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Abstract. The objective of this paper is to describe the development and evaluate the performance 1 
of a totally new version of the Passive microwave Neural network Precipitation Retrieval (PNPR 2 
v2), an algorithm based on a neural network approach, designed to retrieve the instantaneous 3 
surface precipitation rate using the cross-track ATMS radiometer measurements.  This algorithm, 4 
developed within the EUMETSAT H-SAF program, represents an evolution of the previous version 5 
(PNPR v1), developed for AMSU/MHS radiometers (and used and distributed operationally within 6 
H-SAF), with improvements aimed at exploiting the new precipitation sensing capabilities of 7 
ATMS with respect to AMSU/MHS. In the design of the neural network the new ATMS channels 8 
compared to AMSU/MHS, and their combinations, including the brightness temperature differences 9 
in the water vapor absorption band, around 183 GHz, are considered . The algorithm is based on a 10 
single neural network, for all types of surface background, trained using a large database based on 11 
94 cloud-resolving model simulations over the European and the African areas.  12 
The performance of PNPR v2 has been evaluated through an intercomparison of the instantaneous 13 
precipitation estimates with co-located estimates from the TRMM Precipitation Radar (TRMM-PR) 14 
and from the GPM Core Observatory Ku-band Precipitation Radar (GPM-KuPR). In the 15 
comparison with TRMM-PR, over the African area, the statistical analysis was carried out for a 16 
two-year (2013-2014) dataset of coincident observations, over a regular grid at 0.5° × 0.5° 17 
resolution. The results  have shown a good agreement between PNPR v2 and TRMM-PR for the 18 
different surface types. The correlation coefficient (CC) was equal to 0.69 over ocean and 0.71 over 19 
vegetated land (lower values were obtained over arid land and coast), and the root mean squared 20 
error (RMSE) was equal to 1.30 mm h-1 over ocean and 1.11 mm h-1 over vegetated land. The 21 
results showed a slight tendency to underestimate moderate to high precipitation, mostly over land, 22 
and overestimate moderate to light precipitation over ocean.  Similar results were obtained for the 23 
comparison with GPM-KuPR over the European area (15 months, from March 2014 to May 2015 24 
of coincident overpasses) with slightly lower CC (0.59 over vegetated land and 0.57 over ocean) 25 
and RMSE (0.82 mm h-1 over vegetated land and 0.71 mm h-1 over ocean), confirming a good 26 
agreement also between PNPR v2 and GPM-KuPR.  The performance of PNPR v2 over the African 27 
area was also compared to that of PNPR v1. PNPR v2 has higher R over the different surfaces, with 28 
general better estimate of low precipitation, mostly over ocean, thanks to improvements in the 29 
design of the neural network and also to the improved capabilities of ATMS compared to 30 
AMSU/MHS. Both versions of PNPR algorithm have shown a general consistency with the 31 
TRMM-PR.  32 
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1. Introduction  1 
The availability of data from the Advanced Technology Microwave Sounder (ATMS), a cross-track 2 
scanning radiometer currently onboard the Suomi National Polar-orbiting Partnership (Suomi NPP) 3 
satellite (and on the Joint Polar Satellite System (JPSS) series starting in 2017), represents an 4 
important step in short and long-term weather forecasting and environmental monitoring.  5 
Combining the capabilities of its predecessor sounders such as the Advanced Microwave Sounding 6 
Unit-A (AMSU-A) and the Microwave Humidity Sounder (MHS) aboard NOAA-18 and NOAA-19 7 
and the ESA MetOp-A and MetOp-B satellites, ATMS provides sounding observations with 8 
improved resolution, sampling and coverage for retrieving atmospheric vertical temperature and 9 
humidity profiles. Moreover, this new-generation instrument provides more information about 10 
surface, vertical distribution of  hydrometeors, precipitation, and other key environmental variables 11 
(Chen et al., 2007; Boukabara et al., 2013; Zou et al., 2013; Kongoli et al., 2015). 12 
With regard to precipitation it should be mentioned that, although the reliable knowledge of its 13 
intensity and accumulation is essential for understanding the global hydrological and energy cycles, 14 
precipitation estimate (from satellite and from the surface) is complicated by several factors: the 15 
large variability of the precipitation in time and space, the conversion of satellite measurements into 16 
quantitative precipitation estimates, uncertainties associated to rain gauges (and to their spatial 17 
distribution), and radar measurements (i.e., attenuation, beam-blocking) and their unavailability in 18 
several regions in the world and over ocean (Mugnai et al., 1993; Iturbide-Sanchez et al., 2011; 19 
Bennartz and Petty, 2001; Tian et al., 2009;  Kirstetter et al., 2012). 20 
An important step forward towards the improvement of global precipitation monitoring is 21 
represented by the Global Precipitation Measurement (GPM) mission launched on 27 February 22 
2014.  GPM is expected to provide accurate precipitation estimates thanks to the availability of the 23 
NASA/JAXA GPM Core Observatory (GPM-CO) [equipped with the GPM Microwave Imager 24 
(GMI) and the Dual-frequency Precipitation Radar (DPR)], a common, global observatory of 3-D 25 
precipitation structure at 5 km resolution, and thanks to the exploitation of a constellation of 26 
international Low Earth Orbit (LEO) satellites equipped with microwave radiometers for 27 
precipitation observation, providing frequent measurements over most of the globe (3-hourly 28 
coverage between 65° S and 65° N) (Hou et al., 2014; Draper et al. 2014; Newell et al., 2014; 29 
Petkovic and Kummerow, 2015). A contribution of ATMS as part of the GPM constellation is 30 
foreseen in this direction, also in relation to the technological improvements over its predecessor 31 
sounders. 32 
In Europe, the EUMETSAT “Satellite Application Facility on Support to Operational Hydrology 33 
and Water Management” (H-SAF, Mugnai et al., 2013a), has been called upon to participate in and 34 
to contribute towards the GPM by providing its own precipitation products, and being at the same 35 
time a user of GPM data and a direct collaborator of GPM on two main aspects: development and 36 
refinement of retrieval techniques through the exploitation of all available radiometers in the GPM 37 
constellation, and validation activity.   In this context, operational passive microwave (PMW) 38 
precipitation products for the different radiometers are being released within H-SAF as new 39 
radiometers become available, and they are based on two approaches (Mugnai et al., 2013b): the 40 
physicaly-based Bayesian Could Dynamics and Radiation Databse (CDRD) algorithm (Casella et 41 
al., 2013, Sanò et al., 2013,) for conically scanning radiometers and the Passive microwave Neural 42 
network Precipitation Retrieval algorithm (PNPR) for cross-track scanning radiometers, originally 43 
developed for AMSU/MHS and fully described in Sanò et al. (2015) (PNPR-AMSU/MHS, 44 
hereafter PNPR v1).   45 
The objective of this paper is to describe the development and evaluate the performance of a newly 46 
developed version of PNPR designed to retrieve the instantaneous surface precipitation using the 47 
ATMS radiometer data.  This algorithm (PNPR-ATMS, hereafter PNPR v2) represents an evolution 48 
of PNPR v1 (used operationally within the EUMETSAT H-SAF) with improvements aimed at 49 
exploiting the new precipitation sensing capabilities of ATMS with respect to AMSU/MHS.  50 
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Neural Networks (NNs) represent a highly flexible tool alternative to regression and classification 1 
techniques, widely applied in an increasing fields of the meteorological research for their capability 2 
to approximate complex nonlinear and imperfectly known functions (e.g. Liou et al., 1999; Del 3 
Frate and Schiavon, 1999; Shi, 2001; Marzban, 2003; Blackwell and Chen, 2005; Chen et al., 2006; 4 
Krasnopolsky et al., 2008; Shank et al., 2008; Haupt et al., 2009; Aires et al., 2012).   5 
NNs have been used in precipitation retrieval - precipitation being one of the most difficult of all 6 
atmospheric variables to retrieve - considering the opportunities offered by their ability to learn and 7 
generalize (Hsu et al., 1997; Hall et al., 1999; Staelin et al., 1999; Sorooshian et al., 2000; Chen and 8 
Staelin, 2003; Hong et al., 2004; Sussuravadee and Staelin, 2007, 2008a, 2008b, 2009, 2010; 9 
Bellerby, 2007; Krasnopolsky et al., 2008; Leslie et al., 2008; Mahesh et al., 2011). However, it 10 
should be mentioned that the use of NNs involves the training phase with a large representative 11 
database, often obtained from cloud-resolving model simulations. Consequently, the performance of 12 
the network is largely dependent on the completeness and the representativeness of the database and 13 
on its consistency with the observations. 14 
Retrieval algorithms based on NNs, proposed for precipitation estimation from remotely sensed 15 
information, using MW or VIS/IR measurements, are different from each other in the different 16 
approaches used, in the design of the network architecture, in the selection of type and number of 17 
input variables, in the determination of the number of networks used, in the implementation of the 18 
training database  (e.g. the cloud-resolving model) and in the training process. With regard to the 19 
input variables, when MW radiometers are used, their choice is normally based on physical 20 
considerations on the radiometric signatures (or brightness temperatures, TBs) of different 21 
microwave channels and on the direct or indirect relationship of these signatures with 22 
environmental, meteorological and microphysical variables (e.g. atmospheric temperature and 23 
humidity, surface conditions, hydrometeor types, size and shapes) involved in the precipitation 24 
retrieval process. The TBs at the MW channels so identified are selected as part of the input 25 
variables. However, some techniques such as principal component analysis (PCA) are applied to the 26 
selected channels in order to reduce the number of inputs, and reduce the complexity of the NN, and 27 
also to reduce the noise (e.g., to filter out the signal due to the background surface), (Chen and 28 
Staelin, 2003; Surussavadee and Staelin, 2008a, 2010; Blackwell and Chen, 2005). Special 29 
functions of TBs, already proposed for rainfall retrieval (Kidd, 1998; Ferraro and Marks, 1995; 30 
Grody, 1991), as the Polarization Corrected Temperature (PCT85) or the Scattering Index have also 31 
been considered as the NN inputs (Sarma et al., 2008; Mahesh et al., 2011). Some geographical and 32 
meteorological parameters (e.g. surface type, surface height, season, latitude) are often considered 33 
as auxiliary input data, in order to reduce the ambiguity intrinsic to the PMW precipitation retrievals 34 
based only on observed TBs (e.g., Panegrossi et al., 1998; Kummerow et al., 2011; You and Liou, 35 
2012; You et al., 2015). 36 
In the VIS/IR based NN algorithms the input selection is based on different considerations, due to 37 
the indirect relationship between cloud top radiances and surface rainfall and the lack of 38 
information on the precipitation structure within the cloud. Additional inputs are then considered in 39 
addition to TBs, that is, clouds texture information (TB mean and variance for 3x3 and 5x5 pixel 40 
rectangles around each measurement), the rate of change of cloud-top temperatures, the number of 41 
pixels with TB less than a given threshold (Hsu et al., 1997; Bellerby et al., 2000; Tapiador et al., 42 
2004). This approach normally involves the use of more complex networks. 43 
The number of NNs used in the precipitation retrieval algorithms, is defined so as to optimize the 44 
network performance under different operating conditions. In PMW precipitation retrieval separate 45 
NN algorithms are usually proposed depending on the type of surface (i.e., land or sea), to 46 
discriminate between the different precipitation emission signatures relative to background (e.g. 47 
Surussavadee and Staelin, 2008a). Separate NN algorithms are also proposed to deal separately with 48 
stratiform and convective precipitation (e.g Sarma et al., 2008).  49 
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In the design of PNPR v2 important aspects in relation to the topics mentioned above, concerning 1 
the choice of the inputs, the number of networks used by the algorithm, and the database used in the 2 
training phase, have been thoroughly analyzed and will be presented in this paper.  3 
Another important issue to consider is that PNPR v2 has been designed in the perspective of the full 4 
exploitation of the MW radiometers in the GPM constellation of satellites, and of the achievement 5 
of consistency (besides accuracy) of the retrievals from the different sensors. These goals are 6 
considered priorities in the international GPM mission community because their achievement leads 7 
to a significant reduction of the errors, also associated with the inadequate sampling of 8 
precipitation, with positive impact on precipitation monitoring (see also Panegrossi et al., 2016), 9 
hydrological applications, and climate studies.  This is also true when higher spatial/temporal 10 
resolution products based on MW/IR combined techniques are used, such as IMERG (GPM), 11 
TMPA (Tropical Rainfall Measuring Mission - TRMM), see Huffman et al. (2007, 2015), and also 12 
within the EUMETSAT H-SAF program, these aspects have become a priority. Therefore, PNPR 13 
v2 for ATMS, as well as PNPR v1 for AMSU/MHS, as well as all other H-SAF products for 14 
conically scanning radiometers, represent an important contribution towards the exploitation of the 15 
current and future constellation of PMW radiometers for global precipitation monitoring.  16 
In this paper the PNPR v2 algorithm is described in detail, and the methodology and the results of 17 
an intercomparison of the PNPR v2 instantaneous precipitation estimates with co-located 18 
spaceborne radar estimates from the TRMM Precipitation Radar (TRMM-PR) and from the GPM-19 
CO Ku-band Precipitation Radar (GPM-KuPR) are presented.  20 
Section 2 presents a brief description of the characteristics of ATMS. In Section 3 a description of 21 
the PNPR v2 algorithm is presented, with reference to the design of the neural network, the main 22 
characteristics of the algorithm, and the relevant features of the ATMS training database. The 23 
verification study is presented in Section 4, which includes a brief description of the characteristics 24 
of PR and DPR, of the methodology used to create the co-located observation dataset used in the 25 
study, the analysis of the performance of PNPR v2 compared to TRMM-PR and to GPM-KuPR, 26 
and a comparison with PNPR v1 using TRMM-PR rainfall estimates as reference.  Section 5 27 
contains the conclusive remarks about the performance of PNPR v2 and future perspectives. 28 
 29 
2. The ATMS radiometer 30 
ATMS is a total power cross-track scanning microwave radiometer on board the Suomi National 31 
Polar-orbiting Partnership (NPP) satellite (and JPSS satellites scheduled for early 2017), with a 32 
swath of 2600 km, angular span of ±52.77° relative to nadir (Boukabara et al., 2011, 2013; Weng et 33 
al., 2012; Goldberg et al., 2013; Zou et al. 2013). During each scan the Earth is viewed at 96 34 
different angles, with a spatial sampling of 1.11°.  ATMS has 22 channels, ranging from 23 to 183 35 
GHz, providing both temperature soundings from the surface to the upper stratosphere (about 1 hPa, 36 
~45 km), and humidity soundings from the surface to upper troposphere (about 200 hPa, ~15 km).  37 
Particularly, ATMS channels 1–16 provide measurements at microwave frequencies below 60 GHz 38 
and in an oxygen absorption band, and channel 17–22 are located at higher microwave frequencies 39 
above 89 GHz and in a water vapor absorption band.  The beamwidth changes with frequency and 40 
is 5.2° for channels 1-2 (23.8-31.4 GHz), 2.2° for channels 3-16 (50.3 - 57.29 GHz and 88.2 GHz), 41 
and 1.1° for channels 17-22 (165.5-183.3 GHz). The corresponding nadir resolutions are 74.78 km, 42 
31.64 km and 15.82 km respectively. The outmost FOV sizes are 323.1 km x 141.8 km (cross-track 43 
x along-track), 136.7 km x 60.0 km, 68.4 km x 30.0 km, respectively. 44 
Compared with its predecessors AMSU and MHS, ATMS has improved resolution (31.6 km at 45 
nadir in the 54 GHz band, vs 48.6 km for AMSU) and spatial sampling (1.11° in the 54 GHz band, 46 
vs 3.33° for AMSU) and has the great advantages of a wider swath that practically eliminates the 47 
orbital gaps. There are slight differences in the frequencies of ATMS channels 88.2 GHz, 165.5 48 
GHz and 183.31 ± 7.0 GHz with respect to the corresponding MHS channels (89.0 GHz, 157.0 GHz 49 
and 190.31 GHz). Three new channels are added compared to AMSU/MHS: channel 4 (51.76 GHz) 50 
for lower tropospheric temperature sounding, and the two channels 19 and 21 (183.31±4.5 GHz and 51 
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183.31±1.8 GHz) to enhance the moisture profiling performance, improving the vertical resolution, 1 
and potentially very useful also for precipitation (Surussavadee et al., 2012; Weng et al., 2012; Zou 2 
et al., 2013). 3 
 4 
3. The new PNPR algorithm  5 
 6 
3.1 Algorithm description 7 
PNPR v2 represents an evolution for ATMS applications, of the previous PNPR v1 algorithm based 8 
on a NN approach, developed at ISAC-CNR for precipitation rate estimation using AMSU/MHS 9 
observations. The full description of PNPR v1 is provided in Sanò et al. (2015), while some 10 
important aspects are reviewed in this paper for completeness.  11 
Both versions of PNPR are designed to work over the full Meteosat Second Generation (MSG) disk 12 
area (60°S-75°N, 60°W-60°E).  In PNPR v1 the training of the NN was carried out using two 13 
distinct NNs, one for the European/Mediterranean area (Sanò et al., 2015) and one for the African 14 
area (Panegrossi et al., 2014). Each network was designed to work with all types of surface 15 
backgrounds (i.e., land, sea, coast) in order to reduce the discontinuity of precipitation estimates 16 
often found in correspondence with transitions between surfaces with different radiometric 17 
properties.  In PNPR v2 one unique NN has been designed, capable of operating on the whole MSG 18 
disk area, regardless of the type of surface and of the geographical area. 19 
Another significant aspect in the design of PNPR v1 was the use of the TB differences in the water 20 
vapor absorption band channels at 183 GHz as input to the neural network. Opaque channels around 21 
183 GHz were originally designed to retrieve water vapor profiles due to their different sensitivity 22 
to specific layers of the atmosphere (Wang et al., 1997; Staelin and Chen, 2000; Blackwell and 23 
Chen, 2005). However these channels have shown great potentials for precipitating cloud 24 
characterization and for precipitation retrieval. The different penetration ability of these channels in 25 
the atmosphere can be exploited to analyze the vertical distribution of hydrometeors  (Wang et al., 26 
1989, 1997; Burns et al., 1997; Staelin and Chen, 2000; Ferraro et al., 2005; Hong et al., 2005, 27 
2008; Funatsu et al., 2007, 2009; Laviola and Levizzani, 2011), and to obtain some criteria for the 28 
characterization of precipitation as weak, moderate,  strong convective or stratiform, using the TB 29 
differences Δ17, Δ13, and Δ37 (corresponding respectively to the differences between the 183.31±1 30 
GHz and 183.31±7 GHz, 183.31±1 GHz and 183.31±3 GHz, 183.31±3 GHz and 183.31±7 GHz 31 
channels) (e.g., Ferraro, 2004; Qiu et al., 2005).  In the design of PNPR v2 we have focused on the 32 
exploitation of the improved technical characteristics of ATMS with respect to AMSU/MHS, with 33 
the analysis of the information carried by two new channels in the 183 GHz water vapor absorption 34 
band (at 183.31±4.5 GHz and 183.31±1.8 GHz) (see Section 3.3 dedicated to the input selection). 35 
As in PNPR v1, a Canonical Correlation Analysis has been carried out to find the linear 36 
combination of TBs of selected channels best correlated with surface precipitation rate.    37 
The flow diagram of the PNPR v2 algorithm is substantially the same as that of PNPR v1, described 38 
in detail in Sanò et al. (2015), except for the use of one unique network trained on a database 39 
representative of MSG full disk area (see Section 3.2), and changes in the input selection in the 40 
design of the network (described in Section 3.3). Furthermore, in the preprocessing of the 41 
brightness temperatures, in addition to the decoding of the file format and the quality control of the 42 
input data, the removal of the three outmost pixels along the scan is carried out. Other processing 43 
steps of the algorithm, such as the screening procedure of no-rain pixels, the quality index map 44 
providing indications on areas or conditions where the retrieval is more or less reliable, are 45 
unchanged with respect to those used for the algorithm PNPR v1 (Sanò et al., 2015). In a similar 46 
way, also the new algorithm provides in output, in addition to the precipitation rate (mm/h), the 47 
phase of the precipitation (solid, liquid, mixed or unknown), and the quality index. The PNPR v2 48 
output is provided on a grid corresponding to the ATMS nominal resolution varying from 15.82 km 49 
x 15.82 km / circular at nadir to 68.4 km x 30.0 km / elliptical at scan edge. 50 
 51 
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 1 
3.2 The training database 2 
The training of PNPR v2 was performed using a large cloud-radiation database representative of the 3 
MSG full disk area, built from 94 cloud-resolving model (CRM) simulations of different 4 
precipitation events including 60 simulations over the European/Mediterranean area (Casella et al., 5 
2013), and 34 simulations over Africa and Southern Atlantic (Panegrossi et al, 2014).  The 6 
simulations were carried out using the University of Wisconsin Nonhydrostatic Modeling System 7 
(UW-NMS) (Tripoli, 1992; Tripoli and Smith, 2014a, b)) coupled to a Radiative Transfer Model 8 
(RTM) relating CRM environments to expected top-of-atmosphere PMW TBs of the ATMS 9 
radiometer (see Smith et al., 2013, and Casella et al., 2013 for the details about the cloud model 10 
configuration setup, and Sanò et al., 2015 for AMSU/MHS RTM simulations).  Figure 1 shows the 11 
geographical location of the inner domain of the 94 simulations. Simulated events were selected in 12 
order to cover the different seasons and different meteorological situations and precipitation 13 
regimes. Simulations over African and South Atlantic area were chosen also on the basis of the 14 
TRMM-PR observations (in particular the Rain Type flag and the Freezing level height) and on the 15 
basis of different climatic regions in order to cover as much as possible the climatic variability in 16 
the area of interest with a limited number of simulations.  17 
The simulated TBs were calculated considering the different ATMS viewing angles and channel 18 
frequencies using the same approach used for AMSU/MHS and described in Sanò et al., 2015. The 19 
database contains more than two million entries for the European/African regions and has 45 views 20 
for each entry (the three outmost pixels were discarded due to the low resolution).  21 
 22 
3.3 Input selection 23 
The first objective in the new NN design was the selection of the inputs based on the evaluation of 24 
their impact on the performance of the NN or on their sensitivity to precipitation. Consistently with 25 
PNPR v1 and on the basis of the results obtained for AMSU/MHS (Sanò et al., 2015), for the new 26 
NN we have initially imposed the use of the three inputs Δ17, Δ13, and Δ37 (Hong et al., 2005; 27 
Funatsu et al., 2007, 2009). These TB differences have been proven to be very effective in detecting 28 
precipitation, differentiating between different precipitation structures and in the retrieval of rainfall 29 
rate.  For PNPR v2, a detailed analysis to evaluate the effect of additional inputs on the performance 30 
of the NN has been carried out.  All possible TB differences with the two new ATMS 183 GHz 31 
(183.31±1.8 GHz and 183.31±4.5 GHz) channels were considered, and the analysis was based on a 32 
cross-validation method (Anders and Korn, 1999; Marzban, 2009), already used for PNPR v1 (Sanò 33 
et al., 2015). This method consists, essentially, in comparing the quality of two NNs by evaluating 34 
their mean squared prediction error (MSPE) when they are applied to an equal number (M) of 35 
validation data sets.  Therefore, the cross-validation index (CV) is defined as: 36 
 37 

𝐶𝑉 =
1
𝑀
� 𝑀𝑆𝑃𝐸𝑚

𝑀

𝑚=1
 

 38 
In a first test, only the three differences Δ14, Δ24, and Δ27 (corresponding respectively to the 39 
differences between the 183.31±1 GHz and 183.31±4.5 GHz, 183.31±1.8 GHz and 183.31±4.5 40 
GHz, and 183.31±1.8 GHz and 183.31±7 GHz channels) showed a real improvement in the NN 41 
performance. The use of the differences between contiguous channels resulted in fact irrelevant. 42 
The subsequent tests with these three new inputs proved that Δ24, added to Δ17, Δ13, and Δ37 already 43 
selected in PNPR v1, was the input with most significant impact on the NN performance. Table 1 44 
shows some results obtained during the test.  45 
In the table the various possible differences considered as input to the NN in this analysis are shown 46 
in the first column; ∆F = ∆13, ∆37, ∆17  denotes the three difference combinations used in the PNPR 47 
v1 algorithm. In the second and fourth columns the values of the correlation coefficients between 48 
output and target during the learning phase (RL), and the mean values during the cross-validation 49 
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phase (RCV) are shown. In the third and the fifth columns the values of the mean squared error 1 
during the learning phase (MSEL), and the cross-validation index CV (the mean MSPE values 2 
during the cross-validation phase) are provided. From the results shown in the table it is evident that 3 
the NN performance improves when the input Δ24 is added.  It is worth noting that to achieve the 4 
results shown in Table 1 the training protocol described in Sanò et al. (2015) has been applied, and 5 
that for each input configuration (each row in the table) more than one hundred NNs (with different 6 
levels of perceptrons) were compared to select the optimal network configuration. 7 
The contribution of Δ24 as new input can be seen as a compensation of Δ17 when, under certain 8 
conditions, this is affected by the “noise” of the background surface.  In fact, the 183±7 GHz 9 
channel, the most penetrating among the 183 GHz channels, has a weighting function peaking at the 10 
lowest levels (Bennartz and Bauer, 2003), and the TB can be significantly affected by the signal 11 
from the underlying surface (for example in cold and dry conditions). On the other hand, in the 12 
same conditions, the 183±4.5 GHz channel has a weighting function peaking at higher levels. Some 13 
tests have been carried out on different cloud model profiles extracted from the CRM simulations 14 
and based on RTM computations to analyze the behavior of the Δ17 and Δ24, and they have 15 
confirmed these effects (not shown). We have also verified that, by replacing Δ17 with Δ24, a lower 16 
performance of the network is achieved, whereas the combined use of the two differences 17 
guarantees the optimal performance. The use of Δ24 as added input to Δ17, Δ13, and Δ37 in PNPR v2 18 
represents the best compromise between the achievement of a good performance and the 19 
minimization of the number of inputs of the NN in order to reduce its complexity, key aspects in 20 
any NN design. 21 
Another difference between PNPR v2 and PNPR v1 algorithms is the result of the canonical 22 
correlation analysis (CCA) applied to the training database to find the linear combination of TBs 23 
(LCT) of selected channels best correlated with surface precipitation rate, to be used as additional 24 
input to the network (see Sanò et al., 2015). The resulting linear combination for ATMS is 25 
composed of the window channels 31.4 GHz, 88.2 GHz, and 165.5 GHz, showing the highest 26 
correlation coefficients in the CCA analysis (with respect to the surface rain rate) for all types of 27 
background surfaces (in PNPR v1 for AMSU/MHS the 50.3 GHz, 89 GHz, and 150 GHz were 28 
selected for LCT).   29 
With regard to other inputs to the network, in PNPR v2 the same ancillary data used in PNPR v1 30 
were maintained (surface height, background surface type, month, and secant of the zenith angle 31 
along the ATMS cross-track scan). An additional auxiliary input was added to drive NN in the 32 
transition between the European and African area, i.e., the monthly mean total precipitable water 33 
(TPW) obtained from ECMWF Era Interim reanalysis in the 2011-2014 period. It should be 34 
mentioned that the use of geographical and environmental/meteorological parameters (including 35 
TPW) in PMW precipitation retrieval is utilized to reduce the ambiguity intrinsic to the PMW 36 
precipitation retrieval process (for example in the NASA GPM Bayesian algorithms - see 37 
Kummerow et al., 2011, 2015; Kidd et al., 2016). 38 
During the phase of network design and the training process, more than 400 architectures have been 39 
tested and an optimal NN has been obtained, where “optimal” refers to the one with best 40 
performance, i.e., minimum  CV over the full dynamic range of the inputs, absence of overfitting,  41 
and absence of anomalous inhomogeneities in the retrievals (Sanò et al., 2015; Staelin and 42 
Surussavadee, 2007).   43 
In summary, ten input variables (five TBs derived and five ancillary inputs) are used in the NN for 44 
ATMS: 45 
1. a linear combination of TBs (LCT) at 31.4, 88.2 and 165.5 GHz;   46 
2. Δ17 difference between the TBs of channels 183.31±1 and 183.31±7 GHz; 47 
3. Δ37 difference between the TBs of channels 183.31±3 and 183.31±7 GHz; 48 
4. Δ13 difference between the TBs of channels 183.31±1 and 183.31±3 GHz; 49 
5. Δ24 difference between the TBs of channels 183.31±1.8 and 183.31±4.5 GHz; 50 
6. surface type (land, sea, coast); 51 
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7. monthly mean TPW; 1 
8. month; 2 
9. surface height (altitude); 3 
10. secant of the zenith angle. 4 
The network architecture is similar to that of PNPR v1, with one input layer (with number of nodes 5 
equal to the number of inputs) and two hidden layers with 23 and 10 nodes in the first and in the 6 
second layer respectively (the number of nodes differs from PNPR v1). The tan-sigmoid transfer 7 
function is used for the input and the hidden layers, while a linear transfer function is used for the 8 
output node. 9 
 10 
3.4 Sensitivity analysis 11 
During the training procedure, an assessment of the sensitivity of the NN output to variations of the 12 
inputs was carried out. Sensitivity analysis provides an estimation of the relative importance of the 13 
inputs (Coulibaly et al., 2005). The knowledge of the NN behavior, in relation to input perturbation, 14 
helps to assess the relevance of the individual contributions to the output, and to verify the correct 15 
training of the NN (i.e., the weights remain stable) that is achieved when there is no significant 16 
changes of the sensitivity during the last training iterations (epochs).  17 
The sensitivity analysis, limited to the TBs derived variables that are more related to the rain rate 18 
estimate, and not to the ancillary variables, was applied to the "optimal NN" (i.e., defined by the 19 
listed inputs and the architecture described in the previous section), and was carried out during the 20 
final phase of the training (see Sanò et al., 2015). The final phase was reached when the two 21 
parameters indicating the quality of the learning process, i.e. the correlation coefficient (R) and the 22 
gradient of performance (mean squared error), were respectively larger than 0.89 and less than 0.05, 23 
with the number of epochs in the 700-900 range (see Sanò et al., 2015 for more details on this 24 
procedure). The assessment of the sensitivity was carried out several times, in correspondence to 25 
successive epochs (to ensure the representativeness of the data used for the analysis), and for three 26 
different surface types (land, coast and ocean), using NN input data randomly extracted from the 27 
training and test databases. Five inputs (Δ13, Δ37, Δ17, Δ24, LCT) were slightly perturbed by 28 
percentages of their value within three times their standard deviation (calculated in the database).  29 
The relative sensitivity (S) of the NN to each input (i.e., for a number of input perturbations) is 30 
calculated as the ratio between the mean standard deviation of the output (i.e., the surface rainfall 31 
rate), and the mean standard deviation of the input. 32 
 33 

𝑆𝑖 =
𝜎(𝑅𝑅𝑖)
𝜎(𝑉𝑖)

 

where  𝑆𝑖 is the relative sensitivity corresponding to the input 𝑉𝑖 and 𝜎(𝑅𝑅𝑖) and 𝜎(𝑉𝑖) are the 34 
standard deviations of the rainfall rate and the input variable.  Figure 2 shows the results obtained 35 
for the three different background surface types considered. 36 
The results show a similar behavior of the sensitivity for the three different surface backgrounds 37 
considered. It is evident the higher sensitivity of NN with respect to the LCT in comparison with the 38 
other inputs; this is due to the contribution of window channels used in LCT, selected by 39 
maximizing the correlation with the surface precipitation rate. Another important aspect is the 40 
relative contribution of the other inputs (TBs difference in the 183 GHz band channels) quite 41 
similar among the three types of surface, with a slightly higher contribution of the input Δ17 for land 42 
and coast and a good contribution of the new ATMS input Δ24 for all surface types. 43 
 44 
4.  Verification study 45 
 46 
4.1 Dataset description 47 
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This section presents the verification study carried out for the PNPR v2 algorithm, using as 1 
reference the data provided by the TRMM and GPM spaceborne radars. The TRMM-PR is a 13.8 2 
GHz radar with a swath width of 247 km (after the satellite was boosted to higher orbit in 2001). Its 3 
coverage allows regional intercomparison of convective–stratiform contributions to precipitation 4 
across the Tropics, with data available since the launch of the satellite in November 1997 until 5 
October 2014. It is considered the precursor to GPM DPR, and has represented, during this time 6 
interval, the best available remote-sensing instrument for precipitation (Schumacher and Houze, 7 
2003). The TRMM PR2A25 product (Iguchi et al. 2000) provides rainfall rates based on the 8 
reflectivity-rainfall rate relationships, along with a raindrop size distribution (DSD) model, 9 
attenuation correction, and a non-uniform beam filling correction.  Even though issues have been 10 
raised about the accuracy of PR2A25, related to surface properties, variations of the DSD, or impact 11 
of incidence angles (i.e., Iguchi et al., 2009;  Hirose et al., 2012; Kirstetter et al., 2013), during its 12 
operational period this radar has provided accurate estimates of instantaneous rain rate, as well as 13 
calibration for other precipitation-relevant sensors in sun-synchronous orbits (Bellerby et al., 2000; 14 
Heymsfield et al. 2000; Liao et al. 2001; Schumacher and Houze, 2003; Lin and Hou, 2008). The 15 
GPM DPR (on board the GPM-CO) is composed of two precipitation radars, the GPM-KuPR  at 16 
13.6 GHz (an updated version of the TRMM-PR), and the Ka-band Precipitation radar (GPM-17 
KaPR) at 35.5 GHz. The simultaneous use of the two radars was designed to obtain a greater 18 
dynamic range in the measurements, more detailed information on the microphysical rain structure 19 
(such as raindrop size distribution), and a consequent better accuracy in the rainfall retrieval (Le and 20 
Chandrasekar, 2103a, 2013b; Hou et al., 2014; Chandrasekar et al., 2014). KuPR and KaPR have 21 
the same space resolution at nadir, equal to 5.2 km, the same beamwidth, equal to 0.71°, and cross 22 
track swath widths of 245 km and 120 km, respectively.  In this study we have considered only the 23 
GPM-KuPR products because of the similarity with the TRMM-PR and because its larger swath 24 
size offers better chances to find coincident observations with ATMS.  It is worth considering also 25 
that in spite of the similarity between the two radars, the GPM-KuPR has higher sensitivity (with 26 
minimum detectable reflectivity between 12 dBZ and 14 dBZ, outperforming the original 27 
instrumental design of 18 dBZ) (Toyoshima et al., 2015; Hamada and Takayabu, 2016) than the 28 
TRMM-PR radar (18 dBZ minimum detectable reflectivity). 29 
Two datasets have been created, one composed by two years (2013-2014) of coincident Suomi-NPP 30 
ATMS and TRMM-PR overpasses over the African area (36° S - 36° N and 60° E - 30° W), and 31 
one made of 15 months (1 March 2014- 31 May 2015) of ATMS and GPM-KuPR coincident 32 
overpasses over the European and African areas (36° S - 65° N and 60° E - 30° W). In the study the 33 
comparison is carried out between the PNPR v2 precipitation rate and the NASA/JAXA 34 
precipitation products from the two spaceborne radars, in particular the TRMM-PR standard 35 
product 2A25 (V7), and GPM 2ADPR Ku normal scan (Ku-NS) (V03).  Coincident observations in 36 
the area of interest within a 15 minute time window have been considered between ATMS and 37 
TRMM-PR (hereafter ATMS-PR) and between ATMS and GPM-Ku-NS (hereafter ATMS-DPR-38 
Ku). 39 
It should be pointed out that the results obtained from the ATMS-DPR-Ku coincidence dataset are 40 
not as robust as the results obtained from the ATMS-PR dataset because of the limited size of the 41 
dataset, and because of some uncertainties in the less consolidated day-1 V03 DPR products, linked 42 
to factors such as the DSD parameterization (Liao et al., 2014), the evaluation of the path-integrated 43 
attenuation (PIA), the surface reference technique (SRT), and the non-uniform beam filling effect 44 
(NUBF) (Shimozuma and Seto, 2015).    45 
Figure 3 (left panel) shows the geographical distribution (on the ATMS grid) of about 1.8 milions 46 
coincident pixels ATMS-PR found over the African area in the two-year time frame 2013-2014. 47 
The figure shows a rather good coverage of the entire area, with a number of coincident pixels 48 
between 30 and 150 on Central Africa, increasing moving to the North and to the South. 49 
In the right panel of the figure, the distribution of the coincident pixels ATMS-DPR-Ku over the 50 
European and African areas, between March 2014 and May 2015, is shown. In contrast to the left 51 
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panel, the coverage is not as good with a lower number of coincident pixels, and with some 1 
uncovered areas. The number on coincident pixels increases over northern Europe at the high 2 
latitudes reaching a maximum value around 200. In the southern part of Europe and Africa, the 3 
number of coincidences is significantly reduced (maximum values around 50).   4 
To obtain co-located vectors of rainfall estimates of ATMS and TRMM-PR, and of ATMS and 5 
GPM-KuPR, the radar precipitation rate at the surface was downscaled to the PNPR v2 product 6 
nominal resolution (variable along the scan line, see Section 3.1), by averaging the rainfall rate of 7 
all radar pixels falling within each PNPR v2 pixel. In order to reduce the geolocation and 8 
synchronization errors, due to the different viewing geometry of ATMS and the spaceborne radar, 9 
and to the time lag between the observations, statistical analysis was carried out over a regular grid 10 
at 0.5° × 0.5° resolution.  For some of the analysis the coincidence datasets were categorized on the 11 
basis of the background surface – vegetated land, arid land (for Africa only), ocean, and coast – 12 
using a digital land/sea map at 2s of arc resolution (see Casella et al., 2015).  13 
 14 
4.2 Comparison with TRMM-PR 15 
Figure 4 shows the geographical distribution of the values of three statistical indexes (hit bias, 16 
correlation coefficient (CC), and Root Mean Squared Error (RMSE), (see Tian et al. (2016) for the 17 
definition of these scores), obtained for the ATMS-PR dataset. The scores are computed 18 
considering all coincident ATMS-PR pixels within each 0.5° × 0.5° grid box (regardless of the time 19 
of the overpasses) with precipitation rate greater than 0 mm h-1 both from the radiometer and the 20 
radar  (hits only). 21 
The top panel shows a rather uniform distribution of low bias (between -0.2 and 0.1 mm h-1, 22 
negative in most regions), with areas with larger positive bias (0.8 mm h-1) over the Equatorial 23 
region, mostly over the Atlantic and Indian Ocean, and a few scattered areas of larger negative bias 24 
(-0.8 mm h-1). Moreover, the algorithm shows an overall good correlation (middle panel) (CC > 0.8 25 
in most areas), and a RMSE (bottom panel) with a pattern quite similar to the hit bias, with most 26 
values between 0.2 and 0.5 mm h-1, and a limited number of grid points with values around 1.3 mm 27 
h-1. Overall, the panels point out a good agreement between PNPR v2 and TRMM-PR, evidenced 28 
by the widespread low values of bias and RMSE and the high values of CC.  29 
In Fig. 5 the density scatterplots for all 0.5° × 0.5° resolution grid-boxes of the ATMS-PR dataset 30 
are shown for different surface types. In the scatterplot, the coordinates are the values (in 31 
logarithmic scale) of the mean precipitation rate from ATMS and for TRMM-PR in each grid-box, 32 
while the color represents the number of points in the dataset for each pair of precipitation rate 33 
values. The correlation is quite good for all background surfaces. A significant number of 34 
coincident observations below the diagonal is found over ocean, mostly for precipitation rates less 35 
than 1 mm h-1, and over vegetated land (for all precipitation rates) This confirms the overall slight 36 
underestimation (negative hit bias) over land of Fig. 4 (top panel). The values of the statistical 37 
indexes (hit bias, CC and RMSE) calculated over the entire dataset are also provided, and they 38 
confirm the good agreement between PNPR v2 and TRMM-PR for the different surface types 39 
(results for coast and arid land are affected by the low number of coincident pixels found for these 40 
areas). The (small) bias is negative for vegetated land (-0.08 mm h-1) and arid land (-0.05 mm h-1), 41 
and positive for ocean and coast (0.05 mm h-1). Low RMSE is also found for all surface types, 42 
higher for ocean (1.30 mm h-1), than for vegetated land (1.11 mm h-1), and equal to 0.80 and 1.37 43 
mm h-1 for arid surfaces and coastal area respectively.  CC is higher for vegetated land (0.71), 44 
compared to ocean (0.69), coast (0.65) and arid land (0.64).  45 
Table 2 presents the contingency table for the ATMS-PR dataset, based on the mean rainfall rate 46 
from ATMS and TRMM-PR within each 0.5° × 0.5° grid-box.  The percentages shown in a given 47 
column, provided for the four surface backgrounds, represent how the PNPR v2 product classifies 48 
the precipitation assigned to each TRMM-PR class. Four rainfall rate intervals were selected in this 49 
comparison, 0.01 - 0.25 mm h-1, 0.25 - 1 mm h-1, 1 - 5 mm h-1 and 5 - 15 mm h-1. There is an 50 
appreciable general consistency between PNPR v2 and TRMM-PR estimates, as shown by the 51 
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largest percentages found on the main diagonal for each type of surface background. The 1 
percentages exceed 70% for low precipitation rates (≤ 0.25 mm h-1) and 50% for higher 2 
precipitation rates. Looking at the distribution of the percentages for each radar range (in each 3 
column), it is noticeable the underestimation of PNPR v2 compared to TRMM-PR (higher 4 
percentages in the cells above the diagonal), which confirms what shown in Fig. 5, for vegetated 5 
land and ocean.  6 
Table 3 shows the Performance Index calculated for the different background surfaces, defined as: 7 
 8 

𝑃𝑒𝑟𝑓. 𝐼𝑛𝑑𝑒𝑥 = 100 ∗
∑

𝑛𝑖𝑗(𝑖=𝑗)
∆𝑖

4
𝑖=1

∑ �
∑ 𝑛𝑖𝑗4
𝑗=1
∆𝑖

�4
𝑖=1

 

 9 
where nij is the number of occurrences in cell ij, i is the column index and j is the row index, and Δi 10 
is the width of the i-th rain rate class (mm h-1). For each surface type, the index consists of the 11 
weighted sum of the number of occurrences in the main diagonal of the cells, divided by the 12 
weighted sum of the total number of occurrences, where the weight is the rain rate range for each 13 
class. The values shown confirm the good ability of the PNPR v2 to provide precipitation rates 14 
consistently with TRMM-PR, mostly over ocean. 15 
 16 
 17 
4.3 Comparison with GPM-KuPR  18 
As mentioned previously, a verification of PNPR v2 algorithm has been made also using 19 
precipitation rate estimates from the GPM-KuPR, available at mid-high latitudes.  This was initially 20 
intended for the European area only, where a larger number of coincident overpasses are available 21 
during the time frame considered (March 2014 - May 2015) (see Fig. 3). However, results are 22 
shown also for the African area, despite the lower number of coincidences available, in order to 23 
assess the degree of consistency of the results obtained over the same area with the two Ku-band 24 
spaceborne radars. 25 
As for the comparison with the TRMM-PR, all co-located ATMS and GPM-KuPR retrievals were 26 
regridded at a 0.5° × 0.5° resolution, and only grid-boxes with precipitation rates greater than 0 mm 27 
h-1 (hits) are considered. In Fig. 6 the density scatterplots over the African area and the European 28 
area are shown, for vegetated land and ocean (the number of coincidences for the other surface 29 
types are too low in the ATMS-DPR-Ku dataset). The corresponding values of bias, CC and RMSE 30 
computed over the whole dataset are also provided in each panel.  Over Africa, both panels show 31 
patterns quite similar to those found in the comparison with TRMM-PR (Fig. 5). Also in this case 32 
there is a slight underestimation for low precipitation (< 1 mm h-1) more evident over the ocean. 33 
Table 4 shows the comparison between statistical indexes obtained for the ATMS-DPR-Ku dataset 34 
and those obtained for the ATMS-PR dataset, shown in Fig. 5. 35 
The Table shows a good agreement between the scores obtained with two datasets, with very low 36 
bias (slightly positive/negative over land/ocean for the ATMS-DPR-Ku dataset, while the reverse is 37 
valid for the ATMS-PR dataset), low RMSE (lower for the ATMS-DPR-Ku dataset), and good 38 
correlation.   39 
The right panels of Fig. 6 show the scatterplots obtained in the comparison of PNPR v2 and GPM-40 
KuPR over the European area. Pixels with likely presence of ice or snow on the ground have been 41 
eliminated from the dataset, in order to exclude from the verification study cases of snowfall (or 42 
precipitation over frozen background), whose precipitation rate estimate is affected by larger 43 
uncertainty (both in the GPM-DPR-Ku V03 product and in PNPR). For the identification of these 44 
pixels the "Snow Depth" and "Sea Ice Cover" products from the ECMWF Era Interim re-analysis 45 
(at 0.5° × 0.5° resolution) available every 6 hours have been used. A dataset corresponding to the 46 
ATMS-DPR-Ku coincidence rainfall pixels has been created, considering the ECMWF re-analysis 47 
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closest in time to each overpass, and using the nearest-neighbor approach to match the ATMS-1 
DPR-Ku pixels with the ECMWF grid.  2 
The scatterplots in Fig. 6 show a similar behavior for vegetated land for the two areas, while over 3 
ocean in the European area there is a general tendency of PNPR v2 to overestimate the precipitation 4 
with respect to the GPM-KuPR. The total bias has very low values, negative for vegetated land (-5 
0.12 mm h-1) and positive for ocean (0.12 mm h-1). The CC show lower values than for the African 6 
region for the two background surfaces (0.59 for vegetated land, 0.57 for ocean), while the RMSE is 7 
lower than over the African region, equal to 0.82 mm h-1 for vegetated land, equal to 0.71 mm h-1 8 
for ocean. 9 
In order to better interpret the results in Fig. 6, the geographical distribution over the European area 10 
of bias, CC and RMSE is shown in Fig. 7 (similarly to Fig. 4). In these maps the statistical indexes 11 
are evaluated including pixels with snow or ice on the ground. There is a prevalence of a positive 12 
bias (although mostly below 0.3 mm h-1, with some peaks above 0.5 mm h-1) over the ocean (in the 13 
Northern Atlantic Ocean, top-left panel) and in the few areas available in the coincidence dataset 14 
over the Mediterranean Sea. In the remaining areas and over land there is a rather uniform 15 
distribution of lower bias (between -0.2 and 0.2 mm h-1). The correlation CC has quite high values 16 
(prevalently between 0.80 and 1) throughout the European area, except for some regions in the 17 
Northern Atlantic Ocean, where the values are around 0.6. The RMSE presents quite similar 18 
patterns as the hit bias, with higher values (around 0.7 mm h-1 and 1-1.5 mm h-1 for few pixels) 19 
where the bias is high, and lower values (less than 0.5 mm h-1) where the bias is low.  20 
 21 
4.4 Comparison with PNPR v1  22 
In the second part of the verification study we have compared the performances over the African 23 
area of the PNPR v2 with the PNPR v1,, to evaluate whether the use of the new ATMS channels 24 
and the newly designed NN have led to improvements in the retrievals. The performance of the 25 
PNPR v1 algorithm has been tested on the same two years period (2013-2014) used for PNPR v2, 26 
considering coincident observations of AMSU/MHS radiometers, on board the NOAA-18, NOAA-27 
19, Metop-A and Metop-B satellites, with TRMM-PR. The PNPR v1 and TRMM-PR coincidence 28 
dataset is made of about three million pixels.  The procedure used to evaluate the PNPR v1 29 
performance is the same as that adopted for the PNPR v2 algorithm, described in section 4.1. 30 
Table 5 presents the values of the statistical indexes hit bias, CC, and RMSE obtained in the 31 
comparison of PNPR v1 and PNPR v2 with TRMM-PR precipitation retrievals, over a 0.5° × 0.5° 32 
regular grid, for different background surfaces. These results indicate a good agreement of both the 33 
algorithm retrievals with the TRMM-PR (NASA/JAXA product 2A25), and a better performance of  34 
PNPR v2 especially over vegetated land, in terms of CC (0.71 for PNPR v2 vs. 0.68 for PNPR v1) 35 
and RMSE (1.11 mm h-1 vs. 1.65 mm h-1), and over ocean in terms of all scores (CC = 0.69 vs. 0.61, 36 
RMSE = 1.30 mm h-1 vs. 2.32 mm h-1 and hit Bias = 0.05 mm h-1 vs. 0.59 mm h-1). Over arid land 37 
and coast PNPR v2 results might be affected by the limited size of the ATMS-PR coincidence 38 
dataset (ATMS is on board one satellite only, while AMSU/MHS is on board four different 39 
satellites). Improvements compared to PNPR v1 are evident in terms of hit bias (-0.05 mm h-1 vs. 40 
0.30 mm h-1 for arid land, and 0.05 mm h-1 vs. 0.20 mm h-1 for coast), and in terms of RMSE (0.80 41 
mm h-1 vs 1.84 mm h-1 for arid land, and 1.37 mm h-1 vs 1.90 mm h-1 for coast). 42 
A further analysis of the performance of the two algorithms has been performed through the study 43 
of the Relative Bias percentage (RB%) and the Adjusted Fractional Standard Error Percentage 44 
(AFSE%) used to remove systematic errors (Tang et al., 2014), as a function of the mean TRMM-PR 45 
rainfall rate value computed for different rainfall rate intervals (bins). In the analysis we have used 46 
rain rate bins of variable size to obtain a meaningful number of pixels within each bin. 47 
These variables are defined as 48 
 49 
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 2 
 3 
where mwi is the PNPR (v1 or v2) rainfall rate and rri is the TRMM-PR rainfall rate. N represents 4 
the number of pixels in each precipitation rate bin. 5 
Considering the RB% (top panel of Fig. 8) it is evident the better performance of PNPR v2 in the 6 
rain rate estimation over ocean (solid blue line) with respect to the PNPR v1 (dashed blue line). The 7 
high relative bias over ocean for low rain rates in the PNPR v1 is significantly reduced in PNPR v2. 8 
In the interval between 0 and 4 mm h-1 the RB% ranges from 300% to 100% for the PNPR v1 and 9 
from 50% to 1% for the PNPR v2. In the following interval (4 to 10 mm h-1) the values varies from 10 
-5% to -40% for both the algorithms with a slightly better performance of PNPR v2. 11 
Over land both the algorithms present similar performances, with a slightly better result for PNPR 12 
v2 (solid black line) for low rain rates (0 - 3 mm h-1), and lower RB% of PNPR v1 (dashed black 13 
line) for higher rain rate values (> 3 mm h-1).  14 
In the bottom panel of Fig. 8 AFSE% shows high values (> 250%) over ocean (blue curves) for very 15 
low rain rates (< 0.5 mm h-1) in PNPR v1, while for PNPR v2 AFSE% is much lower (< 200%). For 16 
higher rain rates the two curves are similar, with slightly better performance of PNPR v2 for rain 17 
rates < 2 mm h-1, and better performance of PNPR v1 for rain rates between 2 mm h-1 and 6 mm h-1. 18 
Over land, PNPR v2 shows lower AFSE% compared to PNPR v1 for mid to high rainfall rates (> 2 19 
mm h-1), while for lower rain rates the two curves are similar, with slightly better results for PNPR 20 
v2 for very low rain rates (< 0.5 mm h-1), and for PNPR v1 for rain rates between 0.5 mm h-1 and 2 21 
mm h-1. It should be noted that overall this comparison shows a general agreement in the capability 22 
to estimate the precipitation by the two algorithms (as expected since they are based on the same 23 
physical foundation) with better performance of the ATMS version of PNPR for low precipitation 24 
rates, in particular over ocean (both in terms of RB% and AFSE%). For higher precipitation rates 25 
both PNPR versions tend to underestimate the precipitation (negative RB%), with larger (negative) 26 
bias of PNPR v2 than PNPR v1 over land.  27 
It is worth noting that the main improvement of PNPR v2 with respect to PNPR v1 is the reduction 28 
of the relative bias (RB%) for low precipitation rates (where RB% was higher) especially over ocean. 29 
Moreover, considering the AFSE%, the error is prevalently lower in version 2 even if the effect of 30 
the bias reduction is not taken into account. 31 
 32 
5. Summary and conclusion  33 
This paper describes the design of a new algorithm, PNPR v2, for estimation of precipitation on the 34 
ground for the cross-track ATMS radiometer, and presents the results of a verification study where 35 
the instantaneous precipitation rate estimates available from TRMM and GPM spaceborne radars 36 
are used as reference.  37 
PNPR v2 has been designed for retrieval of precipitation in the MSG full disk area. The algorithm, 38 
based on a neural network approach, represents an evolution of the previous version PNPR v1, 39 
designed for the AMSU/MHS radiometer, with some changes made to take advantage of the 40 
improvements of ATMS with respect to AMSU/MHS. Similarly to the previous algorithm it is 41 
based on a single neural network for all types of surface background, trained using a large database 42 
based on 94 cloud-resolving model simulations over the European and the African areas.  43 
The verification study carried out through a comparison with co-located observations of ATMS 44 
with the NASA/JAXA TRMM-PR and GPM-KuPR spaceborne radars analyzed on a 0.5° × 0.5° 45 
regular grid showed a substantial agreement of PNPR v2 with the precipitation products available 46 
from the two radars.   In the comparison with TRMM-PR, over the African area, the CC has values 47 
between 0.64 (arid land) and 0.71 (vegetated land), and RMSE varies between 0.80 mm h-1 (arid 48 
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land) and 1.37 mm h-1 (coast). The Adjusted FSE%, as a function of PR precipitation rate, ranges 1 
from 250% to 130% over ocean and from 250% to 100% over land in the interval from 0.1 to 1 mm 2 
h-1. It is less than 50% for rain rate greater than 7 mm h-1 (ocean and land). In the comparison with 3 
GPM-KuPR over the European area the indexes are quite comparable with those over the African 4 
area, with lower correlation (0.59 over vegetated land and 0.57 over ocean) and RMSE (0.82 mm h-5 
1 over vegetated land and 0.71 mm h-1 over ocean). It is worth noting that the study based on GPM-6 
KuPR will be further developed in the future using a larger coincidence dataset and a more 7 
consolidated version of DPR precipitation products.  8 
For reference, it is useful to compare these results with those found by other authors carrying out 9 
validation studies using ground-based radar data. Tang et al. (2014) investigated the performance of 10 
PMW precipitation products from 12 passive microwave radiometers, including AMSU-B (NOAA 11 
15, 16, 17) and MHS (NOAA 18, 19 and MetOp-A) rainfall rate estimates based on Ferraro et al. 12 
(2005) over a 3 year period. They found values of CC around 0.55 (on an annual scale, at 0.25° × 13 
0.25° regular grid) over the continental United States (land). They also analyzed the adjusted root-14 
mean-square errors normalized with the precipitation rate (corresponding to the Adjusted FSE% 15 
used in this study) as a function of ground radar precipitation rate, and have found values ranging 16 
from about 600% at 0.25 mm h-1 to about 75% in the interval 6-16 mm h-1 for winter, and from 17 
about 1200% at 0.25 mm h-1 to about 50% above the 10 mm h-1 for summer.  Kidd et al. (2016) 18 
have analyzed the performance of precipitation retrieval from the MHS of the NASA Goddard 19 
PROFiling (GPROF) algorithm version developed for cross-track PMW sensors. Using quality 20 
controlled ground-based radar data over the United States from 6 March 2014 through 5 March 21 
2015, and computing the statistical scores over a 1° x 1° grid, they have found CC < 0.50 over the 22 
western U.S., and > 0.60 over the eastern U.S. It is worth noting that a comparison of the measured 23 
performances of different algorithms is very difficult and may not be significant if the conditions in 24 
which the various studies are performed are different (e.g. for the type and the quality of the 25 
reference data, different climate regimes, different matching procedure, and spatial resolution used 26 
in the analysis). Therefore, what can emerge from such results is that PNPR v2 performance is at 27 
least comparable with those of the analyzed algorithms. 28 
In the comparison of PNPR v2 and PNPR v1 retrievals, performed over the African area and based 29 
on two years period of coincident observations of ATMS and AMSU/MHS radiometers with 30 
TRMM-PR, an appreciably better performance of PNPR v2 has been evidenced by statistical 31 
indexes (e.g. CC equal to 0.71 for PNPR v2, vs. 0.68 for PNPR v1 over vegetated land, and equal to 32 
0.69 for PNPR v2 vs. 0.61 for PNPR v1 over ocean), and by a general improvement of the estimate 33 
of low precipitation, mostly over ocean. The resulting differences can likely be attributed to 34 
improvements in the design of the neural network and also to the best technical features of ATMS 35 
compared to AMSU/MHS.  36 
Overall, the two versions of PNPR algorithm have shown a general consistency in the results, as 37 
expected considering that both are based on the same physical basis (the training databases are 38 
based on the same cloud-resolving model and to the same radiative transfer model). It is worth 39 
noting that the achievement of consistency between products derived from different sensors is very 40 
relevant in the current GPM mission era, with constellation satellites (equipped with cross-track or 41 
conical scanning microwave radiometers) contributing to global coverage and higher temporal 42 
sampling of precipitation. This aspect has become very important also within the EUMETSAT H-43 
SAF program, and represents a guideline for the development of PMW precipitation products. 44 
PNPR v2 and PNPR v1 for ATMS and AMSU/MHS, as well as other products for conically 45 
scanning radiometers (e.g. CDRD for SSMIS – Casella et al., 2013, Sanò et al., 2013), and new 46 
products for the other constellation radiometers are developed within H-SAF in this direction, with 47 
foreseen improvements of derived MW/IR products used in operational hydrology and near real 48 
time precipitation monitoring applications.  49 
The results, however, have revealed a slight tendency of PNPR v2 to underestimate moderate to 50 
high precipitation, mostly over land, and overestimate moderate to light precipitation over the 51 
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ocean, especially compared to GPM-KuPR product over the North Atlantic Ocean. Besides well-1 
known issues affecting PMW precipitation retrieval, such as non-uniform beam-filling effects 2 
related to small-scale rainfall structures associated with local convection and difficulties in the 3 
retrieval of warm or shallow rain processes, in addition to the lack of low frequency channels very 4 
useful for precipitation retrieval over ocean, other issues might be related to the use of spaceborne 5 
radar products as reference. The impact of sample volume discrepancies between radiometers and 6 
spaceborne radars, and uncertainties in the spaceborne radar estimates (due to attenuation 7 
correction, sensitivity thresholds, non-uniform beam filling effect), needs to be evaluated when 8 
using spaceborne radar precipitation estimates as reference. PNPR v2 will undergo thorough 9 
extensive validation within the EUMETSAT H-SAF program carried out by the H-SAF 10 
Precipitation Products Validation Service (Puca et al., 2014), using ground-based radars and rain 11 
gauges over Europe, and, in limited areas, over Africa, which will be useful to clarify some of these 12 
issues.  13 
In spite of the above mentioned limitations, this study shows that the TRMM and GPM spaceborne 14 
radars can be very useful for an extensive verification, over long time periods, of consistency and 15 
accuracy of instantaneous precipitation rate estimates from different sensors. The use of spaceborne 16 
radars as reference overcomes some of the limitations in the use of ground-based data (such as 17 
inhomogeneity in their technical characteristics and data treatment, limited coverage, and beam 18 
blocking) providing consistent measurements around the globe, including remote areas where 19 
ground-based data are scarce or not available, and oceans.  20 
 21 
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Table 1 -  Results of the tests for the selection of the inputs to the NN.  Input combinations are listed 1 
in the first column (∆F = ∆13, ∆37, ∆17), R indicates the correlation coefficient, MSE the mean 2 
squared error, CV the cross-validation index (subscripts L and CV indicate the learning and cross-3 
validation phases). 4 
 5 

INPUT RL MSEL RCV CV 
∆F 0.85 0.39 0.76 0.42 

∆F and ∆14, ∆24, ∆27 0.78 0.64 0.70 0.68 
∆F  and ∆14, ∆24 0.89 0.37 0.80 0.42 
∆F  and ∆14, ∆27 0.83 0.49 0.78 0.53 
∆F  and ∆24, ∆27 0.81 0.50 0.70 0.54 

∆F  and ∆14 0.87 0.37 0.79 0.41 
∆F  and ∆24 0.92  0.32 0.87 0.35 
∆F and ∆27 0.83 0.48 0.68 0.52 
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Table 2 -  Contingency table of PNPR v2 retrievals relative to TRMM-PR measurements 1 
 2 

Radar rain rate (mm h-1) 

PN
PR

 v
2 

ra
in

 ra
te

 (m
m

 h
-1

) 
 

Vegetated land 0.01 ≤ Rad ≤ 0.25 0.25 < Rad ≤ 1.0 1.0 < Rad ≤ 5.0 5.0 < Rad ≤ 15.0 
0.01 ≤ PNPR v2 ≤ 0.25 80.3% 35.4% 2.9% 0.0% 
0.25 < PNPR v2 ≤ 1.0 17.8% 50.4% 35.1% 6.2% 
1.0 < PNPR v2 ≤ 10.0 1.9% 13.6% 54.6% 38.4% 
5.0 < PNPR v2 ≤ 15.0 0.0% 0.6% 7.4% 55.4% 

Coast 0.01 ≤ Rad ≤ 0.25 0.25 < Rad ≤ 1.0 1.0 < Rad ≤ 5.0 5.0 < Rad ≤ 15.0 
0.01 ≤ PNPR v2 ≤ 0.25 86.4% 34,0% 7.1% 0.0% 
0.25 < PNPR v2 ≤ 1.0 12.1% 52,3% 31.1% 0.0% 
1.0 < PNPR v2 ≤ 10.0 1.5% 13.0% 51,0% 26.6% 
5.0 < PNPR v2 ≤ 15.0 0.0% 0.7% 10.8% 73.4% 

Ocean 0.01 ≤ Rad ≤ 0.25 0.25 < Rad ≤ 1.0 1.0 < Rad ≤ 5.0 5.0 < Rad ≤ 15.0 
0.01 ≤ PNPR v2 ≤ 0.25 85.2% 32.5% 3.7% 0.0% 
0.25 < PNPR v2 ≤ 1.0 13.1% 51.4% 30.8% 7.5% 
1.0 < PNPR v2 ≤ 10.0 1.7 16.0% 54.7% 39.1% 
5.0 < PNPR v2 ≤ 15.0 0.0% 0.1% 10.8% 53.4% 

Arid land 0.01 ≤ Rad ≤ 0.25 0.25 < Rad ≤ 1.0 1.0 < Rad ≤ 5.0 5.0 < Rad ≤ 15.0 
0.01 ≤ PNPR v2 ≤ 0.25 72.1% 27.6% 1.2% n/a 
0.25 < PNPR v2 ≤ 1.0 27.6% 53.4% 37.1% n/a 
1.0 < PNPR v2 ≤ 10.0 0.3% 18.7% 58.0% n/a 
5.0 < PNPR v2 ≤ 15.0 0.0% 0.3% 3.7% n/a 
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 1 
Table 3 -  Performace indexes for the different background surfaces 2 

 3 
  Vegetated land Ocean Coast Arid land 
Perf. Index  69.0% 76.0% 75.7% 66.7% 
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Table 4 -  Statistical indexes obtained in the comparisons of PNPR v2 retrievals with GPM-KuPR 1 
and TRMM-PR products 2 
 3 

 Vegetated land 
GPM-KuPR /TRMM-PR 

Ocean 
GPM-KuPR /TRMM-PR 

BIAS (mm h-1) 0.15/-0.08 -0.04/0.05 
CC 0.70/0.71 0.70/0.69 
RMSE (mm h-1) 1.08/1.11 1.21/1.30 
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Table  5– Statistical indexes of the comparison of  PNPR v1 and PNPR v2 vs TRMM-PR retrievals 1 
 2 

 Arid land 
PNPR v1/PNPR v2 

Vegetated land 
PNPR v1/PNPR v2 

Coast 
PNPR v1/PNPR v2 

Ocean 
PNPR v1/PNPR v2 

BIAS (mm h-1) 0.30/-0.05 -0.09/-0.08 0.15/0.05 0.63/0.05 
CC 0.66/0.64 0.68/0.71 0.75/0.65 0.60/0.69 
RMSE (mm h-1) 1.84/0.80 1.66/1.11 1.73/1.37 2.25/1.30 
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 1 
 2 

 3 
 4 
Figure 1 – Geographical location of the inner domain of the 94 NMS simulations over European 5 
and African areas. 6 
 7 
 8 
 9 
 10 
 11 
 12 

 13 

Figure 2  Relative sensitivity (Si) of the NN evaluated for five inputs (Δ13, Δ37, Δ17, Δ24, LCT), for 14 
three different background surfaces. 15 
 16 
 17 
 18 
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 1 
 2 
 3 

 4 
 5 
Figure 3 - Number of co-located pixels from TRMM-PR and the Suomi-NPP ATMS coincident 6 
overpasses over the African area in the 24 month period 2013-2014 (left panel), and from GPM-Ku-7 
NS and Suomi-NPP ATMS coincident overpasses over European and African areas in the 15 month 8 
period (March 2014 - May 2015) (right panel). 9 
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 1 
 2 
Figure  4 - Hit bias (top panel), correlation coefficient (CC, middle panel) and root mean squared 3 
error (RMSE, bottom panel), resulting from the comparison between PNPR v2 and TRMM-PR 4 
retrievals over the African area.  5 
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 1 
 2 
Figure 5 - Density scatterplots of the PNPR v2 and TRMM-PR mean rainfall rates (over a 0.5° × 3 
0.5° regular grid), for the African area, for different surface types. A logarithmic scale is used for 4 
the precipitation rates in mm h-1. 5 
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 1 
 2 
Figure 6 – Density scatterplots of the PNPR v2 and GPM-KuPR mean rainfall rates (over a 0.5° × 3 
0.5° regular grid), for the African area (left panels), and the European area (right panels), for 4 
vegetated land and ocean. A logarithmic scale is used for the precipitation rates in mm h-1. 5 
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Figure 7 - Hit bias (top panel), CC (middle panel) and RMSE (bottom panel), resulting from the 3 
comparison between PNPR v2 retrievals and GPM-KuPR measurements over the European area. 4 
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Figure 8 – Relative Bias percentage (top panel) and Adjusted FSE percentage (bottom panel), of 3 
PNPR v1 and PNPR v2 retrievals with respect to the TRMM-PR measurements. 4 
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