
Response to Reviewer #1

In this paper the authors present a very detailed and thorough anlysis of sparse methods for
selection of relevant absorption bands in IR. The paper is well presented and the analysis is
very detailed. I only have a few general comments regarding the general accuracy of methods
according to reliability of the sampled data.

We thank the reviewer for the positive comments.

1. Page 2 line 24 onwards. Is the justification for sparse methods, in this sense, more with
regards the end-point accuracy or prohibitive cost of other methods?

We would like to use this opportunity to discuss our separate motivations for 1) using
sparse methods, and 2) FT-IR more generally.

The motivation for implementing sparse methods is to improve end-point accuracy and in-
terpretation of aerosol composition by FT-IR. Uninformative variables (i.e., wavenumbers)
can add variance, or in some instances, bias to the predictions. In this work, the advan-
tage with respect to end-point accuracy is not very clear, as the original full wavenumber
models were already quite accurate. However, elimination of uninformative variables helps
drive our interpretation regarding the most important absorption bands necessary for pre-
dicting TOR OC and EC, as well as FG, which allows us to make associations between
carbonaceous aerosol and their molecular structure.

Our focus on developing quantiative algorithms FT-IR more generally is motivated for its
potential to provide 1) a reduction in cost of aerosol monitoring, and 2) the additional
chemical resolution (via functional groups) not permitted by other instruments. FT-IR
analysis of each PTFE sample requires only a few minutes and can be integrated into ex-
isting analysis toolchains without the need for a separate sampling line for aerosol collection
on quartz fiber filters (specifically for thermal optical analysis). In addition, absorption
by vibrational modes observed by FT-IR can inform us of aerosol molecular structure not
provided by organic carbon analysis, or even common mass spectrometry techniques. We
anticipate that FG information harvested from such measurements can be made useful for
systematic model-measurement evaluation (e.g., Ruggeri et al., 2016).

As the first point is the focus of (Ruthenburg et al., 2014; Dillner and Takahama, 2015a,b;
Reggente et al., 2016), we include this addition to the Abstract:

“Various vibrational modes present in molecular mixtures of laboratory and atmospheric
aerosols give rise to complex Fourier Transform Infrared (FT-IR) absorption spectra. Such
spectra can be chemically-informative, but often require sophisticated algorithms for quan-
titative characterization of aerosol composition. Näıve statistical calibration models devel-
oped for quantification employ the full suite of wavenumbers available from a set of spectra,
leading to loss of mechanistic interpretation between chemical composition and the result-
ing changes in absorption patterns that underpin their predictive capability. Using sparse
representations of the same set of spectra, alternative calibration models can be built in
which only a select group of absorption bands are used to make quantitative prediction of
various aerosol properties. Such models are desirable as they allow us to make association
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of predicted properties with their underlying molecular structure.”

2. In section 2.1.1 the laboratory and ambient samples are discussed. It would be nice to see
a brief consideration of instrument variability and how this might impact of the performance
of your evaluation. For example, is there an underlying assumption that there is no ’drift’ in
instrument response function across all datasets used? I wonder whether this might lead to
the variability discussed in section 3.2 onwards? Perhaps I have misunderstood this, but is
agreement between instruments proven?

The agreement between instruments for this dataset has indeed been established by Dillner
and Takahama (2015a,b). We have included this statement in the Introduction section (1):

“We remark that while the latter two carbonaceous substances [TOR OC and EC] are
presumably are composed of a complex combination of molecules, statistical calibration
models using FT-IR spectra have been demonstrated to accurately predict TOR-equivalent
OC and EC within measurement precision of collocated samples reported by the TOR
method (Dillner and Takahama, 2015a,b).”

and in Methods section (2.3.1):

“Full wavenumber calibration models for TOR OC and EC developed using this protocol
have demonstrated ability to capture overall variations in concentrations which span a wide
range of PM composition and environmental conditions (Dillner and Takahama, 2015a,b).”

Regarding the specific issue of instrument drift, we do not attribute dis-
crepancies between predictions to changes in instrument response for this
work. The TOR measurements follow established protocols for QA/QC
(http://vista.cira.colostate.edu/improve/data/QA QC/qa qc Branch.htm) in which
samples analyzed during periods of excessive drift are reanalyzed. We are preparing
separate documentation of performance evaluation for FT-IR, but repeated analysis of
check standard samples indicate less than 2–5% drift in signal response over 1.5 years.

3. Towards the end of page 6 the authors discuss the rationale for choice of variable selection
method. In section 2.3.1, how is the test fair in the sense of being able to cover a broad range
of functionality expected in amb[i]ent samples? In other words, would it be possible to visualise
where your test and training set ’sit’ on a general 2D basis sets or even simple Ven Krevelen
diagrams? Does this even matter?

We thank the reviewer for this question.

The range in functionality expected in ambient samples does guide our choice of calibration
set samples and the final variables selected (though not the variable selection procedure,
as this is statistically determined).

Apart from the chamber studies of Chhabra et al. (2011), we have not evaluated the
O/C and H/C ratio characterized by FT-IR measurements in detail. This is an area of
current work. However, the range in OM/OC ratio (which can be closely associated with
O/C; Aiken et al., 2008) over the IMPROVE 2011 samples is described and presented
by Ruthenburg et al. (2014). Selection of laboratory standards used for prediction of FG
is not selected on the basis of OM/OC, however, but on the multidimensional space of
the FGs such that overlapping absorption bands can be taken into account in the model
development. One of the reasons for the larger range in predicted FG abundance among
models is due to the fact that the laboratory standards and ambient samples are different,
and constraining the model development and selection under these circumstances is an area
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of current research.

For TOR OC analysis, Dillner and Takahama (2015a) explored the influence of aerosol
composition on calibration set design. Aerosol composition was parameterized as OM/OC
ratio (derived from estimates of Ruthenburg et al., 2014) and ammonium/OC ratio, and
we found, not unexpectedly, that capability for prediction was dependent on the range of
concentration and similarity composition between the calibration (which comprises training
and validation) and test set samples. Similar conclusions for EC are drawn (Dillner and
Takahama, 2015b). Therefore, the calibration and test set samples are selected to span
the same composition space (e.g., as might be represented by van Krevlin diagram) by
design. The variable (wavenumbers) selected for TOR OC and EC are specific to the
composition of PM sampled in these seven sites for 2011, though Reggente et al. (2016)
suggests the analysis can be extended for the same sites to 2013. More importantly, we
feel that the main contribution of this manuscript is to introduce this technique and open
up a new avenue of research, in which we can associate vibrational modes and molecular
structure with aerosol of different composition (e.g., targeting specific regions in the van
Krevlin space) characterized by collocated measurements; not limited to TOR. Such work
is currently underway in our group.

We have included the following statement in the Methods section (2.1.1):

“The OM/OC ratio estimated in ambient samples span a range of 1.46 and 2.01 between
the 10th and 90th percentiles, with a median ratio of 1.69 (Ruthenburg et al., 2014).”

and the following statement in the Methods section (2.3.1):

“The calibration and test sets are constructed identically to the most accurate class of full
wavenumber models described previously (Ruthenburg et al., 2014; Takahama and Dillner,
2015; Dillner and Takahama, 2015a,b).”

and the following statement in the Conclusion section (4):

“Sparse calibration models “localized” (in the statistical sense) by spectral features or
external variables can be used to identify key FGs used for prediction of TOR measurements
at various sites (e.g., Reggente et al., 2016), and aid construction of calibration sets suitable
for prediction of individual or groups of samples (e.g., stratified by environmental conditions
or chemical composition). This work provides a demonstration of how molecular structure
can be associated with other quantifiable metrics of complex PM to which spectral features
from FT-IR can be correlated.”

4. On this point, there seems to be complicating factors in sample collection from ambient
campaigns that might degrade the performance of any ’tuned’ method. For example, could it
be that whether any semi-volatile loss, for example, occured during sample preparation might
lead to a functional group dependency of variable selection? It might be prudent to assess
such effects with a consideration of other factors such as RH, Temp, provenance of sample.
Based on the high mass loadings displayed in figure 3, this might not yet be apparent but its
worthwhile considering. I guess I’m wondering whether, aside from variable selection refining a
fixed instrument response, the algorithms are also picking up ’noise’ from external factors.

We thank the reviewer for raising this important point. Investigation of artifacts, and par-
ticularly semi-volatile species, is an active area of investigation for us and will be addressed
in a series of future studies. However, for the purposes of this manuscript, we note that
Ruthenburg et al. (2014); Takahama and Dillner (2015); Dillner and Takahama (2015a,b)
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have shown that a single set of calibration models can make accurate predictions for each of
the response variables studied. Predicted concentrations of individual FGs have not been
independently validated, but have been evaluated to the extent possible using agreement
with TOR OC and trends in OM/OC ratios.

Therefore, to a first order we believe that we have been able to capture the varying range in
aerosol composition on these filters due to effects of RH, temperature, semivolatile losses
with our base case (full wavenumber) models. As the TOR OC and EC estimates are
calibrated to collocated measurements, there is a question whether sampling artifacts may
be different. Quartz fiber filters have vapor adsorption artifacts, but have been corrected
in a “mean” way for OC (Dillner and Takahama, 2015a).

We have revised Methods section (2.1.1):

“Monthly median values of OC loadings in blank samples are subtracted from ambient
TOR OC loadings to account for the gas phase adsorption artifact by quartz fiber filters
(Dillner and Takahama, 2015a).”

and Methods section (2.3.1):

“Full wavenumber calibration models for TOR OC and EC developed using this protocol
have demonstrated ability to capture overall variations in concentrations which span a wide
range of PM composition and environmental conditions (Dillner and Takahama, 2015a,b).”

5. [Minor comment] Page 8, line 18: I think an if is missing after examining I would recommend
expanding acronyms in all figure captions for ease of reading.

We have rephrased this sentence to read:

“Examining sparse regression coefficients are informative for identifying important absorp-
tion bands, but interpretation can still be complicated by the compensation of interfering
bands (Haaland and Thomas, 1988; Kvalheim et al., 2014).”
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