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Abstract. Knowing the spatial and seasonal distributions of nitric acid (HNO3) around the globe is of great interest to 

apprehend the processes regulating stratospheric ozone, especially in the polar regions. Thanks to its unprecedented spatial 

and temporal sampling, the nadir-viewing Infrared Atmospheric Sounding Interferometer (IASI) allows sounding the 

atmosphere twice a day globally, with good spectral resolution and low noise. With the Fast Optimal Retrievals on Layers 

for IASI (FORLI) algorithm, we are retrieving, in near-real time, columns as well as vertical profiles of several atmospheric 5 

species, amongst which is HNO3. We present in this paper the first characterization of the FORLI-HNO3 profile products, in 

terms of vertical sensitivity and error budgets. We show that the sensitivity of IASI to HNO3 is highest in the lower 

stratosphere (10-20 km), where the largest amounts of HNO3 are found, but that the vertical sensitivity of IASI only allows 

one level of information on the profile (DOFS~1). The sensitivity near the surface is negligible in most cases, and for this 

reason, a partial column (5-35 km) is used for the analyses. Both vertical profiles and partial columns are compared to FTIR 10 

ground-based measurements from the Network for the Detection of Atmospheric Composition Change (NDACC) to 

characterize the accuracy and precision of the FORLI-HNO3 product. The profile validation is conducted through the 

smoothing of the raw FTIR profiles by the IASI averaging kernels and gives good results, with a slight overestimation of 

IASI measurements in the Upper Troposphere-Lower Stratosphere (UTLS) at the 6 chosen stations (Thule, Kiruna, 

Jungfraujoch, Izaña, Lauder and Arrival Heights). The validation of the partial columns (5-35 km) is also conclusive with a 15 

mean correlation of 0.93 between IASI and the FTIR measurements. An initial survey of the HNO3 spatial and seasonal 

variabilities obtained from IASI measurements for a one year (2011) data set shows that the expected latitudinal gradient of 

concentrations from low to high latitudes and the large seasonal variability in polar regions (cycle amplitude around 30% of 

the seasonal signal, peak-to-peak) are well represented with IASI data.  
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1 Introduction 20 

Nitric acid is the main form of oxidized nitrogen, in both the stratosphere and the troposphere, and constitutes the principal 

chemical sink/reservoir for NOx (≡NO+NO2) (Austin et al., 1986; Crutzen, 1979; Wespes et al., 2009). Being directly 

coupled to NOx, HNO3 impacts the ozone (O3) budgets in the two layers (e.g. Neuman et al., 2001).  

In the troposphere, the main sources of NOx are fossil fuel combustion and biomass burning (~70%). Natural sources exist, 

such as lightning and microbial activity in soils, but their contribution to the total tropospheric NOx is smaller than the 25 

anthropogenic one, especially in industrialized areas (Cooper et al., 2014; Kasibhatla et al., 1993; Logan, 1983; Wespes et 

al., 2007). The distribution of the NOX sources influences directly that of HNO3, which in the troposphere has a residence 

time of a few days to several weeks, depending on the latitudes (Logan et al., 1981; Wespes et al., 2007).  

In the stratosphere, the main source of NOx is nitrous oxide (N2O) which is emitted at the surface by a variety of sources, 

including agricultural activities (Chipperfield, 2009; McElroy et al., 1976), and is then transported to the stratosphere, where 30 

it photodissociates or reacts with O(
1
D) to form two NO molecules (Fischer et al., 1997; Muller, 2011; Portmann et al., 

2012). The formed NOx catalyse stratospheric ozone destruction through several cycles (Mohanakumar, 2008; Solomon, 

1999). Apart from being an important reservoir species for NOx, HNO3 is a key species for the formation of polar 

stratospheric clouds (PSCs, type I) during the polar winter (Höpfner et al., 2006; Lambert et al., 2012; Tabazadeh et al., 

2000). PSCs, which develop at very low temperatures (195 K) and which are composed mainly of HNO3, sulphuric acid and 35 

ice (Drdla & Müller, 2010; Lowe & MacKenzie, 2008), allow heterogeneous reactions and lead to the activation of 

chlorinated compounds in the gas phase, which in turn induce the subsequent massive destruction of ozone in the low to 

middle stratosphere of the polar regions in mid-spring (von Clarmann, 2013; Wegner et al., 2012). The process is amplified 

by the denitrification accompanying the sedimentation of the HNO3-rich particles at the end of winter, which prevents the 

reformation of chlorine nitrate, one of the stable chlorine reservoirs (Gobbi et al., 1991; Solomon, 1999). In a denitrified 40 

stratosphere, most often observable in the Antarctic due to lower temperatures, very low HNO3 concentrations are observed 

inside the polar vortex and a high concentration collar remains at the edge of the vortex (Santee et al., 1999; 2004; 2005; 

Staehelin et al., 2001; Wespes et al., 2009). 

Note that the sedimentation is not the main sink for stratospheric HNO3 at a broader scale; the principal degradation 

pathways are oxidation with the hydroxyl radical and photodissociation (Austin et al., 1986).  45 

HNO3 has been measured by a variety of instruments since its first observation from infrared solar absorption spectra in 1968 

(Murcray et al., 1968).  Ground-based instruments (Fiorucci et al., 2013; Rinsland et al., 1991; Wood et al., 2004), sounding 

instruments on board balloons or aircrafts (Jucks et al., 1999; Neuman et al., 2001) or embarked on satellites (Austin et al., 

1986; Orsolini et al., 2009; Wespes et al., 2007) or aboard the space shuttle (Rinsland et al., 1996) have all contributed to the 

characterization of the HNO3 distributions throughout the low atmosphere. One of the most complete data sets has been 50 

acquired by the Microwave Limb Sounder (MLS) first on the Upper Atmosphere Research Satellite (UARS) from 1991 to 

1998, then on the AURA satellite from 2000. It has allowed detailed analyses of seasonal and interannual variations (Santee 

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-207, 2016
Manuscript under review for journal Atmos. Meas. Tech.
Published: 6 July 2016
c© Author(s) 2016. CC-BY 3.0 License.



3 
 

et al. 1999; 2004) but at a coarse horizontal resolution due to the viewing mode. The vertical resolution of MLS ranges 

between 3 and 5 km, and the instruments probes the entire altitude range from the ground to 90 km. However, the HNO3 

measurements are considered reliable only in a narrow altitude range between 11 and 30 km, where the precision on the 55 

retrieved volume mixing ratio is 0.6–0.7 ppbv (Santee et al., 2007). HNO3 distributions have also been obtained by the 

MIPAS instrument on ENVISAT, in the range 14-43 km with a sampling of 3-4 km and a reported accuracy of 0.2-0.6 ppbv 

(Piccolo & Dudhia, 2007; Vigouroux et al., 2007), and by the ACE-FTS on-board SCISAT with even better accuracy (3%) 

between 10 and 37 km (Wang et al., 2007). Measurements from the ODIN instrument made at high vertical resolution (1.5-2 

km) but with a precision of only 1.0 ppbv over the altitude range 18-45 km (Urban et al. 2009; Wang et al., 2007) have been 60 

somewhat less used so far.  

The Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite series operates in a different geometry 

(nadir) than all aforementioned instruments, and allows monitoring HNO3 using spectral information from its 𝜈5 and 2𝜈9 

vibrational bands. The IASI measurements have a limited vertical resolution because of the integrated view of the 

atmospheric column but they are made at exceptional spatial and temporal sampling. Specifically, as detailed in section 2, 65 

IASI provides global measurements with a particularly good spatial and temporal sampling of the polar regions at all 

seasons. Other key features of IASI for HNO3 are the fact that the instrument provides simultaneous measurements of O3 and 

other trace gases, allowing studying the coupled HNO3-O3 cycles, and that it will operate on a long-term (2007-2022), 

allowing the identification and monitoring of trends. The potential of using the HNO3 measurements of IASI was first shown 

by Wespes et al. (2009) using a two-year data set. Although important conclusions and perspectives for the capability of 70 

IASI to sound HNO3 were drawn from this study, it suffers from the fast operational retrieval method restricted to a total 

column calculation for the purpose of saving time, and from a missing quantitative validation due to the absence of archived 

data from ground-based FTIR measurements. Moreover, the total column retrieval combined with its maximum sensitivity in 

the stratosphere was shown to largely mask the potential of IASI to sound HNO3 in lower layers. After this study, the Fast 

Optimal Retrieval on Layers for IASI (FORLI) software was adapted to allow retrieval of HNO3 vertical profiles from IASI 75 

(Hurtmans et al., 2012). A full 8-year data set of global profiles is now available (2008-2015) but has not yet been used for 

extensive analysis (a subset was used in Cooper et al. (2014) to constrain lightning NOx emissions in models). The product 

characterization and validation are also still lacking. This paper uses a full year (2011) of HNO3 profiles retrieved from IASI 

on Metop-A to  

 Fully characterize the HNO3 retrieved concentrations in terms of vertical sensitivity and errors (section 3) on the 80 

profiles and partial columns, 

 Validate the profiles and columns using correlative data from the NDACC FTIR network, which are also detailed here 

(section 4 and 5), 

 Provide an overview of how the product can be used to analyse spatial and temporal variability (section 6).  
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2 IASI measurements 85 

2.1 IASI instrument 

The first IASI instrument (IASI-A) was launched in 2006 on the Metop-A platform in a polar orbit (Clerbaux et al., 2009; 

Hilton et al., 2012). It is still operating nominally at the time of writing, in parallel with IASI-B that was launched on Metop-

B in 2012. IASI is a nadir-viewing infrared Fourier transform spectrometer measuring the radiation emitted by the Earth’s 

surface and the atmosphere in the 645-2760 cm
-1

 spectral range (August et al., 2012; C. Clerbaux et al., 2009). The spectral 90 

resolution is 0.5 cm
-1 

after apodization over the entire spectral range (Cayla, 2001; Hilton et al., 2012). The apodized 

radiometric noise is low, around 0.2 K in the atmospheric window of interest to this work, which includes the 𝜈5 + 2𝜈9 band 

of HNO3
 
(860-900 cm

-1
), mostly suitable for the retrievals, as described in Wespes et al. (2007, 2009). IASI collects 120 

views every 8s along the 2200 km swath across to the satellite track and provides this way global coverage twice a day 

(Clerbaux et al., 2009), with one overpass in the morning and one in the evening, at 9:30 equator crossing time. The spatial 95 

resolution varies from 113 km
2
 at nadir to 400 km

2
 at the end of the swath.  

Note that IASI measures in addition to HNO3 a series of greenhouse (carbon dioxide (CO2, Crevoisier et al., 2009), methane 

(CH4, Crevoisier et al., 2013)) and reactive trace gases (carbon monoxide (CO, George et al., 2009), O3 (Boynard et al., 

2016; Wespes et al., 2016), ammonia (NH3, Van Damme et al., 2014)), which altogether provide an extensive monitoring of 

the atmospheric system.  100 

2.2 Retrieval method and settings 

The IASI data are processed every day in near-real time at ULB, by the FORLI algorithm which relies on a fast radiative 

transfer and on a retrieval methodology based on the Optimal Estimation Method (OEM, Rodgers, 2000) to solve the inverse 

problem in the retrieval (Hurtmans et al., 2012). FORLI provides twice-daily vertical distributions of three species, namely 

O3, CO and HNO3.  The FORLI methods have already been largely described (Hurtmans et al., 2012) so only a brief 105 

reminder will be presented here, focusing on the retrieval parameters for HNO3. 

The forward model can be written in a generic way as 

Y=F(x,b)+η                     (1) 

where Y is the measurement vector (the IASI calibrated and apodized radiances in our case), x is the retrieved state vector, b 

includes all parameters influencing the measurement, and η is the measurement noise. F is the forward function, which 110 

describes the complete physics of the measurement (Hurtmans et al., 2012; Rodgers, 2000).  

The inverse problem consists in finding a state vector x̂ approximating the true state vector x, in accordance with the 

measurement Y and with a prior knowledge of the state of the atmosphere, characterized by an a priori profile x𝑎 and the 

corresponding variance-covariance matrix S𝑎. The solution of the above equation for a linear problem is expressed as 

x̂ = x𝑎 + (K𝑻S𝜖
−𝟏K+S𝑎

−𝟏)
−𝟏

K𝑻S𝜖
−𝟏(y-Kx𝑎)                   (2) 115 
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where K  is the Jacobian of the forward model F, and S𝜖 is the measurement error covariance. For a non-linear problem as 

ours, the solution is found iteratively. The optimal estimation provides a very appropriate framework for characterizing the 

retrieved profiles, in terms of vertical sensitivity (analysed with the averaging kernel functions) and errors. The way those 

quantities are calculated are described in Hurtmans et al. (2012) and are not repeated here. FORLI-HNO3 in its latest version 

(v.20140922) provides profiles on 41 layers (from surface up to 40 km). The retrieval parameters, adapted from Wespes et 120 

al. (2009) and Hurtmans et al. (2012), are detailed in Table 1. The spectral range for the retrieval of HNO3 profiles is 860-

900 cm
-1

 (see Fig.2 in Wespes et al. 2009), in which only water vapour significantly interferes. The a priori profile (x𝑎) is 

defined as the mean of a combination of daily profiles from the LMDz-INCA chemistry-transport model (from the ground up 

to 15.6 km) and of all profiles obtained from ACE-FTS (from 6 to 60 km). The resulting mean profile is constant over time 

and does not depend on latitude or longitude, i.e. the same a priori profile is used for all observations around the globe. A 125 

variance-covariance matrix from the ensemble of profiles is then calculated (S𝑎) and yields high variability in the boundary 

layer (170%) and in the UTLS region (80%) and lower variability in the troposphere and the stratosphere (50% and 20%, 

respectively). The uncorrelated noise varies around the value of 2.10
-8 

W/(cm
2
cm

-1
sr). The FORLI-HNO3 retrieval 

performances in terms of root mean square (RMS) and bias values of the spectral residuals calculated after the retrievals, of 

retrieval total errors, and of degree of freedom for signal (DOFS calculated as the trace of the averaging kernel matrix – 130 

DOFS=trace(A)) are detailed in Hurtmans et al. (2012). Identically to Wespes et al. (2009), posteriori filtering of the data has 

been performed to remove some strongly biased HNO3 observations. For instance, only HNO3 observations with a good 

spectral fit (RMS of the spectral residual lower than 3.10
-8 

W/(cm
2
cm

-1
sr)) have been analysed. Additional quality flags 

rejecting biased or sloped residuals, suspect averaging kernels and maximum number of iterations exceeded are also applied. 

Cloud contaminated IASI scenes are also filtered out, based on cloud information from the Eumetcast operational processing 135 

(fractional cloud cover below 25%).  

3 Characterization of FORLI-HNO3 profiles and columns 

Figure 1 displays for illustration typical FORLI-HNO3 retrieved profiles at tropical (Izaña), mid (Jungfraujoch) and polar 

(Thule) latitudes in July as well as the a priori profile. It can be seen that the tropospheric concentrations are small and 

remain close to the a priori for all latitudes. Only Izaña stands out in this respect, with the retrieved concentrations 30% 140 

smaller than those of the a priori profile. The stratospheric concentrations are much higher, especially between 15 and 25 km 

altitude, and the better sensitivity of the instrument at these altitudes (discussed next) allows for significant departure from 

the a priori profile. For these three example profiles, maximum values range between less than 5 ppbv at Izaña and 9.5 ppbv 

at Thule. This latitudinal difference is in fact a persistent and well-documented feature (e.g. Santee et al., 2007, 1999; 

Wespes et al., 2007), which is mostly associated with reduced HNO3 photodissociation in the polar regions, mainly in 145 

winter.   
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The averaging kernels, presented in Figure 2 (top panels) for the same three locations as in Figure 1, allow characterizing the 

sensitivity of IASI to the HNO3 profile, within the general FORLI framework. We find that the averaging kernels show 

similar shapes whatever the latitude and cover the whole range of altitudes from the surface to the upper stratosphere. The 150 

limited amount of vertical information is well seen from the overlap between the individual layer kernels. Also the quasi 

absence of sensitivity in the low troposphere below 5 km is obvious, with absolute values of the averaging kernels close to 

zero. This confirms the conclusion from Wespes et al. (2009) that the IASI instrument does not carry several pieces of 

vertical information for HNO3. From the averaging kernels, we can also conclude that the maximum sensitivity to HNO3 is at 

around 15 km, slightly higher (18 km) at tropical latitudes in comparison to polar latitudes (13 km). This translates to a 155 

maximum sensitivity in the upper troposphere-lower stratosphere (UTLS) at equatorial latitudes, and in the low to middle 

stratosphere at polar latitudes, which corresponds generally to the altitude of highest concentrations.  

In order to have a global vision of the results, Figure 3 shows the global distributions of the degrees of freedom for signal 

(DOFS, top panels) separately for January (left) and July (right) 2011. These represent the number of independent pieces of 

information in the measurements and give an estimation of the vertical sensitivity of the retrievals. On average, all DOFS 160 

values are close to 1, further indicating that only one level of information can be extracted from the IASI data for HNO3. 

However, there are some latitudinal differences, with the DOFS being generally larger in the intertropical belt, with values 

around 1.1 or slightly more (e.g. in the deserts during the summer) due to larger temperatures inducing a better signal to 

noise ratio, in comparison to the mid and polar latitudes, where the DOFS is mostly around 0.9. However, it should be noted 

that the larger values of DOFS, particularly the ones found in the deserts, might also be, at least partly, attributed to the 165 

misrepresentation of the emissivity of these surfaces (Hurtmans et al., 2012). Indeed, even though we also find high surface 

temperatures (see Figure 3, middle panels) in most of the intertropical region of the globe, it does not necessarily induce such 

a large DOFS value. The lowermost panels in Figure 3 depict the altitude of maximum sensitivity of the IASI in January 

(left) and July (right). We show that the altitude of maximum sensitivity is invariant at equatorial and tropical latitudes, 

whereas it varies with the season at mid- and polar latitudes. As expected, the variations of the altitude of maximum 170 

sensitivity with the seasons follow the maximum HNO3 concentrations (see below).  

 

The optimal estimation method also enables characterizing the retrieved profiles in terms of error profiles. The total error on 

the retrieved profile can be divided into three components (Hurtmans et al., 2012; Rodgers, 2000):  

 the smoothing error, due to the consideration that the retrieved profile is an estimation of a state smoothed by the 175 

averaging kernel, rather than an estimate of the true state,  

 the error on the model parameters, due to fixed parameters in the direct model, e.g. surface emissivity, temperature 

profile. This error is not taken into account in the routine processing of the error matrix in FORLI,  

 the error due to the radiometric noise, i.e. the measurement error.  

The contributions of the different error sources are presented in Figure 4. This plots shows that the smoothing error is by far 180 

the main source of retrieval error over the entire altitude range (Wespes et al., 2007). We find, in agreement with the low 
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values of the averaging kernels, that the total retrieval error in the low troposphere reproduces the a priori covariance, 

meaning that no information on HNO3 profile is obtained from the IASI measurement at these altitudes. The total error 

decreases with increasing altitude, reaching minimum values of about 20% around 20 km, where the sensitivity is highest. 

Comparing with the a priori covariance, the precision is in fact increased mainly between 5 and 25 km, and especially around 185 

14 km where the reduction of error reaches almost 50%. Above 30 km, the gain of information is again minimal. The 

measurement error is a minor source of error; it reaches a maximum of 30% in the boundary layer and quickly becomes 

negligible above 10 km. The error on the profile translates to a total retrieval error in the range of 5 to 50% depending on 

latitude, with a mean value of 10%. When calculated for various partial columns (see box in Figure 4, left), it appears clearly 

that the tropospheric column carries the largest error (62%), whereas the error is lower for the total (10%) or the 190 

stratospheric (8%) column. Following the analysis of the error profiles in Figure 4 (left), a column ranging from 5 to 35 km 

can be considered as the one carrying most of the retrieved information; it is characterized by a total retrieval error of 3% on 

a global average and the DOFS is the same as for the total column (ranging from 0.9 to 1.2).  

Spatially, we find that the total error is larger at tropical latitudes, with values around 10-15% (Figure 4, right), mainly due to 

the higher concentrations of water vapor, which has absorption lines that interfere under large humidity with the ones of 195 

HNO3 in the spectral region used for the inversion (Hurtmans et al., 2012; Wespes et al., 2009). The mid and polar latitudes 

are characterized by much lower total retrieval errors, with maximum values of about 3% for the 5 to 35 km column. This 

corresponds to a reduction by a factor 30 as compared to the prior uncertainty defined by S𝑎 (90%). The very large errors 

found in Antarctica are most probably due to a misrepresentation of the surface emissivity above cold regions and to a very 

poor sensitivity above such cold regions (Hurtmans et al., 2012).  200 

4 Validation methodology 

The IASI derived HNO3 profiles/columns are compared here with reference profiles/columns retrieved from measurements 

made by ground-based infrared Fourier-transform spectrometers (FTIR) for the sake of validation. Note that the  FTIR HNO3 

profiles have been used to validate other satellite datasets before (Vigouroux et al., 2007; Wang et al., 2007; Wolff et al., 

2008; Wood et al., 2002). 205 

4.1 FTIR stations and instrument 

For our study, six stations routinely operating FTIR instruments, which are all part of the Network for the Detection of 

Atmospheric Composition Change (NDACC, http://www.ndacc.org) and which span a large range of latitudes, were selected 

for the validation: Thule (76.5°N, 69°W), Kiruna (67.8°N, 20.4°E), Jungfraujoch (46.6°N, 8.0°E), Izaña (28.3°N; 16.5°E), 

Lauder (45.0°S, 169.7°E) and Arrival Heights (77.8°S, 166.7°E). The location of each station is displayed in Figure 3 (red 210 

dots, upper left panel) and details on the operating instrument and retrieval algorithms are given in Table 2. The FTIRs 
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provide data year round for all six stations, except at high latitudes (Thule and Arrival Heights in our case) where the lack 

for light prevents solar measurements during winter. 

All instruments are Bruker spectrometers (120M for Thule and Arrival Heights, 120HR for Jungfraujoch and Lauder, and 

125HR for Kiruna and Izaña). The algorithms used for the retrieval of HNO3 profiles are PROFFIT (Hase et al., 2004) for 215 

Kiruna and Izaña, SFIT2 (Pougatchev  al. 1995; Rinsland et al., 1998) for Thule and Jungfraujoch, and SFIT4 (Pougatchev et 

al., 1995) for Lauder and Arrival Heights. An updated Lauder and Arrival Heights HNO3 data set was used in this study. The 

Lauder and Arrival Heights retrievals implemented SFIT4 closely adhering to the prescribed NDACC IRWG HNO3 retrieval 

strategy (see http://www.acom.ucar.edu/irwg/IRWG_Uniform_RP_Summary-3.pdf), with the following particularities: at 

both sites the spectral resolution is 0.0035 cm
-1

 and pressure and temperature profiles (ZPT) were obtained from NCEP. 220 

Using LINEFIT (Hase et al., 1999) to diagnose the instrument lineshape (ILS), an ideal ILS is assumed at Lauder whilst a 

parametrised linear ILS from 1.0 at ZPD to 0.95 (max OPD) is used in Arrival Heights retrievals. A single beam channelling 

fit is also implemented in the Arrival Heights retrievals. The signal-to-noise ratio (SNR) is calculated per spectrum and 

yields typical values of 180 and 195 for Lauder and Arrival Heights, respectively.  

The three algorithms (PROFFIT, SFIT2 and SFIT4) use the optimal estimation method (OEM) developed by Rodgers (2000) 225 

which facilitates the comparison with IASI. All stations use microwindows in the region 866-875.2 cm
-1

 for the retrieval of 

HNO3 profiles and the DOFS range between 1.9±0.5 (Jungfraujoch) and 3.1±0.4 (Thule). The a priori profiles are described 

individually at each station, regardless of seasonality. It should be noted that, due to the lower degrees of freedom in the 

Lauder and Arrival Heights retrievals, there were numerical artefacts in the smoothing operation between the IASI and the 

FTIR ground-based measurements (see section 4.2). To reduce these artefacts, a smoothed IASI a priori profile was used as 230 

the a priori in the ground-based retrievals in this study. The associated ground-based retrieval a priori covariance matrices 

(Sa) were also constructed from a smoothed IASI covariance data set. Spectroscopic line parameters were all taken from 

HITRAN 2008 database (Rothman et al., 2009). Note that IASI retrievals use spectroscopic line parameters taken from 

HITRAN 2004 database (Rothman et al., 2005). The update consists mainly in an improvement of the line positions and 

intensities (Flaud et al., 2006; Gomez et al., 2009; Rothman et al., 2009) and the differences it might induce should be kept 235 

in mind when analysing the comparison between the two instruments. Additional differences between the two instruments 

might also come from the uncertainty of the FTIR measurements themselves, which is dominated by the temperature and the 

spectroscopy information in the retrieval.  

4.2 Co-location criteria and comparison method 

The validation is performed for the year 2011 of IASI data. For the spatial co-location, the line of sight of the FTIR 240 

measurement is calculated, as well as the point along that line where the sensitivity is highest (i.e. where the total averaging 

kernel (see Figure 2, black dashed line) reaches a maximum). A large ‘box’ in which IASI measurements might be 

considered was defined for each station (approximately 10° of latitude and 15° of longitude around each station), but it is the 
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location of the maximum sensitivity along the line of sight that determines the reference for the co-location with IASI 

measurements. The co-location criteria chosen is such that the IASI measurements should be within 0.5° in latitude and 1° in 245 

longitude from the FTIR reference point.  

The co-location in time has been chosen after several tests (not shown) as ≤ 12h. If more than one IASI measurement was 

satisfying these criteria, then all IASI retrieved profiles inside that spatial and temporal window were averaged. Each pair 

(FTIR, co-located IASI) undergoes the validation steps described below and in Rodgers & Connor (2003).  

The raw profiles retrieved from IASI and FTIR cannot be compared adequately because of the difference in vertical 250 

sensitivity (Rodgers & Connor, 2003). To illustrate this, Figure 2 depicts both IASI and FTIR typical averaging kernels (top 

and bottom panels, respectively) as well as the IASI and FTIR so-called “sensitivities” (red curves). The sensitivity at 

altitude 𝑖 is calculated as the sum of the elements of the corresponding averaging kernel, ∑ 𝑨𝑖𝑗𝑗  (with 𝑨 the averaging 

kernels matrix) and represents the fraction of the retrieval that comes from the measurement rather than from the a priori 

profile (Vigouroux et al., 2007). As opposed to this sensitivity, the total averaging kernel (dashed black lines) is calculated as 255 

∑ 𝑨𝑖𝑗𝑖  and represents the contribution of each level to the sensitivity at a given altitude 𝑖.  

We find that the FTIR instrument provides better vertical resolution, with each averaging kernel maximum close to its 

corresponding layer, and a total DOFS within the known values (see Table 2) for these examples. The averaging kernel 

associated with the total column (Figure 2, black dashed lines) show a maximum around 200 hPa for both instruments at all 

latitudes. Looking at the sensitivity of the two instruments (red lines), two maxima reaching 1 appear in the Thule FTIR 260 

example; one around 200 hPa (same as IASI) and one around 20 hPa, indicating that the measurement is specifically 

sensitive to variations in HNO3 concentrations in those two regions of the atmosphere. On the other hand, the IASI 

maximum sensitivity largely exceeds the value of 1 around 200 hPa at all latitudes, indicating that the instrument might be 

over-sensitive to HNO3 concentrations in that region of the atmosphere (Vigouroux et al., 2007), and that it might over-

compensate the lack of sensitivity in other regions of the atmosphere, yielding large HNO3 concentrations.  265 

In order to compare an FTIR-IASI profiles pair and to reduce the smoothing uncertainties on the comparison, we use 

Rodgers and Connor (2003). First we insert the IASI a priori in the FTIR profile using  

x𝑓𝑖 = x𝑓 + (A𝑓 − 𝐼)(x𝑎𝑓 − x𝑎𝑖)                        (3) 

where x𝑓𝑖  is the FTIR profile aligned with the IASI a priori x𝑎𝑖 , x𝑓 is the raw FTIR profile, x𝑎𝑓 the a priori FTIR profile, and 

A𝑓 is the FTIR averaging kernel matrix.  270 

Next, this aligned FTIR profile is interpolated to the IASI altitude grid and the standard smoothing equation is applied, using 

the IASI averaging kernel and a priori:  

 x𝑠=x𝑎𝑖+A𝐼(x𝑓𝑟-x𝑎𝑖)                       (4) 

where x𝑠 is the smoothed version of x𝑓, x𝑓𝑟  is the regridded FTIR profile and A𝐼 is the IASI averaging kernels matrix. A 

final step is to average, for a given FTIR profile, all corresponding IASI and smoothed FTIR profiles. This way, FTIR 275 

measurements with a high number of co-locations do not influence the statistics.    
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The comparison is carried out next for the profiles (section 5.1) or partial columns (5-35 km) (section 5.2). For the 

discussion, we rely on the relative difference between the quantities retrieved from IASI and the corresponding ones from 

the smoothed FTIR data following: 

 𝑥(%) =
𝐼𝐴𝑆𝐼−𝐹𝑇𝐼𝑅

𝐹𝑇𝐼𝑅
×100                       (5) 280 

with 𝑥 being the relative difference. Standard deviations are also calculated as: 

𝜎𝑥 = √
1

𝑁−1
∑ (𝑥𝑖 − �̅�)2𝑁
𝑖−1                      (6) 

with 𝑁 the number of observations, 𝑥𝑖 the difference between IASI and FTIR values for the 𝑖th
 observation and �̅� the mean of 

the differences for all measurements, and allow the characterization of the variability of the data set.  

5 Validation results 285 

5.1 Vertical profiles  

The comparison of the HNO3 mean vertical profiles retrieved from IASI and the FTIRs for each station is presented in Figure 

5, with the six panels on the left showing the comparison between IASI profile (red) and the raw (black) and smoothed 

(green) FTIR profiles, as well as IASI and FTIR a priori profiles (dashed red and dashed black lines, respectively). The right 

panel shows the mean relative differences (%) between IASI and the smoothed FTIR profile for each station. For all stations, 290 

the raw FTIR profile is largely different from the IASI profile, and this difference remains after regridding on the IASI 

retrieved levels (not shown). The smoothing of the FTIR profile with IASI averaging kernels brings the two profiles much 

closer together, with differences generally below 50% at all altitudes and maximum differences in the upper troposphere-

lower stratosphere between 300 and 50 hPa. At the higher latitudes, the differences in the profiles are always below 20%. The 

statistics of the comparison between profiles is summarized in Table 3. Overall, the troposphere and higher stratosphere 295 

record lower values of relative difference between IASI and the smoothed FTIR profile. However, this is in most part related 

to the low vertical sensitivity in these regions of the atmosphere, forcing the retrieval to rely mostly on the a priori 

information, i.e. the same information after the smoothing of the FTIR profiles with IASI a priori information. As indicated 

in the Table 3 and as can be seen in Figure 5 (right), at all stations, the maximum values for the relative differences with the 

smoothed profile are located in the low stratosphere (around 13 km altitude), where the sensitivity of IASI to the 300 

measurement is the largest (see Fig.2, top panels). These differences are always positive, suggesting an overestimation of the 

IASI concentrations in that region of the atmosphere, compared with the FTIR data, and they vary with the latitude (from 

4.7% at Arrival Heights to 47.2% at Lauder). Important differences between IASI and the FTIR are also found in the 

boundary layer, especially in Kiruna (-11.8%), Jungfraujoch (19.7%) and Arrival Heights (43.9%) and probably do not reveal 

a real difference, but rather an artefact due to the regridding with potential differences in the altitude taken as ground level in 305 

both instruments. It should be noted that an overestimation of IASI measurements compared with ground-based 
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measurements in the upper troposphere-lower stratosphere has also been found for O3 vertical profiles (Antón et al., 2011; 

Dufour et al., 2012; Gazeaux et al., 2013). While some hypotheses have been brought forward by Dufour et al. (2012), the 

exact reason for that particular feature of FORLI for both HNO3 and O3 retrievals is not clear. 

5.2 Partial columns  310 

HNO3 partial columns from 5 to 35 km have then been compared in a similar way as the profiles. We recall here that the 

choice of this partial column is made in order to consider only the range of altitudes where both instruments are sensitive 

(see discussion in section 3 and comparison of averaging kernels in Figure 2), getting rid of the low troposphere and the high 

stratosphere. The results for the 2011 time series are displayed in Figure 6. For each station, the top panel shows the 

comparison between raw (black) and smoothed (green) FTIR and IASI partial columns (red). Each grey point represents a 315 

daily mean of all IASI observations recorded in the area around the FTIR station (the predefined ‘box’ around each station, 

see section 4.2.), with a 3σ confidence interval around each grey point. The entire time evolution of the columns from IASI 

is displayed in grey. It shows the exceptional temporal sampling and especially the usefulness of IASI measurements in the 

winter months at high latitude. The IASI a priori is also represented (grey dashed line) for each station. Note that the slight 

temporal variability of the IASI a priori is due to its representation in column units, making it dependent on the air column at 320 

the time of measurement. The possibility to investigate chemical and physical processes from these time series is briefly 

explored in section 6. The bottom panels in Figure 6 show the relative differences between the different data sets. The 

statistics of the comparison are provided in Table 4. For all stations and all measurements, we find that the FTIR column 

values are within the IASI total retrieval error range (see red error bars), with mean values of HNO3 partial columns very 

similar between the two instruments (see Table 4, columns 5 and 6). Considering the smoothed columns, IASI is always 325 

positively biased, with bias values between 4.0% in Thule and 21.7% for Lauder, and with an overall bias (all stations 

together) of 11.5% (Table 4). The smoothing of the FTIR data is particularly efficient for the comparison with IASI 

observations at Izaña, where the bias decreases from 21.3% to 9.2% from the unsmoothed to the smoothed FTIR. Being the 

station with the largest difference between the FTIR and the IASI a priori profiles (see Figure 5), Izaña is a good example of 

the influence of the a priori profiles in the retrievals. Indeed, with initially very different a priori profiles and limited vertical 330 

sensitivities, yielding large relative differences between the two data sets (see Figure 6, black dots), the smoothing of the 

FTIR data set largely decreases the mean bias (green dots).  

Looking at all stations, the standard deviation of the differences is larger than the bias at Thule, Kiruna, Izaña and Arrival 

Heights, suggesting that the bias is non-significant compared to the variability (Kerzenmacher et al., 2012). The reason of the 

different behaviour for the Jungfraujoch and Lauder mid-latitude stations is unclear at this point.  335 

Figure 7 summarizes the results from the partial column validation, by showing (top) the correlation between IASI and FTIR 

data, for all stations and (bottom) the relative differences in the columns. The stations are identified by a different color. We 

find that the overall correlation coefficient reaches 0.93 (the correlation coefficients for each station are specified in Table 4, 
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last column) showing that IASI captures very well the dynamic range of variability for the column, which varies between 

0.9.10
16

 and 4.5.10
16

 molec.cm
-2

. This high correlation coefficient must however be considered cautiously, because of the 340 

influence of the remaining a priori information, albeit moderately since the least sensitive regions have been removed by 

considering the 5-35 km partial column. The relative differences clearly illustrate the positive bias of IASI described above, 

but also that the bias does not show any particular temporal trend.  

6 Spatial and temporal variability 

6.1 Variability at NDACC stations 345 

In Thule, IASI HNO3 columns (red dots on Figure 6) range between 1.6 10
16

 in summer and 4.5 10
16

 molec.cm
-2

 in spring. 

The amplitude of the seasonal cycle thus amounts to 3.0 10
16

 molec.cm
-2

. The annual cycle is consistent with the known 

variability of stratospheric polar latitudes (Wespes et al., 2009). The comparison of the seasonality with the FTIR is not 

possible at Thule since the FTIR instrument, which operates with solar light, does not provide data before March and after 

October.  350 

In Kiruna, IASI partial columns range between around 1.5 10
16

 molec.cm
-2 

and 3.5 10
16

 molec.cm
-2

. The winter months 

(February to April, approximately) are characterized by higher columns whereas the summer columns are lower (July and 

August), giving a seasonal amplitude of 2 10
16

 molec.cm
-2

. Due to the relatively high latitude of the station, January and 

December data are also missing in the FTIR record. With the data available, we find good agreement on the seasonality 

between IASI and the FTIR, however with a time-dependent bias and especially a significant positive bias of IASI (~30%) 355 

for several days around mid-February and a low bias around -20% throughout March.  

At Jungfraujoch and Izaña, IASI partial columns are lower than at higher latitudes, ranging between around 1.3 10
16

 and 3.0 

10
16

 molec.cm
-2

 for Jungfraujoch, and 0.9 10
16

 and 1.7 10
16

 molec.cm
-2

 for Izaña. The amplitude of the seasonal cycle is thus 

much weaker than at higher latitudes (1.7 10
16

 molec.cm
-2 

at Jungfraujoch and 0.9 10
16

 molec.cm
-2

 at Izaña), with only 

slightly higher concentrations observed in January and February at Jungfraujoch.  360 

In the Southern hemisphere, at Lauder, IASI partial columns range between 1.0 10
16

 and 2.6 10
16

 molec.cm
-2

 with slightly 

higher values recorded during the local winter and spring (August-September, mainly). The annual cycle amplitude reaches 

1.5 10
16

 molec.cm
-2

 and reflects well the small annual cycle usually recorded for southern mid-latitudes.  

As for Arrival Heights, columns range between 0.9 10
16

 and 3.1 10
16

 molec.cm
-2

, and the day-to-day variability caused by 

the variability of the vortex itself is well seen in the data (see for example the three data points in April). Due to its very 365 

southern location and the absence of solar light during a long period of time, the FTIR instrument does not take any 

measurements from April until September. Given the little amount of FTIR data thus recorded, it is quite difficult to 

establish any clear seasonality about HNO3 columns. The complete IASI data set (grey dots in Figure 6) allows assessing the 

seasonal cycles at all stations. It is thus particularly helpful for polar regions (Thule and Arrival Heights) where the dynamics 
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during winter is important. Hence, we find lower concentrations than what could be expected at Thule from January to April 370 

(consistent with the few FTIR data available in March) and a strong decrease in HNO3 concentrations in June at Arrival 

Heights, which are discussed below. Another important feature highlighted by the complete IASI data set is the large spatial 

variability recorded at high latitudes. Indeed, with each grey data point representing a daily mean of all IASI observations in 

a quite large box around the station, and the red dots being the closest IASI observation to the FTIR reference point for the 

comparison (see section 4.2. for details), the difference between the two shows the spatial variability that can exist within a 375 

defined region. Such a feature can be observed at Arrival Heights, Thule and Kiruna, whereas other stations located at more 

mid-latitudes (Lauder, Izaña and Jungfraujoch) show very little to no spatial variability. The daily variability is also 

highlighted in Figure 6, with the grey shaded areas representing the standard deviation (3𝜎) of the daily mean IASI 

observations. This variability includes the spatial variation of HNO3 inside the selected boxes around the FTIR stations and 

the daily variation captured by the IASI daytime and nighttime measurements. It is particularly interesting in the mid- and 380 

high latitude stations, especially in winter (Januay-April for Thule, July-September for Arrival Heights), where it is much 

larger than the error values (~1.7.10
16

 molecules.cm
-2

 for the daily variations vs ~0.5.10
16

 molecules.cm
-2

 for the total error - 

red vertical error bars) and thus proves that the IASI instrument captures a real daily variability of HNO3 partial columns at 

these latitudes. This is mainly linked to the rapid zonal transport of air masses induced by the development of the polar 

vortex in these regions (Wespes et al., 2009). Regarding the tropical latitudes, the daily variability should be considered 385 

more cautiously, since it is of the same magnitude as the retrieval error. Though not in the scope of the present study, the 

question of day and night variability needs to be further investigated.  

6.2 Global variability 

Beyond assessing the validity of HNO3 locally, IASI offers the potential of global analysis thanks to its sampling. Monthly 

global distributions of the HNO3 total columns in 2011, calculated from the FORLI-HNO3 retrieved vertical profiles are 390 

shown in Figure 8 for the Northern (left) and Southern (right) Hemispheres. On the other hand, Figure 9 depicts mean daily 

HNO3 concentrations time series for 9 latitudinal bands of 20° each (Northern Hemisphere on the left, Southern Hemisphere 

on the right). From these two figures, we show that the general spatial features with lower columns at tropical latitudes and 

higher columns at polar latitudes are well seen, especially during the winter.  

The tropical regions show very low column values (around 1.0 10
16

 molec.cm
-2

) all year round. Identically to the HNO3 total 395 

column product (Wespes et al., 2009) no seasonality is observed (average amplitude of only 2.3 10
15

 molec.cm
-2

 for Equator 

and both Tropics), nor any particular spatial pattern, as can be seen from Figures 8 and 9. The mid- and polar latitudes in 

both hemispheres record higher concentrations, especially during the winter, with maximum values of up to 4.5 10
16

 

molec.cm
-2

 (Arctic). The build-up of high HNO3 concentrations starts at the beginning of the winter (October) and lasts until 

April-May, where the longer days enhance photodissociation. In the southern hemisphere, the concentrations also increase at 400 

the beginning of winter (April), but decrease rapidly (within one month, see June in Figure 8 (right) and dark blue in Figure 
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9 (right)) with the denitrification process happening during winter. Due to denitrification, only a high concentration collar 

remains at the vortex edge, while the concentrations inside the polar vortex drop to as low as 1.0 10
16

 molec.cm
-2

. The 

phenomenon is very obvious in Antarctic in July and August but, albeit moderately, also in the Arctic in January (see Figure 

9 (left), light blue curve). Note that in the Arctic this is not a recurring annual feature. In 2011, it was caused by the 405 

exceptional stratospheric conditions during winter, which led also to a strong Arctic ozone depletion. This denitrification was 

documented before in Manney et al. (2011) based on MLS limb observations.  

With these fluctuations, the polar regions record not only the highest columns but also the largest cycle amplitudes, which 

are around 1.0 10
16

 and 1.4 10
16

 molec.cm
-2

 for North and South poles, respectively, with low columns in the summer and 

high columns in the winter.  410 

In addition to the seasonal cycles, significant daily variability represented by the colored shaded areas in Figure 9 (calculated 

as 1 sigma of the daily IASI measurements) can be revealed thanks to the IASI sampling, especially at high latitudes during 

the denitrification periods. This daily variability has already been reported by Wespes et al. (2009). The main reason behind 

the day-to-day variability at high latitude is the variability of the vortex itself.   

7 Conclusions and perspectives 415 

In this paper we have characterized, validated and analysed the first results of the FORLI-HNO3 vertical profiles data set 

retrieved from IASI/MetOp. The profiles are retrieved on a 41 km altitude grid twice a day, globally. A 8-year record is now 

available on request and an implementation in the EUMETSAT IASI-Level2 Product Processing Facility (August et al., 

2012) is foreseen. One year (2011) of data has been investigated here. We have shown that IASI has a maximum sensitivity 

to the HNO3 profile in the stratosphere, around 10-20 km altitude and that the vertical sensitivity of the instrument typically 420 

allows retrieving a single piece of information on the profile (DOFS varying from 0.9 to 1.2). The altitude of maximum 

sensitivity corresponds to the region of the atmosphere with the highest concentrations. The averaging kernels and error 

profiles showed that most of the available information in the IASI measurements originates from the altitude range between 

5 to 35 km altitude. In terms of the corresponding partial column (5-35 km), the total retrieval error was calculated to be 

around 3% at high latitudes, where water vapour does not interfere with HNO3 absorption lines, increasing to 10-15% at 425 

equatorial latitudes.  

The validation was conducted by comparing the IASI retrieved HNO3 profiles or partial columns to those retrieved from 

ground-based FTIR measurements made at six different stations spread around the globe at representative latitudes, namely 

Thule, Kiruna, Jungfraujoch, Izaña, Lauder and Arrival Heights. We found good general agreement between IASI and the 

smoothed FTIR profiles, with, however, an overestimation of IASI data compared with FTIR measurements (11.5% positive 430 

bias). In most cases, the differences were not found significant compared to the variability. The correlation between the two 

data sets is high for all stations (0.93 for all stations together), demonstrating the capability of IASI to capture the spatial and 

temporal patterns of the HNO3 variability. However, as could be highlighted by the case of Izaña, the influence of the a 
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priori profile to the validation process is quite large, since the application of a common a priori profile to both measurements 

largely improves the comparison. It should also be noted that the differences observed between the two data sets can also be 435 

attributed, at least partly, to the difference in the spectral region used by each instrument, the different line parameters 

(HITRAN 2004 for IASI and HITRAN 2008 for FTIR) and codes used for the retrievals and the errors of each instrument.  

IASI data allows remarkable monitoring of year-round HNO3 concentrations. The global distribution acquired with IASI 

showed for instance a clear latitudinal gradient, with low and relatively constant concentrations at tropical latitudes, and 

much higher and very variable concentrations at mid and polar latitudes. The daily variability also highlighted by the IASI 440 

data set can be further investigated thanks to the capability of the IASI sounder to monitor the atmosphere at both day and 

night time.  

The polar processes, including the strong denitrification in Antarctic, are well monitored with IASI, both spatially and 

temporally. Overall, the results presented here are extremely encouraging with regard to the use of the HNO3 dataset from 

IASI to investigate stratospheric processes on local to global scales, with particular interest for the polar regions. The long 445 

time series that are available from IASI, which will span more than 15 years and which will be extended with the IASI-NG 

instrument on EPS-SG (Clerbaux & Crevoisier, 2013; Crevoisier et al., 2014), will be important to monitor longer-term 

changes in stratospheric composition and its link to climate.  
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Table 1. Retrieval settings used for the retrieval of HNO3 concentration profiles, using the FORLI-HNO3 software, and updated 

from Wespes et al. 2009. From first to last row: spectral range, a priori profile (xa), a priori covariance matrix (Sa), uncorrelated 

noise (𝝈𝝐), and state vector elements.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. NDACC stations selected for the HNO3 validation, and their location, coordinates and altitude (in meters above sea level). 

The instrument and retrieval code for the retrieval of the data are specified for each station, as well as the microwindows and 

DOFS for total columns. References for further details are listed in the first column 

 

 

 

 

Retrieval spectral range 860-900cm-1 

xa LMDz-INCA (ground-15.6km), ACE-FTS (6-60km) 

Sa 0-5km: 170% ; 5-10km: 50% ; 10-20km: 80% ; 20-41km: 20% 

𝜎𝜖 2.10-8 W/(cm2cm-1sr) 

State vector Surface temperature, HNO3 profile, Water vapour column  

Station 

(References) 
Location Coordinates Altitude 

(m a.s.l.) 

Instrument Retrieval 

code 

Microwindows 

(cm-1) 

DOFS 

Thule 

(Hannigan et al., 2009) 

Greenland 76.5° N, 69° W 225 Bruker 120M SFIT2  867.5-870.0 3.1 ± 0.4 

Kiruna 

(Blumenstock et al., 

2006) 

Sweden 67.8° N, 20.4° E 419 Bruker 

125HR 

PROFFIT9 867.0-869.6 

872.8-875.2 

3.0 ± 0.4 

Jungfraujoch 

(Mahieu et al., 1997; 

Zander et al., 2008) 

Switzerland 46.6° N, 8.0° E 3580 Bruker 

120HR 

SFIT2  868.5-870.0 

872.25-874.0 

1.9 ± 0.5 

Izaña 

(García et al., 2012; 

Schneider et al., 2005) 

Canary Islands 28.3° N, 16.5° W 2367 Bruker 

125HR 

PROFFIT9 867.0-869.6 

872.8-875.2 

2.3 ± 0.3  

Lauder New Zealand 45.0° S, 169.7° E 370 Bruker 

120HR 

SFIT4 867.05-870.0 

872.25-874.0 

2.1 ± 0.3 

Arrival Heights 

 

Ross Island, 

Antarctica 

77.8° S, 166.7° E 200 Bruker 120M SFIT4 867.05-870.0 

872.25-874.0 

1.9 ± 0.4 
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Table 3. For each station: minimum and maximum values of relative differences (%) and correlation coefficients between HNO3 

IASI profiles and FTIR smoothed profiles. The value between brackets is the altitude (km) of minimum (maximum) relative 

difference between profiles.  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Table 4. For each station: mean of relative differences (bias) in %, calculated following Eq.5 for smoothed FTIR partial columns, 

standard deviation of differences between IASI and smoothed FTIR, mean values for both data sets, number of comparison pairs 

and correlation coefficient between IASI and smoothed FTIR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 Minimum (%) 

[altitude (km)] 

Maximum (%) 

[altitude (km)] 

Thule 0.4 [22] 12.5 [13] 

Kiruna -0.1 [24] 18.0 [13] 

Jungfraujoch 0.1 [37] 25.8[12] 

Izaña 0.21 [2] 45.0 [13] 

Lauder 1.2 [39] 47.2 [12] 

Arrival Heights 0.4 [4] 4.7 [13] 

Stations Bias (%) 

Smoothed FTIR 

Standard 

deviation (%) 

Mean IASI 

(molec.cm-2) 

Mean FTIR 

(molec.cm-2) 

# 

pairs 

R 

Thule 4.0 9.7 2.3.1016±0.5 2.2.1016±0.4 151 0.84 

Kiruna 8.6 11.9 2.4.1016±0.4 2.2.1016±0.4 206 0.81 

Jungfraujoch 13.9 9.6 1.9.1016±0.3 1.7.1016±0.3 583 0.91 

Izaña 9.2 9.8 1.1.1016±0.2 1.1.1016±0.1 256 0.74 

Lauder 21.7 13.0 1.7.1016±0.3 1.4.1016±0.3 74 0.81 

Arrival Heights 1.1 16.3 1.4.1016±0.4 1.4.1016±0.3 75 0.77 

All stations 11.5 12.1   1345 0.93 
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Figure 1. Example of IASI HNO3 vertical profiles, for July, at three locations in the northern hemisphere: Izaña (28.3°N, 16.5°W), 

Jungfraujoch (46.6°N, 8.2°E) and Thule (76.5°N, 69.0°W). The a priori profile and a priori variability (horizontal bars) are 

represented in red, and the retrieved profile and its error are in black. The concentrations are expressed in molecular density, i.e. 

molec.cm-3 (top panels), and in volume mixing ratio (ppbv, bottom panels). The black dashed line is the altitude of the tropopause, 

calculated as the lapse-rate tropopause.   
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Figure 2. For three typical latitudes in July: Izaña (tropical, left), Jungfraujoch (mid-latitude, middle) and Thule (polar, right): 

(top) IASI  and (bottom) FTIR averaging kernels for HNO3 expressed in column units (molec.cm-2), The DOFS values are specified 

on each graph, and the total column averaging kernel is represented by the black dashed line. The red line is the sensitivity (see 

text for details) and the colored dots represent the altitude of each kernel  
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Figure 3. For January (left) and July (right) 2011; (top) Global distribution of the DOFS for IASI HNO3 total columns. The red 

dots on the left are the location of the stations used for the validation; from north to south: Thule, Kiruna, Jungfraujoch, Izaña, 

Lauder, Arrival Heights. (middle) Global distribution of surface temperatures (in K). (bottom) Global distribution of the altitude 

of maximum sensitivity (km) of IASI instrument, in the sense of the total averaging kernel.  
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Figure 4. (left) Error profiles for FORLI-HNO3 showed in %.  The total retrieval error is in black, the measurement error in 

orange and the smoothing error in light blue. The a priori variance (square root of the diagonal elements of Sa) is in red. Also 

shown in the table is the total error on different partial columns (tropopause height taken as the lapse-rate tropopause for 

tropospheric and stratospheric columns). (right) Spatial distribution of total retrieval error (%) on the 5-35 km column for 

January (top) and July (bottom). 
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Figure 5. (left) IASI (red), raw FTIR (black) and regridded and smoothed FTIR mean profiles (green). Also shown are the IASI 

and FTIR a priori profiles (red and black dashed lines, respectively). (right) Relative differences between the IASI and the FTIR 

smoothed profiles for each station.  
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Figure 6. (top panels) Comparison of the IASI and the corresponding FTIR partial (5-35 km) columns: the red dots are IASI 

derived partial columns, the black dots refer to the raw FTIR data and the green dots to the smoothed FTIR. The vertical error 

bars represent the retrieval total error for each instrument. Also represented (in light grey) is the IASI data set averaged over a 

small region around the FTIR location (see text for details) and the standard deviation for each data point (grey shaded areas). 

The IASI a priori partial column is represented by the dashed grey line. (bottom panels) Relative differences (dots), bias (dashed 

line) and standard deviation (dotted lines) between the two data sets for each station: in black, the difference between IASI and the 

raw FTIR data, in green, the difference between IASI and the smoothed FTIR data.  
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Figure 7. (top) Comparison of the smoothed FTIR and IASI partial (5-35 km) columns for all stations considered, for the year 

2011. Also shown is the correlation coefficient value. (bottom) Time series of the relative differences between IASI and FTIR total 

columns (calculated as ((IASI-FTIR)/FTIR)*100) (%). Also shown are the values of bias for each station (colored dashed lines) and 

the bias and standard deviation when considering all stations together (black dashed and dotted lines, respectively). 
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Figure 8. Monthly global distributions of IASI HNO3 total columns in 2011 in the Northern Hemisphere (left) and the Southern 

Hemisphere (right). Columns are expressed in molec.cm-2.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Seasonal variability (daily mean) and daily variability (shading, calculated as the standard deviation of the daily mean) 

of the total column for 9 latitudinal bands of 20°, each shown with a different color.  
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