Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Preprints
https://doi.org/10.5194/amt-2016-248
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-2016-248
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

  27 Jul 2016

27 Jul 2016

Review status
This preprint was under review for the journal AMT. A revision for further review has not been submitted.

Validation of COSMIC water vapor data in the upper troposphere and lower stratosphere using MLS, MERRA and ERA-Interim

Ming Shangguan1, Katja Matthes1,2, Wuke Wang1, and Tae-Kwon Wee3 Ming Shangguan et al.
  • 1GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
  • 2Christian-Albrechts-Universität zu Kiel, Kiel, Germany
  • 3University Corporation for Atmospheric Research, Boulder Colorado, USA

Abstract. Water vapor is the most important greenhouse gas in the atmosphere with important implications not only for the Earth’s radiation and energy budget but also for various chemical, physical and dynamical processes in the stratosphere. The Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) Radio Occultation (RO) dataset from 2007 through 2013 is used for the first time to study the distribution and variability water vapor in the upper troposphere and lower stratosphere (UTLS). The COSMIC data are compared to the Microwave Limb Sounder (MLS) data, and to two global reanalyses: The Modern-Era Retrospective analysis for Research and Application (MERRA) of the National Aeronautics and Space Administration (NASA); and, the latest reanalysis of the European Center for Medium-range Weather Forecast (ECMWF), the ERA-Interim. The MLS data have been assimilated into the MERRA, whereas the COSMIC data are used for the ERA-Interim. As a result, the MERRA agrees well with the MLS data and so does the ERA-Interim with the COSMIC data. While the monthly zonal mean distributions of water vapor from the four datasets show good agreements in northern mid-latitudes, large discrepancies exist in high southern latitudes and tropics. The MERRA shows overall a consistent seasonal cycle with MLS, but has too strong winter dehydration over the Antarctic, and is very weak in the interannual variations. The ERA-Interim fails to properly represent the winter dehydration over the Antarctic, and shows an unrealistic seasonal cycle in the tropical upper troposphere. The COSMIC data shows a good agreement with the MLS data except for the tropical "taper recorder" signal, where the COSMIC data suggest a faster upward motion than the MLS data. The COSMIC data are able to represent the moisture variabilities associated with the Quasi-Biennial Oscillation and the El Niño-Southern Oscillation.

Ming Shangguan et al.

Interactive discussion

Status: closed (peer review stopped)
Status: closed (peer review stopped)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
  • RC1: 'Review', Anonymous Referee #1, 23 Aug 2016 Printer-friendly Version
  • RC2: 'RC #3', Anonymous Referee #2, 01 Sep 2016 Printer-friendly Version

Interactive discussion

Status: closed (peer review stopped)
Status: closed (peer review stopped)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
  • RC1: 'Review', Anonymous Referee #1, 23 Aug 2016 Printer-friendly Version
  • RC2: 'RC #3', Anonymous Referee #2, 01 Sep 2016 Printer-friendly Version

Ming Shangguan et al.

Ming Shangguan et al.

Viewed

Total article views: 1,455 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,061 344 50 1,455 48 68
  • HTML: 1,061
  • PDF: 344
  • XML: 50
  • Total: 1,455
  • BibTeX: 48
  • EndNote: 68
Views and downloads (calculated since 27 Jul 2016)
Cumulative views and downloads (calculated since 27 Jul 2016)

Cited

Saved

No saved metrics found.

Discussed

Latest update: 20 Sep 2020
Publications Copernicus
Download
Short summary
A first validation of the COSMIC Radio Occultation (RO) water vapor data in the upper troposphere and lower stratosphere (UTLS) are presented in this paper. The COSMIC water vapor shows a good agreement with the Microwave limb Sounder (MLS) in both the spatial distribution and the seasonal to interannual variations. It is very valuable for studying the water vapor in the UTLS, thanks to its global coverage, all- weather aptitude and high vertical resolution.
A first validation of the COSMIC Radio Occultation (RO) water vapor data in the upper...
Citation