

Aerosol absorption retrieval at ultraviolet wavelengths in a

- 2 complex environment
- 3
- 4 Stelios Kazadzis^{1,2}, Panagiotis I. Raptis², Natalia Kouremeti¹, Vassilis Amiridis³,
- 5 Antti Arola⁴, Evangelos Gerasopoulos², Gregory L. Schuster⁵
- 6 [1]{Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center
- 7 (PMOD/WRC) Dorfstrasse 33, CH-7260 Davos Dorf, Switzerland}
- 8 [2] {Institute of Environmental Research and Sustainable Development, National Observatory
 9 of Athens, Greece}
- 10 [3] {Institute of Astronomy Astrophysics, Space Applications and Remote Sensing, National
- 11 Observatory of Athens, Greece}
- 12 [4] {Finnish Meteorological Institute, Kuopio Unit, Finland}
- 13 [5] {NASA Langley Research Center, Hampton, VA, USA}
- 14 Correspondence to: stelios.kazadzis@pmodwrc.ch
- 15

16 Abstract

17 We have used total and diffuse UV irradiance measurements with a multi-filter rotating 18 shadow-band radiometer (UVMFR), in order to calculate aerosol absorption properties 19 (Single Scattering Albedo - SSA) in the UV range, for a 5 years period in Athens, Greece. 20 This data set was used as input to a radiative transfer model and the SSA for 368nm and 21 332nm has been calculated. Retrievals from a collocated CIMEL sun-photometer were used 22 to validate the products and study absorption spectral behavior SSA values at these 23 wavelengths. UVMFR SSA together with synchronous, CIMEL-derived, retrievals at 440nm, 24 show a mean of 0.90, 0.87 and 0.83, with lowest values (higher absorption) towards lower 25 wavelengths. In addition, noticeable diurnal variations of the SSA in all wavelengths are 26 revealed, with amplitudes in up to 0.05. High SSA wavelength dependence is found for cases 27 of low Ångström exponents and also an SSA decrease with decreasing extinction optical

- 1 depth, suggesting an effect of the different aerosol composition. Dust and Brown Carbon UV
- 2 absorbing properties were investigated to understand seasonal variability of the results.
- 3

4 1 Introduction

5 The role of aerosols, both natural and anthropogenic, is extremely important for regional and 6 global climate change studies as well as for overall pollution mitigation strategies (e.g 7 IPCC,2013). However, a considerable amount of work still needs to be carried out, 8 particularly as it appears that climate change is accelerating with aerosols impacting at local, 9 regional and global scales. Furthermore, the components controlling aerosol forcing, account 10 for the largest uncertainties in relation to anthropogenic climate change (IPCC, 2007, IPCC, 11 2014). A comprehensive review of the assessment of the aerosol direct effect, its state of play 12 as well as outstanding issues, is given by (IPCC, 2014) and (Yu et al., 2006). Both emphasize that the significant aerosol absorption uncertainties in global Single Scattering Albedo (SSA), 13 14 constitute one of the largest single source of uncertainty in current modeling estimates of 15 aerosol climate forcing. SSA is the ratio of scattering to total extinction (scattering plus 16 absorption), and it depends strongly on chemical composition, particle size, mixture, relative 17 humidity and wavelength. Comprehensive measurements are crucial to understand their 18 effects and to reduce SSA uncertainties that propagate into aerosol radiative forcing estimates. 19 For example for the same aerosol load (aerosol optical depth), the absorbing nature of 20 aerosols can lead to up to 50% change in the erythermal irradiance, compared to only scattering aerosols (Bais et al, 2014). SSA calculated here differs from in situ SSA values 21 22 retrieved from absorption and scattering measurements at a single altitude level (e.g. at the 23 ground), in that it is a columnar measurement, arising from solar irradiance attenuation along 24 a fixed irradiance path.

25 In the visible (VIS) part of the spectrum, advanced retrieval algorithms for microphysical 26 aerosol properties have been developed in the framework of the Aerosol Robotic Network 27 (AERONET) and the Skyradiometer Network (SKYNET) (e.g., Dubovik and King, 2000; 28 Nakajima et al., 1996) All AERONET stations currently provide inversion based VIS-SSA 29 retrievals. In addition, Goering et al. (2005), Taylor et al (2008) and Kudo et al. (2008) have 30 proposed estimation techniques for the retrieval of spectral aerosol optical properties by 31 combining multi-wavelength measurements using a priori constraints that are applied 32 differently than in the single wavelength methods. SSA retrieval in the ultraviolet (UV) part

1 of the spectrum is weaker with large uncertainties. As AERONET does not provide any 2 information about SSA at the UV, compared to the visible spectral region, only a few 3 publications have dealt with aerosol absorption at UV wavelengths (e.g. Eck et al., 1998; Krotkov et al., 2005a; Bais et al., 2005; Corr et al., 2009). It is envisaged that improvement in 4 5 measurement precision and in the general understanding of aerosol absorption in the UV (and 6 immediate derivatives like the SSA) in various scientific applications, will contribute 7 significantly to enhancing the accuracy of radiation forcing estimates. For example, desert 8 dust particles (Alfaro et al., 2004), soot produced by fossil fuel burning, and urban 9 transportation, all strongly absorb UV radiation. However, optical properties of other potential 10 UV absorbers like organic, nitrate and aromatic aerosols are still poorly known. Bergstrom et 11 al., 2003 showed that spectra of aerosol SSA obtained in different campaigns around the 12 world differed significantly from region to region, but in ways that could be ascribed to regional aerosol composition. Moreover, results from diverse air, ground, and laboratory 13 14 studies, using both radiometric and in situ techniques, show that the fractions of black carbon, 15 organic matter, and mineral dust in atmospheric aerosols play a role in the determination of 16 the wavelength dependence of aerosol absorption (Russell et al., 2010). Barnard et al. (2008), 17 investigating the variability of SSA in a case study for the Mexico City metropolitan area, 18 found that, in the near-UV spectral range (250 to 400 nm), SSA is much lower compared to 19 SSA at 500 nm indicative of enhanced absorption in the near-UV range. They suggested that 20 absorption by elemental carbon, dust or gas alone could not account for this enhanced 21 absorption leaving the organic carbon component of the aerosol as the most likely absorber. 22 It has been found in many studies that, in addition to dust, the absorbing organic carbon 23 compounds can induce strong spectral absorption increasing towards the shortest UV 24 wavelengths. Sources of these light-absorbing organic carbon compounds (often called as 25 "Brown Carbon", BrC) are various; biomass burning (e.g. Kirchstetter et al.2004), urban 26 smoke (e.g. Liu et al. 2015) and biogenic emissions (e.g. Flores et al. 2014).

Moosmuller et al (2012) showed that iron concentration in mineral dust aerosols is linked to lower SSA at 405nm than in 870, which could be a hint for lowest SSA in the UV-VIS range during dust events. Medina et al (2012) found in El Paso-Juarez also large variation in UV range SSA, with lower values than visible wavelengths and showed that on heavy polluted days it can get as low as 0.53 at 368nm. An effort was made to calculate SSA in lower UV wavelengths, using Brewer measurements, at Belgium, revealing lowest values but with high uncertainty (Nikitidou et al, 2013). Recently Schuster et al (2016) have tried to distinguish

aerosol types, by their optical properties and assumed that dust particles have higher
 absorption at UV wavelengths, and used imaginary refractive index spectral dependence to
 separate from black carbon and infer hematite/goethite in the coarse mode. They found that
 dust particles containing hematite are highly absorbing in the UV region.

5 Ultraviolet (UV) solar radiation has a broad range of effects on life on Earth (UNEP et al., 1998;UNEP et al., 2007;UNEP, 2003). It influences not only human beings (e.g. (Diffey, 6 7 1991)), but also plants and animals (e.g. Bornman and Teramura, 1993). Furthermore, it 8 causes degradation of materials and functions as a driver of atmospheric chemistry. There are 9 various studies linking changes of the UV radiation field with changes in the scattering and 10 absorption of aerosols in the atmosphere (e.g. Zerefos et al., 2012). Such changes can be 11 comparable in magnitude with those caused by the decline in stratospheric ozone (Elminir, 12 2007; Reuder and Schwander, 1999; Krotkov et al., 1998). As an example, analysis of long 13 term UV time series at Thesaloniki, Greece, showed a reduction of 7% of AOD per decade 14 was recorded, but the UV Irradiance has increased by 9% (after removing ozone column 15 effect on it) which could only be explained by change in the absorption characteristics of 16 aerosols in the area (Meleti et al, 2009). Moreover, UV variations caused by changes in 17 aerosol optical properties directly affect tropospheric photochemistry:

- increases in regional O₃ (10-20 ppb for Eastern USA) caused by increased UV levels
 due to the presence of non-absorbing aerosols (Dickerson et al., 1997).
- decreases in regional O₃ (up to 50 ppb for Mexico City and for particular days) caused
 by strong UV reduction due to absorbing aerosols (Castro et al., 2001).
- There are also several more scientific issues that may be clarified with accurate knowledge ofaerosol absorption properties:

Aerosol effects on UV trends may enhance, reduce or reverse effects of stratospheric
 ozone change

Future scenarios for simulations of global UV levels are based on ozone recovery, having as their sole input the predicted future decline in columnar ozone. Furthermore, simulations of observed tendency of reduced anthropogenic aerosols in the atmosphere in the US and Europe during the course of the last decade (den Outer et al., 2005) included only cloud and AOD changes in the characterization of likely UV trends. In this regard, changes in the absorbing properties of aerosols on global scales would have had a large effect on the uncertainty budget

in any of the above simulations (WMO, 2003). For example, a decrease in aerosol absorption
 properties accompanied by an AOD decrease in Europe could lead to a significant
 acceleration of the calculated ozone decline related to UV upward trends (Kazadzis et al.,
 2009, Zerefos et al., 2012).

Solar irradiance satellite retrieval algorithms are directly affected by the presence of
absorbing aerosols

7 The discrepancies between ground-based (GB) UV measurements and satellite-derived (OMI, 8 TOMS, GOME) data are directly related to aerosol absorption that is absent from satellite 9 retrieval algorithms (Tanskanen et al., 2007;Arola et al., 2005). It has been shown that 10 enhanced aerosol UV absorption in urban areas can cause up to 30% overestimation in the 11 satellite retrieved UV radiation (Kazadzis et al., 2009).

12 • Uncertainty on commonly used atmospheric radiative transfer applications and codes

Radiative transfer algorithms calculating UV irradiance, fall short in precision due to large 13 14 uncertainties in the input parameters (e.g. levels of ozone, aerosol composition and the surface 15 albedo) used in model calculations. It is now known that the major input source of uncertainty 16 in radiative-transfer model simulations, is aerosol absorption (e.g. Van Weele et al., 2000). In particular, the direct radiative effect of aerosols is very sensitive to SSA. For example, a 17 18 change in SSA from 0.9 to 0.8 can often alter the sign of the direct effect (Yu et al., 2006). 19 Furthermore, availability and quality of observational SSA data do not match with those available for AOD (Krotkov et al., 2005a). This is compounded by the lack of information on 20 21 the vertical profile of aerosol optical properties such as the SSA at global scales. Only few 22 case studies have dealt with such measurements and have been limited to local scales (Müller 23 et al., 1999).

a. The major parameters that describe radiation and aerosol interactions are the aerosol optical depth (τ), the SSA and the asymmetry parameter (g). The aerosol optical depth at a
wavelength λ is the integral of the aerosol extinction coefficient (b_{ext}(λ)) over a certain atmospheric layer (in the height range z₁ to z₂).

28 b.

29
$$\tau = \int_{z_1}^{z_2} b_{ext}(\lambda) \cdot dz \tag{1}$$

5

1 The SSA at a wavelength λ provides the contribution of aerosol particle scattering relative to 2 the total extinction (absorption plus scattering),

3
$$SSA = \frac{b_{sca}(\lambda)}{b_{abs}(\lambda) + b_{sca}(\lambda)}$$
(2)

4 Values for the SSA range from 0 (absorbing aerosols only) to 1 (no absorption). The 5 asymmetry parameter, is the phase function (P) weighted average of the cosine of the 6 scattering angle (θ) over all directions. Assuming azimuthal symmetry, the scattering angle 7 integration extends from – π to + π such that the asymmetry parameter (g) is given by

8
$$g = \frac{1}{2} \cdot \int_{-\pi}^{\pi} \cos\theta \cdot P(\theta) \cdot \sin\theta \cdot d\theta$$
 (3)

9 Values for g range from -1 (backscattered radiation only) to 1 (forward scattered radiation10 only) in theory, and from 0 to 1 for particles in the atmosphere.

11 Corr et al. (2009) presented a review of studies estimating SSA at different wavelengths. For 12 the visible part of the spectrum, two different approaches have been presented. The first 13 (Dubovik et al., 2002), introduced sky radiance measurements in a matrix inversion technique 14 to calculate various aerosol microphysical properties. This methodology has been widely 15 applied in the AERONET. The second (Kassianov et al., 2005), proposed the use of radiative 16 transfer model (RTM) calculations, using as input measurements of AOD and the ratio of 17 direct to diffuse irradiance at specific wavelengths. However, in the case of SSA calculations 18 at UV wavelengths, enhanced measurement uncertainties, RTM input assumptions, and 19 interference of absorption by other gases (O₃, NO₂), make the retrieval more difficult. All 20 reported results concerning UV-SSA, utilize RTM combined with total and diffuse relative irradiance measurements (Herman et al., 1975; King and Herman 1979; King 1979; Petters et 21 22 al., 2003; Krotkov et al., 2005b; Corr et al., 2009; Bais et al., 2005) or absolute irradiance 23 measurements (Kazadzis et al., 2010; Ialongo et al., 2010; Bais et al., 2005). The review made 24 by Corr et al. (2009) also presents the major differences in the results of simulations of the 25 SSA, arising from RTM input assumptions, measurement techniques and retrieved 26 wavelengths. An additional problem is that previous studies have dealt with short time periods 27 due to the limited lifespan of experimental campaigns.

In this work, for the calculation of the UV-SSA, we adopt a methodology based on the idea of Krotkov et al. (2005a), Krotkov et al. (2005b) and Corr et al. (2009). The methodology, together with the retrieval tools used and technical assumptions made are presented in section

2. Results of UV-SSA measurements and their comparison with synchronous AERONET
 retrievals in the visible range are presented in section 3. Finally, discussion of the observed
 diurnal SSA patterns in Athens, SSA wavelength dependency as well as overall conclusions
 are presented in the last section of this work.

5

6 2 Instrumentation and retrieval methodology

7 2.1 Instrumentation

8 In this work we present estimates of SSA at two independently retrieved UV wavelengths 9 332nm and 368 nm for an urban site situated in Athens, Greece. The period of measurements 10 analysed is from July 2009 to May 2014. Since February 2009, the ground-based 11 Atmospheric Remote Sensing Station (ARSS) has been in continuous operation to monitor 12 ground radiation levels and aerosol loadings over Athens (Amiridis et al., 2009). ARSS is located on the roof of the Biomedical Research Foundation of the Academy of Athens (37.9 13 14 N, 23.0E, 130 m a.s.l.) (http://apcg.meteo.noa.gr/index.php?option=112&client=&langid=2) 15 and the campus is located near the city centre, 10 km from the sea (Gerasopoulos et al., 2009). 16 The horizon view is clear at 360 degrees viewing angle. ARSS is equipped with a CIMEL 17 CE318-NEDPS9 sun photometer for the retrieval of AOD at 8 wavelengths in the range of 18 340nm to 1640 nm, including polarization measurements as part of NASA's AERONET 19 (http://aeronet.gsfc.nasa.gov). The technical specifications of the instrument are given in 20 detail by Holben et al. (1998). ARSS is also equipped with an Ultraviolet Multi-filter 21 Radiometer (UVMFR) instrument for radiation measurements in the UV spectral region 22 (Harrison et al., 1994). UVMFR measures both total and diffuse irradiance at 7 specified 23 wavelengths (300, 305.5, 311.4, 317.6, 325.4, 332.4, and 368 nm) with a 2 nm nominal full 24 width at half maximum (FWHM) bandwidth. The instrument has been purchased on 25 November 2009 and the constructing company (Yankee Environmental Systems, USA) has 26 provided angular, spectral and absolute response functions of each wavelength channel of the 27 instrument that were measured at the National Institute of Standards and Technology (Figure 1). For the analysis included in this work we assume that the effective wavelengths for each 28 29 channel were stable during the whole period. Measurements of total and diffuse irradiance are 30 recorded every 10 seconds, and stored as 1 minute averages along with a computation of the 31 direct irradiance. Measurement data were angle-corrected, calibrated and analysed via the

- 1 YESDAS Manager software. The individually characterized cosine response, supplied with
- 2 each instrument, was used by system software to correct, in real time, for deviations from the
- 3 ideal cosine response (Harrison et al., 1994). For this work, we have used measurements of
- the two aforementioned instruments in conjunction with radiative transfer model (RTM) 4
- 5 calculations that have been performed using the Libradtran code (Mayer and Kylling, 2005).

6 7

8

9

Figure 1. UVMFR angular response function at 368nm channel, normalized to the ideal (cosine) angular response. 2 sets of responses one from the south to north scan and one from the west to east are presented. 10

2.2 Retrieval methodology 11

SSA is a key aerosol optical property and describes the portion of solar irradiance that is 12 13 scattered from the main direct beam passing through the atmosphere. Changes in SSA 14 influence mostly the diffuse radiation reaching the earth's surface, while its effect on direct 15 radiation can be considered negligible. SSA values in the atmosphere range from 0.5 to 1.0 at 16 visible wavelengths.

17 Model calculations can be used for retrieving SSA when global and/or diffuse spectral 18 irradiance, solar zenith angle (SZA), total column ozone, and AOD are known (Krotkov et al., 19 2005b; Kazadzis et al., 2010; Ialongo et al., 2010; Corr et al., 2009; Bais et al., 2005). In our 20 retrieval methodology we have used partly the basic approach that is described in detail in the 21 Corr et al. (2009), Krotkov et al. (2005a) and Krotkov et al. (2005b). This approach consists 22 of measurements of the direct to global irradiance ratios (DGR) and AODs measured with the 23 UVMFR instrument for our case, that are used as basic input parameters to the RTM for the

calculation of the SSA at 332nm, and 368nm. These wavelengths are selected for having the
 lowest ozone absorption from the seven available (Bass and Paur ,1985). The advantage of
 this method is that the same detector and filter measure global and direct irradiance, thus there
 is no need for absolute irradiance calibration and raw voltage measurements could be used.

5 Global irradiance measurements from the UVMFR have been used in order to distinguish 6 cloud free conditions for each of the one minute measurements. Clouds are detectable in the 7 measured UVMFR global irradiance (GI) (at 368nm) since they cause larger variability than 8 aerosols. For distinguishing between cloudy and cloud free conditions, we have applied an 9 updated version of the method of Gröbner et al., (2001). The method is based on the 10 comparison of the measured global irradiance with radiative transfer calculations for cloud 11 free conditions and quality assurance is checked by the following criteria:

a. The measured GI has to lie within the modeled (cloud free) GI for a range of aerosol loads
(AOD at 500 nm of 0.1 and 0.8, respectively), corresponding to the 5th and 95th percentile of
the AERONET data for the examined location and period

b. The rate of change in the measured GI with SZA has to be within the limits depicted by themodeled cloud free GI, otherwise the measurements are assumed cloud contamination.

c. All measured GI values within a time window (dt= ±10 min) should be within 5% of the
modeled cloud free GI, and adjusted to the level of the measurement, using an integral over
dt.

20 If at least 85% of the points in dt pass tests a) – c), then the central point is flagged as cloud 21 free. In this study, we have allowed a tolerance level of $\pm 10\%$ for tests a) and b) in order to 22 compensate for differences between the modeled GI and measured GI due to instrumental 23 uncertainties, as well as for usage of average climatological parameters (constant total ozone 24 column, SSA, e.t.c.) as inputs to the model. We have limited the method to SZA<70° to avoid 25 uncertainties related with low solar irradiance levels. An example of the results of the method 26 is presented in figure 2 for a day with variable cloudiness. It has to be noted that in all 27 CIMEL-UVMFR comparisons, using synchronous measurements, both the above method and 28 AERONET cloud flagging algorithm are taken into account.

Figure 2. Determination of cloudless 1-minute measurements (red), from all measurements
(blue) for a day with variable cloudiness

4

5 Measurements of the diffuse and global irradiance from the UVMFR have been used in order 6 to retrieve the direct irradiance at 332nm and 368nm. We used the AERONET database to 7 select days with very low AOD (<0.1). For the urban environment of Athens such cases are 8 related with the presence of northern winds. Afterwards we selected cloudless sky half-days 9 for performing extraterrestrial Langley calibration constant (ETC) determination by applying 10 the Beer-Lambert law for UVMFR direct measurements. Volangley in figure 3 represent the half 11 day values calculated with this method. In order to examine the consistency of this approach 12 we calculated the V_{0cimel} also as

$V_{0 cimel} = V e^{\mu (AOD_{cimel} + \tau_{rayleigh})}$

where V is the voltage measured by UVMFR, μ is the air mass, AOD_{cimel} is the extrapolated AOD at UVMFR wavelengths and $\tau_{rayleigh}$ is Rayleigh scattering optical depth. Daily averages of V_{0cimel} for the selected days were compared with V_{0langley} as presented at figure 3. These independent approaches appear stable through the years, with no obvious drift or change, so we decided to use a single ETC for the whole period for each wavelength.

Figure 3. ETC values at 368nm, calculated using Langley plots of UVMFR measurements,
and Using Cimel extrapolated AOD's as input, for selected (low AOD's and clear sky) days
for the whole period

5

AOD's at 332 nm and 368 were calculated using the selected UVMFR derived ETC. In 6 7 contrast with the Krotkov et al., 2005a approach we have not transfered the CIMEL ETCs to 8 the UVMFR measurements; rather, we have independently calculated UVMFR-based AODs. 9 Validation of the results was performed based on synchronous UVMFR and CIMEL 10 measurements. The mean AOD calculated from the 1 minute UVMFR measurements within ±5 minutes from the CIMEL measurement (when the UVMFR 10 minute period is 11 12 characterized by cloudless conditions) has been defined as synchronous. Since the CIMEL 13 instrument provides measurements of AOD at 340 nm and 380 nm, we first calculated the 14 CIMEL derived AOD at 332 nm and 368 nm using least square quadratic spectral 15 extrapolation, using four CIMEL wavelengths (Eck et al, 1999).

16

Figure 4. Comparison of CIMEL and UVMFR retrieved AODs for synchronous
measurements for 332 nm (up) and 368 nm (down).

4

5 The results of this comparison have a Pearson product moment correlation coefficient equal to 6 0.96 and 0.98 respectively for 332nm and 368nm AODs. Mean differences were zero, with 7 standard deviations of 0.031 and 0.025 for the respective wavelengths, comparable with the 8 CIMEL AOD retrieval uncertainty of ± 0.02 . The quality of the data produced can be verified 9 by comparing the AOD's retrieved by the two instruments as a function of SZA (figure 4). 10 Stability of the AOD differences as a function of SZA verifies the validity of the calibration 11 of the UVMFR AOD's and the fact that no SZA-dependent errors (that would be directly 12 related with an erroneous ETC determination) are included in this procedure. In figure 5, AOD's have been grouped in bins of 5 degrees (of SZA). The differences shown in figure 5 13 14 include ETC determination accuracy, the extrapolation of CIMEL AOD at 368nm, together 15 with instrumental/measurement errors. Using a single UVMFR ETC for the whole period 16 provides very good agreement between the two instruments. However, this may not be the 17 case for all UVMFR instruments using this approach as ETC may suddenly or gradually change especially for years-long time series due to instrumental (filter related) changes. 18 19 AOD's deviations could lead to large errors on SSA calculations, so this comparison ensures 20 that these errors are minimized.

1 2

3

Figure 5 AOD differences between CIMEL and UVMFR at 368 nm, as a function of solar zenith angle.

4 We calculated look up tables (LUT) with the RTM, of DGR at 368nm and 332nm as a function of SZA, AOD, SSA, asymmetry factor (g) and total column ozone. 5 CIMEL/AERONET mean daily ozone values and climatological NO2 values were deployed 6 7 for the use of the LUT while for g, we used the mean daily value as retrieved at 440nm from 8 the CIMEL instrument measurements when available and the mean value of the whole period 9 equal to 0.7 (2σ standard deviation of the g during this period was 0.04) otherwise. Using 10 UVMFR AOD and DGR measurements, we then calculated the matching SSA values for each 11 individual UVMFR DGR measurement. LUT examples are visualized in figure 6, for 12 clarification of the method. For known SZA and AOD (in cloudless sky conditions), the 13 variability of the DGR is caused by aerosol properties other than AOD. At low aerosol loads 14 this variation is nearly negligible, but it becomes more important at higher aerosol load. More 15 absorbing aerosols lead to smaller values of DGR. It is crucial to observe the range of SSAs 16 in the two examples. For low AOD's, accurate SSA determination requires very low uncertainty of the DGR and the AOD measurement. While for high AOD's the range of 17 18 DGRs for a particular SZA is quite large.

Figure 6 LUT of direct to global ratio at 368nm, as calculated for AOD 0.1 (left) and 0.8 (right) with respect to SZA (g=0.7), colourbar represents SSA values.

4

3

1 2

5 2.3 Retrieval Uncertainties

6

7 The CIMEL sunphotometer provides SSA inversion retrievals characterized as Level 1.5 and 8 Level 2.0 data. Level 2.0 (L2) data are recommended by AERONET as they have less 9 uncertainty but are restricted in measurement to SZA>50 degrees, AOD at 440 nm> 0.4 and 10 homogeneous sky conditions. These limitations make AERONET SSA L2 worldwide 11 measurements unsuitable for:

a. climatological studies due to the AOD restriction that limits analyses only to areas having
large average annual AOD's, or to cases of moderate to high aerosol episodes in specific
areas. As an example, for the urban site of Athens, which is one of the most polluted cities in
Europe, the number of measurements is limited to an average 11 cases per month for the
whole analysis period.

b. diurnal variation studies due to the SZA restriction. For mid and low latitude sites, this
limitation leads to a severe lack of information on diurnal SSA patterns as there are only few
wintertime measurements and close to zero measurements at local noon.

Figure 7 Uncertainty estimate (color) for the SSA retrieval from UVMFR as a function of
 AOD and solar zenith angle for 368nm (left panel) and 332nm (right panel), based on DGR
 and AOD uncertainties. Superimposed, mean AODs for 2.5 degree bins of solar zenith angle
 are shown.

6

1

7 Level 1.5 data: AERONET Level 1.5 (L1.5) SSA data are provided by AERONET for all 8 AOD's and at all SZA that almucantar scans are performed. In this work L1.5 data were used, 9 but with an extra quality control. We have ignored SSA L1.5 data when L2 size distribution is 10 not available. Thus we have an enhanced L1.5 SSA data set with AOD<0.4, but with L2 cloud 11 screening, calibrations and quality controls. Data has been compared with UVMFR retrieved 12 SSA's taking into account limitations related with the retrieval uncertainties. Khatri et al 13 (2016) studied AERONET SSA retrieval uncertainties, in order to compare with SKYNET 14 and found that AOD errors introduce the largest variations. They also found that the sky 15 irradiance calibration has a primary role on the uncertainty of the retrieval, and they 16 investigated influence of surface albedo and sphericity of aerosols, that was found negligible.

17 For the UVMFR data the uncertainty of the UVMFR SSA retrieval is mainly related to:

- 18 direct to global irradiance measurements uncertainties.
- 19 RTM input data accuracy.

Direct to global irradiance measurement uncertainties can result to a range of SSA values rather than a single value, that would produce a match between the measurement and the RTM DGR outputs. This range broadens at low SZA and low aerosol level cases. The RTM inputs that were used for the SSA LUT construction include also an uncertainty budget (AOD, surface albedo, constant aerosol vertical profile, asymmetry factor). Following the uncertainty analysis of Krotkov et al. (2005b), the total relative uncertainty of the DGR measurement was calculated to be $\pm 3\%$. AOD uncertainty is considered as $\pm 2\%$ for 368nm

and $\pm 4\%$ for 332nm, following the analysis of previous section. The impact of this on the SSA calculation is directly connected with AOD levels and the SZA. In figure 7 we have calculated the UVMFR SSA retrieval uncertainty for different AOD's and solar zenith angles, caused by DGR and AOD uncertainty. DGR and AOD uncertainty ranges from previous paragraph were used to calculate the possible SSA range and the expected error. In the same figure, the mean AOD's and 1 σ , for Athens measured by the UVMFR at each solar angle, are shown.

8

9 3 SSA retrieval results

Using the methodology described in the previous section we calculated the SSA at 332nm and 368nm using 1 minute data from the UVMFR. For the period under investigation, we also calculated the daily mean SSA's at these two wavelengths in the UV band and also the mean daily SSA's in the visible band derived from data provided by the CIMEL (L1.5 data) operating in Athens' AERONET station (figure 8).

18

15

The variability of SSA during this period is quite high, ranging from 0.75 (0.62) to 0.98 (0.97) for 332nm (368nm) (2 standard deviations) with mean values of 0.90, 0.87 and 0.83 for 440nm, 368nm and 332nm respectively. In figure 9 we have calculated the mean monthly values of SSA at UV wavelengths and standard deviations for the whole period to examine the annual variability. The lowest SSA values were found for the period from February to May at both wavelengths, which should be linked to the usual dust events during this period

- 1 for the specific area, and also the presence of brown carbon. Pareskevopoulou et al (2014),
- 2 have found maximum values of Organic and Elemental Carbon, at February and November,
- 3 at a 5 year (2008-2013) data set of in-situ measurements, at center of Athens. However, most
- 4 months have similar behavior, with differences that lie well within the SSA variability of each
- 5 month.

Figure 9 Mean monthly SSAs in the UV (UVMFR) at two wavelengths for the whole 5-year period, at Athens, errorbars at 1σ.

9

8

10 When calculating diurnal patterns of the SSA at UV and visible wavelengths for the Athens 11 area, we observed a mean diurnal pattern with a variability of the order of 0.02 to 0.05 and 12 having highest absorption (lowest SSA's) ±2 hours around noon (figure 10). Similar behavior 13 can also be seen from AERONET retrieved SSA's having higher values observed during the 14 early morning and late evening. However, the SZA limitation of the AERONET retrieval 15 methodology leads to lack of measurement points around noon. To investigate the uncertainty 16 in relation to UVMFR retrievals, the diurnal pattern was calculated for different SSA 17 uncertainty bins according to the analysis of the previous section. In general, the daily pattern 18 is clear for each bin and is mirrored by the AERONET inversion retrievals. However, the 19 statistical error bars describing the variability of the SSA's during each hourly bin, are quite 20 large.

21

3 Mean values per hour plotted at 1σ. Local time in Athens is UTC+2(winter) UTC+3(summer)

1 2

5 In order to investigate the possible dependence of SSA on AOD, figure 11 shows the synchronous UVMFR and CIMEL SSA retrievals plotted against AOD at 440nm. We found 6 7 that in general, SSA decreases with a decrease in optical extinction, although lower AOD's 8 are linked to higher uncertainties of retrieved SSA. We believe that this behavior reflects 9 seasonal changes in the average aerosol composition in Athens. Indeed, the annual cycle of 10 SSA is the same as the AOD annual cycle having a maximum in summer and a minimum in 11 winter. Studies of the SSA annual variability for other cities such as Ispra, Italy and 12 Thessaloniki, Greece (Arola et al., 2005, Bais et al., 2005) revealed the same trend, with low 13 SSA values (high absorption) associated with low AOD and reminiscent of mostly wintertime 14 cases. It has to be noted that due to low AOD, uncertainties associated with the data obtained 15 from both retrieval techniques (AERONET and UVMFR), are quite high. For higher AOD, 16 CIMEL retrievals show an almost constant value of the SSA ~0.92 while lower values have 17 been calculated when moving towards shorter wavelengths. Similar results were reported by 18 Krotkov et al. (2005b) when analyzing measurements derived at Washington, USA.

Figure 11 Dependence of the calculated SSA from AOD measurements

2

1

3

4 We performed an analysis of the differences of SSAs between the visible and the UV parts of 5 the spectrum based on aerosol characteristics using synchronous CIMEL and UVMFR SSA 6 retrievals and an aerosol classification scheme described in detail in Mielonen et al. (2009). 7 There, a classification of AERONET data was used in order to derive 6 aerosol types based 8 on the SSA measurement at 440nm and the AE that was derived in the 440-870 nm 9 wavelength range. Mielonen et al. (2009) used a visualization of this characterization, by 10 plotting AE versus SSA for individual sites, and compared their results with the CALIPSO 11 (Omar et al., 2005) aerosol classification scheme obtaining good agreement. In addition, the 12 difference between SSA at 440 nm and 1020 nm (similar to the approach applied by Derimian 13 et al. (2008)), was implemented to better distinguish fine absorbing aerosols from coarse ones. 14 The main idea was to fill this SSA versus AE aerosol type related "space" with the differences 15 of SSA₄₄₀-SSA₃₆₈ (SSADIFF) to investigate a possible link between wavelength dependence 16 and aerosol type. In figure 12 using the Mielonen et al. (2009) aerosol typing approach, we 17 plot SSADIFF for different classes (colored scale), and separate aerosol types by areas in the 18 SSA/AE plot . In addition, actual points of SSA₄₄₀ retrieved by the CIMEL instrument are 19 shown in order to categorize Athens results according to the classification scheme.

20

Figure 12 Daily average SSA₄₄₀ (CIMEL) versus AE_(440-870nm). Colors represent different bins of the spectral differences of SSA_{440nm}- SSA_{368nm}.

4

1 2

3

5 The results of figure 12 show that a mixture of aerosol types characterizes the ARSS site in 6 Athens, with SSA440 values spanning all 6 sub-spaces. Analyzing the wavelength dependence 7 of the SSA, by defining SSADIFF as the difference SSA₄₄₀ - SSA₃₆₈, there is evidence that 8 high negative SSADIFF values (that means that the SSA at UV wavelengths is equal or 9 relatively higher than SSA440) tend towards high AEs. For these cases (green color in figure 10 11) we observe high absorption cases with AE's around 1, which can be attributed in polluted 11 dust aerosol events. Also the majority of cases which comply with the condition AE < 0.7 are 12 found with lower SSA at UV by at least 0.05 compared to SSA440. More specifically, dust 13 cases (mainly during spring) can be identified due to the proximity of Athens to the Saharan 14 desert (Gerasopoulos et al., 2010), explaining this behavior of absorbing aerosols at UV with low AE. Russel et al., (2010) reported results obtained from diverse datasets showing SSA 15 16 wavelength dependency from the IR down to visible wavelengths. In addition, Bergstrom et 17 al. (2007) presented SSA spectra for dust-containing aerosols campaigns (PRIDE and ACE-18 Asia) including AERONET measurements at sites that are affected by dust such as Cape 19 Verde, Bahrain (Persian Gulf) and the Solar Village (Saudi Arabia). Both studies concluded 20 that the SSA spectra for AERONET locations, dominated by desert dust decrease with 21 decreasing wavelength. In addition, Russel et al., (2010) reported that SSA spectra for

AERONET locations dominated by urban-industrial and biomass-burning aerosols decrease with increasing wavelength in line with the results of Bergstrom et al. (2007). Figure 11 also shows that similar SSA values can be found for 440nm and 368nm and for fine aerosol cases (AE>1.4).

5 In order to understand the potential relative contributions of dust and brown carbon better, we 6 applied the method of Schuster et al. 2016 to the AERONET measurements in Athens. This 7 method separates black carbon, organic carbon, hematite and goethite, using refractive index 8 at all available wavelengths, even in complex mixtures. Figure 12 shows the fractions of total 9 aerosol volume attributed to these components in both fine and coarse mode, as well as the 10 volume fractions accordingly. It is evident, according to this approach, that both brown 11 carbon and mineral dust are likely absorbing components involved in the aerosol mixture in 12 Athens, and brown carbon playing the more dominant role. Brown carbon highly absorbs in 13 UV wavelengths and hardly any above 0.7nm (Kirchstetter et all, 2004). BrC fraction is 14 higher at OCTOBER, but it has very large concentrations at the period March-June, which 15 partly explains low SSA values at figure 9.

Figure 13. Volume fraction (in the lower plot) of absorbing aerosol components, as inferred by the method of Schuster et al. 2016. The retrieval gives the fractions for fine and coarse mode separately and here the contributions are shown as mode-weighted median value.

1 The utility of the AE for aerosol scattering is that its value depends primarily on the size of 2 the particles, ranging from a value of 4 for very small particles (Rayleigh scattering) to 3 around 0 for very large particles (such as cloud drops). Thus AE for atmospheric aerosol scattering varies between limits specified by particle size. Various studies (e.g. Bergstrom et 4 al., 2007) have used the Ångström Absorption Exponent (AAE) for studying the aerosol 5 6 absorption wavelength dependence for different aerosol types and mixing (which is calculated 7 similarly with the Ångström Exponent, only using Absorption Optical depth [AOD*(1-SSA)] 8 instead of AOD). As the absorption AOD is a relatively smooth decreasing function with 9 wavelength, it can be approximated with a power law wavelength dependence via the AAE 10 which is defined as the negative of the slope of the absorption on a log-log plot. Figure 13 11 shows the temporal variability of AAE(440-870) and AAE(332-440). Measurements of AAE(440-870) are found to lie between 0.9 and 1.5 (2σ) in accordance with the results of Bergstrom et al., 12 13 (2007). AAE₍₃₃₂₋₄₄₀₎ in the UV range is very different from that in the visible, with values 14 ranging from 1.4 to 5 (2 σ). A direct comparison reveals that for the aerosol composition 15 features of Athens, the AAEs are usually up to 4 times higher in the UV range than in the 16 visible. This is due to a combination of the enhanced absorption (lower SSA's) that has been 17 found in the UV, together with higher AOD's in this band.

Finally, we have calculated mean CIMEL SSA values for all four retrieved wavelengths 18 19 (440nm, 673nm, 870nm and 1020nm) for the whole period under study, and synchronous (5 minute SSA averaged around the CIMEL measurement time) UVMFR SSAs at UV (332nm 20 and 368nm). The results are shown in figure 14 with errorbars at 1o. Datasets of SSA 21 22 retrievals are separated in 3 cases accordingly: a) all points (CIMEL L1.5 and all synchronous 23 UVMFR data), b) measurements retrieved with AOD>0.2 (reduced uncertainty), and c) SSA 24 retrievals for $AE_{340-440}$ < 0.7, to identify dust events. While for all cases the calculated standard 25 deviation is quite high (≥ 0.05), there is a systematic SSA decrease in the UV range, and mean 26 differences of 0.07 and 0.02 have been found when comparing SSA at the visible range and 27 SSA at 332nm and 368nm respectively. Dust cases in particular show a spectral decrease in 28 SSA with decreasing wavelength from 1022nm (CIMEL) down to 332nm (UVMFR).

Figure 14 Wavelength dependence of SSA from synchronous CIMEL and UVMFR measurements. Blue points represent all data points, red data retrievals with AOD>0.2 and black data only dust aerosol cases.

5

1 2

3

4

6 The spectral dependence of the SSA from the visible to the UV wavelengths is in agreement 7 with findings presented by Corr et al., (2009). With the same approach applied to Mexico City 8 where measurements are also influenced by city emissions and blowing dust, Corr et al. 9 (2009) studied the SSA behavior at UV wavelengths and showed that for AOD>0.1, SSA 10 varied from 0.78 to 0.80 for 332nm and 368nm respectively with enhanced absorption at UV 11 wavelengths relative to the visible wavelengths attributable to these types of aerosols.

12

13 4 Conclusions

Advantages of measuring the aerosol absorption (SSA) in the UV with the UVMFRinstrument can be summarized as follows:

- AOD, in the UV wavelength range, is higher (for the same aerosol mass) than in the
 visible spectral range
- SSA retrievals with the uncertainty of ±0.03 can be derived for SZA> 40 degrees and
 with an uncertainty of ±0.04 for all SZA where AOD>=0.2
- SSA retrievals are stable and repeatable over the five year period

We have analyzed a 5 year period of UVMFR and CIMEL measurements at the city ofAthens retrieving SSA at visible and UV wavelengths based on the effect of aerosol SSA on

1 the Direct to Global Ratio (DGR) for a given AOD and air mass. Since the CIMEL retrieval 2 algorithm is more accurate for high SZA, the combination of the two instruments allows for 3 an increase in measurement frequency of SSA and the ability to derive a complete diurnal cycle of aerosol absorption. In addition, the spectral differences of the aerosol absorption 4 properties in the visible and UV wavelength range have been investigated, using synchronous 5 6 CIMEL and UVMFR retrievals. Results of this work confirmed similar results found for 7 Mexico City, Mexico (Corr et al., 2009), Washington DC, USA (Krotkov et al., 2005b) and 8 Rome, Italy (Ialongo et al., 2010), that presented enhanced absorption of aerosols for UV 9 wavelengths. 10 We have also the produced dataset to investigate possible effects of aerosol type on observed 11 SSA wavelength differences. The enhanced UV absorption can be mainly due to either dust or 12 organic aerosol. Our analysis of Athens AERONET measurements suggests that the relative role of absorbing organic aerosol would be somewhat more significant than dust. The 13

14 enhanced aerosol absorption found when comparing UV and visible spectrum results, shows 15 that:

- We expect a systematic overestimation of modeled solar UV irradiance using SSA
 from extrapolation from the visible range as an input to RTMs
- We expect a possible decrease in specific days/cases of regional O₃ due to the
 enhanced aerosol absorption
- Satellite post-correction validation results, including aerosol absorption effects, have
 to take into account absorption enhancement in the UV range.
- We expect an overestimation on the UV irradiance (UV Index) calculations on
 cloudless cases under dust and/or brown carbon presence when using SSA values from
 the visible range. This as a combination of the overestimated SSA and the high AODs
 during such events.

However, the spectral SSA differences, that we found, are well within the uncertainty of both retrievals as instrumental effects or absolute calibration uncertainties of sky radiances (~5% for the CIMEL almucantar measurements) might also play an important role when performing such comparisons. The coincidence of AOD measurements, from both instruments, using a single ETC for various SZA over the extended 5 year period used here, is a sign that no systematic SZA dependent factors influence the final SSA results.

1 The extended SSA dataset significantly improves comparative statistics and provides 2 additional information on the effect of varying background aerosol conditions and higher 3 aerosol absorption than that provided by Washington, DC. In conclusion, the combined use of 4 CIMEL sun and sky radiance measurements in the visible with UVMFR total and diffuse 5 irradiance measurements in the UV, provide an important advantage for remote measurements 6 of column aerosol absorption over the UV-Visible spectral range.

7

8 Acknowledgements

P.Raptis would like to acknowledge the project «Aristotelis- SOLAR (50561), Investgation on
the factors affecting the solar radiation field in Greece». V. Amiridis and S. Kazadzis would like
to acknowledge the project "European Union's Horizon 2020 Research and Innovation
Programme ACTRIS-2 (grant agreement no. 654109)"

13

14 References

Alfaro, S. C., Lafon, S., Rajot, J. L., Formenti, P., Gaudichet, A., and Maillé, M.: Iron oxides
and light absorption by pure desert dust: An experimental study, Journal of Geophysical
Research D: Atmospheres, 109, D08208 08201-08209, 10.1029/2003jd004374, 2004.

Amiridis, V., Kafatos, M., Perez, C., Kazadzis, S., Gerasopoulos, E., Mamouri, R. E.,
Papayannis, A., Kokkalis, P., Giannakaki, E., Basart, S., Daglis, I., and Zerefos, C.: The
potential of the synergistic use of passive and active remote sensing measurements for the
validation of a regional dust model, Annales Geophysicae, 27, 3155-3164, 10.5194/angeo-273155-2009, 2009.

Arola, A., Kazadzis, S., Krotkov, N., Bais, A., Gröbner, J., and Herman, J. R.: Assessment of
TOMS UV bias due to absorbing aerosols, Journal of Geophysical Research D: Atmospheres,
110, 1-7, 2005.

Bais, a F., McKenzie, R. L., Bernhard, G., Aucamp, P. J., Ilyas, M., Madronich, S., &
Tourpali, K. (2014). Ozone depletion and climate change: impacts on UV radiation.
Photochemical & Photobiological Sciences : Official Journal of the European Photochemistry
Association and the European Society for Photobiology. doi:10.1039/c4pp90032d

30

- 1 Bais, A. F., Kazantzidis, A., Kazadzis, S., Balis, D. S., Zerefos, C. S., and Meleti, C.:
- 2 Deriving an effective aerosol single scattering albedo from spectral surface UV irradiance
- 3 measurements, Atmospheric Environment, 39, 1093-1102 2005.
- 4 Barnard, J. C., Volkamer, R., and Kassianov, E. I.: Estimation of the Mass Absorption Cross
- 5 section of the organic carbon component of aerosols in the Mexico City Metropolitan Area,
- 6 Atmospheric Chemistry And Physics, 8, 6665-6679, 2008.
- 7 Bergstrom, R. W., Pilewskie, P., Schmid, B., and Russell, P. B.: Estimates of the spectral
- 8 aerosol single scattering albedo and aerosol radiative effects during SAFARI 2000, Journal of
- 9 Geophysical Research D: Atmospheres, VOL. 108, 8474, pp. 11, doi:10.1029/2002JD002435,
- 10 2003
- 11 Bornman, J.F. and Teramura, A.H. Effects of ultraviolet-B radiation on terrestrial plants. In
- 12 Environmental UV-Photobiology, Young, A.R., Björn, L.O., Moan, J. and Nultsch, W. (eds.),
- 13 Plenum Press, New York, pp. 427-471.1993.
- Castro, T., Madronich, S., Rivale, S., Muhlia, A., and Mar, B.: The influence of aerosols on
 photochemical smog in Mexico City, Atmospheric Environment, 35, 1765-1772, 2001.
- Corr, C. A., Krotkov, N., Madronich, S., Slusser, J. R., Holben, B., Gao, W., Flynn, J., Lefer,
 B., and Kreidenweis, S. M.: Retrieval of aerosol single scattering albedo at ultraviolet
 wavelengths at the T1 site during MILAGRO, Atmospheric Chemistry And Physics, 9, 58135827, 2009.
- 20 den Outer, P. N., Slaper, H., and Tax, R. B.: UV radiation in the Netherlands: Assessing long-
- term variability and trends in relation to ozone and clouds, J. Geophys. Res., 110, D02203,
 10.1029/2004jd004824, 2005.
- 23 Derimian, Y., J.-F. Léon, O. Dubovik, I. Chiapello, D. Tanré, A. Sinyuk, F. Auriol, T. Podvin,
- 24 G. Brogniez, and B. N. Holben, Radiative properties of aerosol mixture observed during the
- 25 dry season 2006 over M'Bour, Senegal (African Monsoon Multidisciplinary Analysis
- 26 campaign), J. Geophys. Res., 113, D00C09, doi:10.1029/2008JD009904, 2008.
- 27 Dickerson, R. R., Kondragunta, S., Stenchikov, G., Civerolo, K. L., Doddridge, B. G., and
- 28 Holben, B. N.: The impact of aerosols on solar ultraviolet radiation and photochemical smog,
- 29 Science, 278, 827-830, 1997.

- 1 Diffey, B. L.: Solar Ultraviolet-Radiation Effects On Biological-Systems, Physics In
- 2 Medicine And Biology, 36, 299-328, 1991.
- 3 Dubovik, O., and King, M. D.: A flexible inversion algorithm for retrieval of aerosol optical
- 4 properties from Sun and sky radiance measurements, Journal Of Geophysical Research-
- 5 Atmospheres, 105, 20673-20696, 2000.
- 6 Dubovik, O., B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I.
- 7 Slutsker, Non-spherical aerosol retrieval method employing light scattering by spheroids,
- 8 Geophys. Res. Lett., 29(10), 1415, doi:10.1029/2001GL014506, 2002.
- 9 Eck, T.F., Holben, B.N., Reid, J.S., Dubovik, O., Smirnov, A., O'Neill, N.T., Slutsker, I. and
- 10 Kinne, S., "Wavelength dependence of the optical depth of biomass burning, urban and desert
- 11 dust aerosols," J. Geophys. Res. 104, 31333–31350. 1999.
- Eck T. F., B. N. Holben, I. Slutsker, and A. Setzer, "Measurements of irradiance attenuation and estimation of aerosol single scattering albedo for biomass burning aerosols in Amazonia,"
 J. Geophys. Res. 103, 31865–31878, 1998
- 15 Elminir, H. K.: Sensitivity of ultraviolet solar radiation to anthropogenic air pollutants and
- 16 weather conditions, Atmospheric Research, 84, 250-264, 29 January 2012, 2007.
- Flores, J. M., Washenfelder, R. A., Adler, G., Lee, H. J., Segev, L., Laskin, J., Laskin,
 A., Nizkorodov, S. A., Brown, S. S., and Rudich, Y.: Complex refractive indices in the
 near-ultraviolet spectral region of biogenic secondary organic aerosol aged with
- 20 ammonia, Phys. Chem. Chem. Phys., 16, 10629–10642, doi:10.1039/C4cp01009d, 2014.
- 21

Gerasopoulos, E., Kokkalis, P., Amiridis, V., Liakakou, E., Perez, C., Haustein, K.,
Eleftheratos, K., Andreae, M. O., Andreae, T. W., and Zerefos, C. S.: Dust specific extinction
cross-sections over the Eastern Mediterranean using the BSC-DREAM model and sun
photometer data: The case of urban environments, Annales Geophysicae, 27, 2903-2912,
10.5194/angeo-27-2903-2009, 2009.

- 27 Goering, C. D., L'Ecuyer, T. S., Stephens, G. L., Slusser, J. R., Scott, G., Davis, J., Barnard, J.
- 28 C., and Madronich, S.: Simultaneous retrievals of column ozone and aerosol optical properties
- 29 from direct and diffuse solar irradiance measurements, J. Geophys. Res., 110, D05204,
- 30 10.1029/2004jd005330, 2005.
- 31 L. Harrison, J. Michalsky, and J. Berndt, "Automated Multi-Filter Rotating Shadowband

- 1 Radiometer: An instrument for Optical Depth and Radiation Measurements", Appl. Optics,
- 2 33, 5118-5125, 1994.
- 3 Gröbner, J., N.Kouremeti, and D.Rembges: A systematic comparison of solar UV radiation
- 4 spectra with radiative transfer calculations, 8th European Symposium on Physico-Chemical
- 5 Behaviour of Air Pollutants, A Changing Atmosphere EC, ORA/POST 62172, 2001.
- 6 B. M. Herman, S. R. Browning, and J. J. DeLuisi, "Determination of the effective imaginary
- 7 term of the complex refractive index of atmospheric dust by remote sensing: the diffuse-direct
- 8 radiation method," J. Atmos. Sci. 32, 918–925, 1975.
- 9 Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan,
- 10 J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET-
- 11 A Federated Instrument Network and Data Archive for Aerosol Characterization, Remote
- 12 Sens. Environ., 66, 1–16, 1998.
- Ialongo, I., Buchard, V., Brogniez, C., Casale, G. R., and Siani, A. M.: Aerosol single
 scattering albedo retrieval in the UV range: An application to OMI satellite validation,
 Atmospheric Chemistry And Physics, 10, 331-340, 2010.
- Kassianov, E. I., Barnard, J. C., and Ackerman, T. P.: Retrieval of aerosol microphysical
 properties using surface MultiFilter Rotating Shadowband Radiometer (MFRSR) data:
 Modeling and observations, Journal of Geophysical Research D: Atmospheres, 110, 1-12,
 10.1029/2004jd005337, 2005.
- 20 Kazadzis, S., Bais, A., Balis, D., Kouremeti, N., Zempila, M., Arola, A., Giannakaki, E.,
- 21 Amiridis, V., and Kazantzidis, A.: Spatial and temporal UV irradiance and aerosol variability
- 22 within the area of an OMI satellite pixel, Atmospheric Chemistry And Physics, 9, 4593, 2009.
- Kazadzis, S., Gröbner, J., Arola, A., and Amiridis, V.: The effect of the global UV irradiance
 measurement accuracy on the single scattering albedo retrieval, Atmos. Meas. Tech., 3, 10291037, 10.5194/amt-3-1029-2010, 2010.
- 26 Khatri, P., T. Takamura, T. Nakajima, V. Estellés, H. Irie, H. Kuze, M. Campanelli et al.
- 27 "Factors for inconsistent aerosol single scattering albedo between SKYNET and AERONET."
- 28 Journal of Geophysical Research: Atmospheres (2016).

- 1 Kirchstetter, T. W., T. Novakov, and P. V. Hobbs, Evidence that the spectral dependence of
- 2 light absorption by aerosols is affected by organic carbon, J. Geophys. Res., 109, D21208,
- 3 doi:10.1029/2004JD004999, 2004.
- 4 M. King and B. M. Herman, "Determination of the ground albedo and the index of absorption
- 5 of atmospheric particles by remote sensing. Part I: Theory," J. Atmos. Sci. 36, 163–173. 1979
- M. King, "Determination of the ground albedo and the index of absorption of atmospheric
 particles by remote sensing. Part II: Application," J. Atmos. Sci. 36, 1072–1083, 1979
- 8 Krotkov, N. A., Bhartia, P. K., Herman, J., Slusser, J., Labow, G., Scott, G., Janson, G., Eck,
- 9 T. F., and Holben, B.: Aerosol ultraviolet absorption experiment (2002 to 2004), part 1:
- 10 Ultraviolet multifilter rotating shadowband radiometer calibration and intercomparison with
- 11 CIMEL sunphotometers, Optical Engineering, 44, 1-17, 2005a.
- 12 Krotkov, N.A., Bhartia, P. K., Herman, J., Slusser, J., Scott, G., Labow, G., Vasilkov, A. P.,
- 13 Eck, T. F., Dubovik, O., and Holben, B. N.: Aerosol ultraviolet absorption experiment (2002
- 14 to 2004), part 2: Absorption optical thickness, refractive index, and single scattering albedo,
- 15 Optical Engineering, 44, 1-17, 2005b.
- 16 Krotkov, N. A., Bhartia, P. K., Herman, J. R., Fioletov, V., and Kerr, J.: Satellite estimation
- 17 of spectral surface UV irradiance in the presence of tropospheric aerosols 1. Cloud-free case,
- 18 Journal of Geophysical Research D: Atmospheres, 103, 8779-8793, 1998.
- Kudo, R., Uchiyama, A., Yamazaki, A., Kobayashi, E., and Nishizawa, T.: Retrieval of
 aerosol single-scattering properties from diffuse and direct irradiances: Numerical studies, J.
 Geophys. Res., 113, D09204, 10.1029/2007jd009239, 2008.
- 22 Liu S, AC Aiken, K Gorkowski, MK Dubey, CD Cappa, LR Williams, SC Herndon, P 23 Massoli, EC Fortner, PS Chhabra, WA Brooks, TB Onasch, JT Jayne, DR Worsnop, S China, 24 N Sharma, C Mazzoleni, L Xu, NL Ng, D Liu, JD Allan, JD Lee, ZL Fleming, C Mohr, P 25 Zotter, S Szidat, and ASH Prévôt, Enhanced light absorption by mixed source black and 26 carbon particles in UK winter, Nature Communications, brown 6, 8435, 27 doi:10.1038/ncomms9435, 2015.
- 28
- Mayer, B., and Kylling, A.: Technical note: The libRadtran software package for radiative
 transfer calculations Description and examples of use, Atmospheric Chemistry and Physics,
 5, 1855-1877, 2005.

- 1 Medina, R., Fitzgerald, R. M., & Min, Q. (2012). Retrieval of the single scattering albedo in
- 2 the El Paso-Juarez Airshed using the TUV model and a UV-MFRSR radiometer. *Atmospheric*
- 3 Environment, 46, 430–440. doi:http://dx.doi.org/10.1016/j.atmosenv.2011.09.028
- 4 Meleti, C., Bais, A. F., Kazadzis, S., Kouremeti, N., Garane, K., & Zerefos, C. (2009). Factors
- 5 affecting solar ultraviolet irradiance measured since 1990 at Thessaloniki, Greece.
- 6 International Journal of Remote Sensing, 30(15-16), 4167-4179.
- 7 Mielonen, T., Arola, A., Komppula, M., Kukkonen, J., Koskinen, J., de Leeuw, G., and
- 8 Lehtinen, K. E. J.: Comparison of CALIOP level 2 aerosol subtypes to aerosol types derived
- 9 from AERONET inversion data, GEOPHYS. RES. LETT., 36, L18804,
- 10 10.1029/2009gl039609, 2009.
- 11 Moosmüller, H., J. P. Engelbrecht, M. Skiba, G. Frey, R. K. Chakrabarty, and W. P. Arnott
- 12 (2012), Single scattering albedo of fine mineral dust aerosols controlled by iron concentration,
- 13 J. Geophys. Res., 117, D11210, doi: 10.1029/2011JD016909.
- Müller, D., Wandinger, U., and Ansmann, A.: Microphysical particle parameters from
 extinction and backscatter lidar data by inversion with regularization: Simulation, Applied
 Optics, 38, 2358-2368, 1999.
- Nakajima, T., Tonna, G., Rao, R., Boi, P., Kaufman, Y., & Holben, B. (1996). Use of sky
 brightness measurements from ground for remote sensing of particulate polydispersions.
 Applied Optics, 35(15), 2672-2686.
- 20 Nikitidou, E., Kazantzidis, A., De Bock, V., De Backer, H., The aerosol forcing efficiency in
- 21 the UV region and the estimation of single scattering albedo at a typical West European site,
- 22 Atmospheric Environment (2013), doi: 10.1016/j.atmosenv.2012.12.035
- 23 Omar, A. H., Won, J. G., Winker, D. M., Yoon, S. C., Dubovik, O., and McCormick, M. P.:
- 24 Development of global aerosol models using cluster analysis of Aerosol Robotic Network
- 25 (AERONET) measurements, Journal Of Geophysical Research-Atmospheres, J. Geophys.
- 26 Res. 110: D10S14, doi: 10.1029/2004JD0048, 2005.
- 27 Paraskevopoulou, D., Liakakou, E., Gerasopoulos, E., Theodosi, C., & Mihalopoulos, N.
- 28 (2014). Long-term characterization of organic and elemental carbon in the PM 2.5 fraction:
- the case of Athens, Greece. Atmospheric Chemistry and Physics, 14(23), 13313-13325.

- 1 Paur, R. J., and A. M. Bass. 1985. "The Ultraviolet Cross-Sections of Ozone: II. Results and
- 2 Temperature Dependence." In Atmospheric Ozone, edited by C. S. Zerefos and A. Ghazi,
- 3 611–616. Dordrecht: Springer.
- 4 Petters, J. L., Saxena, V. K., Slusser, J. R., Wenny, B. N., and Madronich, S.: Aerosol single
- scattering albedo retrieved from measurements of surface UV irradiance and a radiativetransfer model, Journal of Geophysical Research D: VOL. 108, NO. D9, 4288,
- 7 doi:10.1029/2002JD002360, 2003.
- Reuder, J., and Schwander, H.: Aerosol effects on UV radiation in nonurban regions, Journal
 of Geophysical Research D: Atmospheres, 104, 4065-4077,
- 10 Russell, P. B., Bergstrom, R. W., Shinozuka, Y., Clarke, A. D., DeCarlo, P. F., Jimenez, J. L.,
- 11 Livingston, J. M., Redemann, J., Dubovik, O., and Strawa, A.: Absorption Angstrom
- 12 Exponent in AERONET and related data as an indicator of aerosol composition, Atmospheric
- 13 Chemistry And Physics, 10, 1155-1169, 10.5194/acp-10-1155-2010, 2010.
- Schuster, G. L., Dubovik, O., & Arola, A. (2016). Remote sensing of soot carbon Part 1:
 Distinguishing different absorbing aerosol species, 1565–1585. doi:10.5194/acp-16-15652016
- Tanskanen, A., Lindfors, A., Määttä, A., Krotkov, N., Herman, J., Kaurola, J., Koskela, T.,
 Lakkala, K., Fioletov, V., Bernhard, G., McKenzie, R., Kondo, Y., O'Neill, M., Slaper, H.,
 den Outer, P., Bais, A. F., and Tamminen, J.: Validation of daily erythemal doses from Ozone
 Monitoring Instrument with ground-based UV measurement data, Validation of daily
 erythemal doses from ozone monitoring instrument with ground-based UV measurement
- 22 data,~J. Geophys. Res., 112, D24S44, doi:10.1029/2007JD008830, 2007
- Taylor, T. E., L'Ecuyer, T. S., Slusser, J. R., Stephens, G. L., and Goering, C. D.: An
 operational retrieval algorithm for determining aerosol optical properties in the ultraviolet, J.
 Geophys. Res., 113, D03201, 10.1029/2007jd008661, 2008.
- UNEP, Van der Leun, J. C., Tang, X., and Tevini, M.: Environmental effects of ozone
 depletion: 1998 assessment, Journal of Photochemistry and Photobiology B: Biology, 46,
 10.1016/s1011-1344(98)00195-x, 1998.
- 29 UNEP: Environmental effects of ozone depletion and its interactions with climate change:
- 30 2002 assessment, executive summary, Photochem. Photobio. S., 2, 1–4, 2003.

- 1 UNEP, Van Der Leun, J., Bornman, J. F., and Tang, X.: Environmental effects of ozone
- 2 depletion and its interactions with climate change: 2006 Assessment, Photochem. Photobiol.
- 3 Sci., 2007,6, 209-209, DOI: 10.1039/B700016B. 2007.
- 4 Van Weele, M., Martin, T. J., Blumthaler, M., Brogniez, C., Den Outer, P. N., Engelsen, O.,
- 5 Lenoble, J., Mayer, B., Pfister, G., Ruggaber, A., Walravens, B., Weihs, P., Gardiner, B. G.,
- 6 Gillotay, D., Haferl, D., Kylling, A., Seckmeyer, G., and Wauben, W. M. F.: From model
- 7 intercomparison toward benchmark UV spectra for six real atmospheric cases, Journal of
- 8 Geophysical Research D: Atmospheres, 105, 4915-4925, 2000.
- 9 WMO: Scientific Assessment of Ozone Depletion: 2002. Global Ozone Research and
- 10 Monitoring Project Report No. 47, Geneva, Switzerland, 498 pp, 2003.
- 11 Yu, H., Kaufman, Y. J., Chin, M., Feingold, G., Remer, L. A., Anderson, T. L., Balkanski, Y.,
- 12 Bellouin, N., Boucher, O., Christopher, S., DeCola, P., Kahn, R., Koch, D., Loeb, N., Reddy,
- 13 M. S., Schulz, M., Takemura, T., and Zhou, M.: A review of measurement-based assessments
- 14 of the aerosol direct radiative effect and forcing, Atmospheric Chemistry And Physics, 6, 613-
- 15 666, 2006.
- 16 Zerefos, C. S., Tourpali, K., Eleftheratos, K., Kazadzis, S., Meleti, C., Feister, U., Koskela,
- 17 T., and Heikkilä, A.: Evidence of a possible turning point in solar UV-B over Canada, Europe
- 18 and Japan, Atmospheric Chemistry And Physics, 12, 2469-2477, 10.5194/acp-12-2469-2012,
- 19 2012.