
We thank both reviewers for their careful readings and helpful suggestions.  Below, the reviewers’ 

comments are shown in color with our responses in black.  Extended quotes from our revised 

manuscript are shown indented. 

Comments of Reviewer 1 

The authors use the optimal estimation technique to explore the information contained in so called 3+2 

lidar measurements in respect to particle properties. The approach to analysis is interesting and 

provides new insight in lidara data inversion. The manuscript is very  well  written  and  deserves  to  be  

published.  

R1.1: The  authors  use  for  analysis  a monomodal size distribution, and it definitely limits the results 

obtained. If they understand how to generalize this analysis for bimodal distribution, it is worth 

mentioning it in the conclusion.  

Thanks for the suggestion.  It will fairly straightforward to extend the calculations to accommodate a 

bimodal distribution.  While a monomodal size distribution with a single wavelength-independent 

complex refractive index can be identified with 5 free variables (median radius, mode width, number 

concentration, real refractive index, imaginary refractive index), a bimodal distribution can be 

represented with 10 free variables (the same variables for each mode; alternately, the number 

concentration can be represented as a total number concentration plus a fine mode fraction).  To 

extend Eq. 1, simply add the coarse mode and fine modes together.  Then the Jacobian matrix in Eq 4 is 

a 10 x 5 matrix, with 10 state variables and 5 measurement variables.  Eq 8 and 9 to determine the DOF 

and the propagated uncertainties do not depend on a square matrix so no other changes are necessary.  

It’s also possible to simplify the model and assume all the particles have the same complex refractive 

index, as is done in some similar retrievals, or to make it more complicated and allow the refractive 

indices to have a spectral dependence, which is probably more realistic.  Indeed we anticipate that 

extending the study to bimodal distributions will be most complicated for this reason, not for the 

calculations themselves; that is, more study will need to be done to determine the best 

parameterization to use.  Considering current retrievals from satellites like MODIS and POLDER and from 

AERONET and various lidar retrievals, there does not yet seem to be clear consensus on what is the best 

parameterization of a bimodal aerosol distribution with regards to the complex refractive index.  We 

think this question probably deserves a separate focused study and we did not wish to get distracted by 

this complex question in this paper.  Rather, the intentional choice was made to use the simplest 

applicable model with the fewest free parameters.  This represents the best case; that is, since only the 

forward model is used in the study with no retrieval, there is an implied perfect fit between the 

simplified model and the aerosol to be retrieved.  This suits our purpose well, since we wish to 

determine the uncertainties due to the limitations in the number and independence of the 

measurements only. For this reason, we don’t feel that the monomodal size distribution is limiting in 

this context. But we recognize that retrieving real aerosol data with this or any model (including a more 

complex one) will result in additional errors that are due to imperfection of the model, a topic for other 

papers. 

In response to the reviewer’s suggestion, we altered the first paragraph of the “Summary and 

Discussion” section to include the following text: 



By avoiding a retrieval and using the forward model only (along with reasonable measurement 

uncertainties and a conservative a priori covariance matrix) we isolate the sensitivities of the 

measurements themselves for a best case aerosol scenario, a monomodal log-normal distribution of 

spherical particles with spectrally independent complex refractive index. The choice of a simplified model 

adds clarity to the understanding of the uncertainties in retrievals, since it allows for separately assessing 

the sensitivities and uncertainties of the measurements alone that cannot be corrected by any potential 

or theoretical improvements to retrieval methodology but must instead be addressed by adding 

information content. Future work will be performed using less-simplified models.  For example, expanding 

to a bimodal retrieval is straightforward.  Eq. (1) can be expanded by simply adding the modes together.  

Then the Jacobian in Eq. (5) becomes a non-square matrix, with more state variables than measurement 

variables; however, the following equations, Eq. (8) and Eq. (9) do not require a square matrix and 

therefore the sensitivity metrics can be calculated straightforwardly.  Nevertheless, even with a more 

complex aerosol model, there will be additional retrieval-dependent uncertainties that are related to 

mismatch between the assumptions and the real-world aerosols and also to retrieval methodology such 

as inversion technique.  These uncertainties are in addition to the uncertainties discussed in this study.  

On the other hand, actual retrievals generally benefit from using various constraints and a priori 

information that reduce the retrieval errors.   A priori knowledge is intentionally minimized in this study to 

focus on the measurement sensitivities, but in general it will improve retrieval performance from this 

basic level. 

We also added the sentence beginning “The choice of a simplified model adds clarity” to the revised 

abstract. 

R1.2: Technical notes I can’t understand why the results of analysis depend on number density value.  It 

is just scaling factor… Explanations would help.   

It’s true: since N is just a scaling variable, there is not much effect from changing it.  For example, when 

going from Case #1 to Case #5, which only differ in N, the only change was to the uncertainty of the 

retrieved number density itself.  This change was to increase the absolute uncertainty but not quite 

proportionately – that is, the relative uncertainty decreased somewhat.  This is related to the change in 

the balance between the measurement error and the a priori error.   In the setup to this study, the a 

priori uncertainty is taken to be always the same absolute amount, while the measurement uncertainty 

is taken to be a constant relative amount. Considering the terms in Eq. 9, comparing the terms for Case 

#5 and Case #1, the Jacobians (partial derivatives of the measurement variables with respect to the state 

variables) remain the same; the measurement error in absolute units increases proportionately (the 

percent error is the same); and the a priori uncertainty remains the same.  If there were no Sa term, the 

state vector uncertainties would increase proportionately to the number concentration, but since there 

is a constant Sa term, the increase is less than proportional.  

R1.3: It well known that number density is unstable parameter in retrieval, due to possible contribution 

of very small particles. In this way volume density is more stable. Probably authors should comment why 

they didn’t consider volume in their analysis.  

We used number concentration as one of the state variables rather than volume concentration because 

we wanted to compare the propagated retrieval errors to the draft ACE requirements, which include a 

requirement on number but not on volume.  In response to the reviewer’s suggestion, we tested the 

effect of switching to total volume concentration rather than total number concentration and found an 

effect only for the coarse mode case (Case #3) with no effect on the fine mode cases.  Even the effect on 



the coarse mode case was modest, producing a percent uncertainty in the volume concentration of 

115% as compared to the 122% uncertainty in number concentration for the original study, with much 

smaller reductions in the median radius and geometric standard deviation uncertainties.  We included 

the result of this test in the revised manuscript (see below for excerpt).  Note that this result again only 

reflects the effect of switching state variables on the information content or in other words how the 

measurements capture variation in the state.  It does not necessarily reflect all ways in which switching 

to volume kernels can potentially affect a retrieval.  For example, Veselovskii et al. (2004) describe how 

the volume or number kernel functions interact with the triangular basis functions used to represent the 

size distribution.  There is no role for basis functions in the current study and so this effect is not 

reflected here. 

1. Use of volume density kernels vs. number density kernels 

It is known from, for example, Veselovskii et al. (2004) that performing the retrieval with higher 

order kernels may reduce the retrieved uncertainties.  It is straightforward to use the volume 

size distribution instead of the number size distribution for f(r) in Eq. (1) as long as the kernels 

are also represented in terms of volume concentrations.  The analysis presented above can be 

repeated using the total volume concentration rather than total number concentration as one of 

the five state variables, and the sensitivity analysis can be repeated to assess the impact of 

switching kernels on the information content of the measurements, due to a redefinition of the 

state space and concomitant reduction of the null space (the portion of the state variable space 

that cannot be assessed using the measurements). Table 7 shows the propagated uncertainties 

for the five state variables after making this change, for the reference cases.  Note that the 

differences between Table 7 and Table 3 are mostly insignificant except for Case #3, the coarse 

mode case.  This is also reflected in Error! Reference source not found., which shows decreased 

correlation (cross-talk) between the total volume concentration and the median radius, 

compared to the number-vs-radius correlation shown in Error! Reference source not found., 

but only in the upper right quadrant which corresponds to the largest effective radii. In 

summary, the change to the higher-order kernel reduces the measurement sensitivities for the 

case of large particles.  It does not solve the problem of high correlation between the number 

concentration and the median radius for smaller particles as discussed in Section 9. Note, as 

before, that any additional errors or instabilities that are part of the retrieval will not be 

included here, and it is possible that there are other considerations in specific retrievals that 

might favor the use of volume kernels over number kernels, such as the how the kernel 

functions are integrated using orthogonal base functions, as discussed by Veselovskii et al. 

(2004). 

Table 7. Like Table 3, but using total volume concentration instead of total number concentration as a state variable, this 

table shows propagated uncertainties (standard deviations) for state variables and selected additional variables derived 

from the state variables, shown for the reference cases described in Error! Reference source not found.. The propagated 



uncertainties, Eq.(9), depend on assumed measurement errors of 5% for backscatter and 20% for extinction and depend 

on a priori covariance as described in the text.  The assumed a priori uncertainties are listed for comparison. 

Retrieval state 

variables 

Prior 

uncertainty 

Case 1: 

propagated 

uncertainty  

Case 2: 

propagated 

uncertainty 

Case 3: 

propagated 

uncertainty 

Case 4:  

propagated 

uncertainty 

Case 5:  

propagated 

uncertainty 

Median radius 0.30 m  0.05 m (46%) 0.07 m (47%) 0.17 m (84%) 0.05 m (41%) 0.04 m (31%) 

Geometric 

standard dev. 

0.6 0.18 (12%) 0.20 (13%) 0.49 (20%) 0.11 (7%) 0.10 (6%) 

Total volume 

concentration 

500 µm3/cm3  14 µm3/cm3 

(104%) 

34 µm3/cm3 

(97%) 

84 µm3/cm3 

(115%) 

13 µm3/cm3 

(94%) 

172 µm3/cm3 

(68%) 

Real Refractive 

Index 

0.19 0.10 0.06 0.04 0.14 0.13 

Imaginary Ref. 

Index 

0.050 0.018 0.018 0.004 0.024 0.024 

 

R1.4: Authors use DOF to quantify the information content.  Still, as I understand, there is no direct 

relationship between DOF and error propagation.  For example, DOF=4.5, is it good or bad? The same 

time even DOF=5 doesn’t guarantee low errors of inversion. The comments would be helpful.   

The degrees of freedom is a metric that helps clarify the number of independent pieces of information 

about the state space in the measurements.  If a measurement system involved 5 independent 

measurements but all of the same quantity (i.e. repeated measurements), then DOF=1.  For a fully 

determined retrieval system with no measurement error, the DOF would be the same as the number of 

state variables.  DOF less than the number of state variables indicates that some of the state variables 

are not independently determinable by the measurement system, so there is some correlation or cross-

talk between them as described in the manuscript.  This leads to uncertainty or error in the retrieved 

state for those variables that are correlated.  The worse this cross talk is and the more pairs of variables 

it affects, the smaller the DOF will be, but its best to look at the propagated covariance matrix to assess 

the correlations as we did in this manuscript.  Furthermore, as the reviewer points out, DOF very close 

to the number of state variables does not guarantee low propagated retrieval errors, assuming there is 

some measurement error.  As an illustration, even in a 1 by 1 system (one measurement of 1 state 

variable), if the measurement is non-linear with respect to the state variable, as in the case of an 

exponential relationship, there could be a large error propagation. 

In the revised manuscript, we revised the first sentence of the section “Propagated state uncertainties” 

to emphasize both how the DOF is to be interpreted and what it does not capture.  The revision says 

“While the signal DOF is a useful metric that indicates the number of independent pieces of information 

in the measurements with respect to the state, the a posteriori (i.e. propagated) state error covariance 



matrix is more useful both for indicating how the retrieval errors are propagated from the measurement 

errors and also for assessing how the under-determinedness affects specific state variables.” 

R1.5: p.7 ln.29 “channel-specific systematic sources (e.g.  filter transmittance)” How can filter 

transmittance provide systematic error?   

We meant “uncertainty in the filter transmittance”.  We’ve changed it in the revision.  For example, in 

the HSRL system that uses an iodine filter to separate the molecular and aerosol portions of the signal, if 

there is uncertainty in the transmittance of the iodine filter, then that error will be a systematic error in 

the gain ratio between the molecular and aerosol channels and therefore a systematic error in the 

extinction measurement for that wavelength.  The point we were trying to make in the paper was that 

such an error would affect only a single measurement (the 532 nm extinction channel) and not lead to 

correlation in the uncertainties for multiple measurements. 

R1.6: p.8 ln.  16 “…as well as values of effective radius, effective variance, and single scattering albedo 

(SSA)…”. Table shows also the lidar ratio. 

Thanks, we changed the text to include lidar ratio also. 


