and 2) volume for fine mode aerosols. The yield from a 450 km orbit, not
accounting  for  clouds,  is  approximately  4-5%  when  considering  the  use  of  3ß+2α  input  data.  Yields  increase  by

approximately a factor of 2.5 when considering inversions based on 3ß+1α input data. Inversions based on 3ß+1α input data
support only estimates of volumetric quantities, however.  There are instances, such as for mixed mode aerosols,  where

retrievals based on 3ß+1α show higher skill  than those based on 3ß+2α and the retrievals are highly resistant  to input
uncertainty. Yields in such cases will be considerably higher than shown in Tables 2 and 3. For reasonable estimates of the

particle size distribution from lidar, however, the full 3ß+2α input dataset is needed along with the regularization technique.
The increased resistance to uncertainty when inverting  the 3ß+1α dataset can be understood from Perez-Ramirez et al.,

(2013) where it was shown that biases in the input extinction data cause larger deviations in the retrieved parameters than the
same uncertainty in input backscatter data would produce. Therefore, elimination of the 355 nm from the input dataset

results in a more stable inversion that can tolerate higher amounts of input noise. 
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It is no surprise that the yields from an orbital altitude of 820 km are lower than from 450 km. From 820 km, using the full

3ß+2α dataset, yields are approximately 1%. The use of the 3ß+1α dataset results in a yield increase of a factor of 5 from 820
km. Again, the high resistance of certain retrievals to uncertainty in the input data imply that real yields for certain quantities

would be higher than those shown in Tables 2 and 3. To simplify data analysis, this study ignored the cloud fields present in
GEOS-5. Estimates of cloud abundance based on the CALIPSO data from July 24, 2009 indicate that yields for aerosol

inversions below 5 km, as provided in Tables 2 and 3, would be reduced by a factor of approximately 5-10 if clouds had been
included in the analysis. 

Here we have constrained the retrievals based on the fine mode fraction as determined using the spectral deconvolution
technique. In under-determined problems such as this, the selection of appropriate constraints is an important part of the

solution technique and we did not make use of the depolarization measurements, which are expected to be available on an
ACE lidar system, in determining the constraints. Use of such depolarization data to aid aerosol typing (Burton et al., 2014)

could further narrow the constraints used and potentially improve the inversion results. Consideration of the backscattering
Ångström exponent can also add information that can be used for constraint  (Veselovskii et  al.,  2015).   It  is expected,

however, that with 3ß+2α optical data there will be some lack of sensitivity to both the smallest and largest particles in
naturally occurring aerosol size distributions (Veselovskii et al., 2005) and the results presented here reflect that lack of

sensitivity.  We also have  only considered  low absorbing solutions (m I < 0.01) since previous work has  also indicated
increased inversion uncertainties for more highly absorbing particles (Veselovskii et al., 2005).  We avoided those difficulties

by not considering solutions with mI > 0.01.

The use of a 24-hour atmospheric simulation from GEOS-5 along with the reference aerosol microphysics values from

GEOS-5 provided a large set of statistics for comparison of techniques. Those statistics are summarized in Tables 4 and 5.
The conclusions that can be drawn from the results shown in these tables are as follows: 

1. Effective radius was well retrieved for fine mode distributions if the optical data were noise-free but the addition of

random uncertainty up to 15% to the input optical data degraded the retrieval of effective radius significantly. A lack
of sensitivity to particles with sizes less than 0.1 μm was demonstrated. 

2. Overall, surface area was the most easily retrieved quantity with good retrievals occurring, depending on inversion

technique, for random uncertainties up to 50%.

3. For coarse mode aerosols, only surface area retrievals were reliable. A lack of sensitivity to particle sizes of ~2.0 μm

and greater was demonstrated.

4. Retrievals showed resistance to random errors up to 50% for the following cases:

1. fine mode volume retrievals

2. mixed mode V, S, mI retrievals

3. coarse mode surface concentration

5. The regularization technique, in general, performed better than the linear estimation technique with LE performing

slightly better than regularization only for the coarse mode surface area retrievals

The degraded performance of the lidar-based inversions for mixed mode and coarse mode cases is related to the decreased

information content for large particles as previously stated. Also, these larger particles include cases of irregularly shaped
dust which cannot be accurately described by the Mie kernels used in these inversions. Spheroidal models have been used for
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inversion of lidar data in the case of dust aerosols (Veselovskii et al., 2010) although there remains uncertainty in how well

the spheroidal model captures the scattering properties of various irregular aerosol types. 

The work presented here has been done in the context of the ACE decadal survey mission. We have studied the aerosol

microphysical retrieval capability of a candidate lidar without input from other data sources. Such information is useful to
understand the inherent capabilities of a spaceborne lidar given that during the nighttime, lidar retrievals may be the only

source of certain aerosol microphysical information. The work done here is hardly an exhaustive study of the ability to invert
aerosol microphysics from spaceborne lidar data, however. Rather it should be considered an initial study that can help to

point toward needed refinements. For example, as mentioned above, the retrieval of effective radius for fine mode cases
degraded significantly between the GEOS-5 based inversions and the lidar based ones that used data with 0-15% random

uncertainty.  By additional  studies, we found that either constraining the maximum radius to no larger than 1 micron or
further limiting the maximum random uncertainty brought the inversion results into much better agreement with the GEOS-5

reference.  In  this way,  the tables  point  toward other  inversion sensitivity studies  that  would be useful  for  determining
optimized constraints. In this process, the question arises for how to tighten the constraints used in the inversions in actual

practice.  In  order  to do so,  other  methods of  constraint  based on aerosol typing or  the use of  depolarization data and
spheroidal kernels can be studied. Such studies will add useful information and help to determine an optimized approach for

inverting multiwavelength lidar data in the absence of ancillary data as will be needed during the nighttime for a space
mission. During the daytime, however, there should be other sources of data such as the anticipated polarimeter instrument,

from which column-averaged aerosol microphysical information can be determined (Mischenko et al., 1997, Dubovik et al.,
2011). While additional work remains in refining the approach for optimal retrieval of aerosols from lidar alone as done here,

initial promising steps (Liu et al., 2015) are being taken to develop joint inversions that couple lidar and polarimeter data.
Much future work should be focused in this new area as well. 
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