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Abstract. A new technique for estimating the raindrop size distribution (DSD) from polarimetric radar data is proposed. Two

statistical moments of the DSD are estimated from polarimetric variables, and the DSD is reconstructed using a double-moment

normalisation. The technique takes advantage of the relative invariance of the double-moment normalised DSD. The method

was tested using X-band radar data and networks of disdrometers in three different climatic regions. Radar-derived estimates

of the DSD compare reasonably well to observations. In the three tested domains, the proposed method performs similarly5

to and often better than a state-of-the-art DSD-retrieval technique. The approach is flexible because no specific DSD model

is prescribed. In addition, a method is proposed to treat noisy radar data to improve DSD-retrieval performance with radar

measurements.

1 Introduction

The raindrop size distribution (DSD) describes the microstructure of liquid precipitation, and is highly variable (Jameson and10

Kostinski, 2001; Uijlenhoet et al., 2003; Tapiador et al., 2010; Jaffrain and Berne, 2012). The DSD is measured at the point

scale by disdrometers. For applications such as numerical weather prediction (e.g. Baldauf et al., 2011) or radar remote sensing

(e.g. Bringi and Chandrasekar, 2001) it is often necessary to know the areal DSD at the pixel scale. In other cases, such as

studies of the microphysics of precipitation (Pruppacher and Klett, 2000; Tapiador et al., 2014), it would be useful to be able

to remotely infer the DSD aloft or in remote locations. For these reasons, retrieval of the DSD from radar data has been a15

long-standing goal. In this paper we present a new technique for DSD retrieval from polarimetric radar data, which is based on

the double-moment normalisation technique of Lee et al. (2004).

Polarimetric weather radars are particularly useful for remote retrieval of the DSD, because differences between vertically

and horizontally polarised electromagnetic waves reflected off hydrometeors in the atmosphere provide information on the par-

ticles’ concentration, size, and shape. In rainfall, radar reflectivity in horizontal (ZH [dBZ]) or vertical (ZV [dBZ]) polarisation20

primarily relates to drop concentration and size, differential reflectivity (ZDR [dB]) reflects drop shape, and specific differential

phase shift on propagation (Kdp [◦ km−1]) relates to both the concentration and shape of the drops (Bringi and Chandrasekar,

2001). Seliga and Bringi (1976) showed that ZDR can be linked to the median volume drop diameter, a microphysical property

of rain. Since then, many methods for DSD retrieval from radar variables have been proposed.
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Zhang et al. (2001) introduced the “constrained gamma” method, in which the shape and slope parameters of a gamma DSD

model (Ulbrich, 1983) are assumed dependent. This assumption is subject to debate (e.g. Zhang et al., 2003; Atlas and Ulbrich,

2006; Moisseev and Chandrasekar, 2007; Cao and Zhang, 2009). The technique, modified by Brandes et al. (2003), can provide

useful DSD information (Brandes et al., 2004a). In the “beta” method (Gorgucci et al., 2002), the effective slope of the drop

axis ratio to diameter relationship is retrieved. The slope is used to find parameter values for the normalised gamma model of5

Willis (1984), which has advantages for use with polarimetric observations (Illingworth and Blackman, 2002). Retrieval of the

gamma model shape parameter with the beta method is subject to high uncertainty (Gorgucci et al., 2002; Anagnostou et al.,

2008). To deal with noisy ZDR and Kdp data at low rain rates, Bringi et al. (2002, 2003) used the beta method for heavy rain

and disdrometer-based regressions on ZH and ZDR for light rain. Brandes et al. (2004b) found that the constrained gamma

method was in better agreement with disdrometer data than the beta method, while Anagnostou et al. (2008) reported similar10

performance from the two techniques, and both studies noted that the beta method is sensitive to errors in Kdp. Vulpiani et al.

(2006) developed a neural-network DSD-retrieval technique, and spatial correlations of DSD model parameters have been

retrieved from radar data (Thurai et al., 2012; Bringi et al., 2015).

X-band polarimetric weather radars are popular due to their portability, small size, and high resolution and sensitivity, but

measurements at X-band suffer from attenuation by heavy rain (Anagnostou et al., 2013; Kalogiros et al., 2013) and must be15

corrected (Matrosov et al., 2005; Park et al., 2005a). Several DSD-retrieval algorithms have been developed for X-band (e.g.

Park et al., 2005b; Gorgucci et al., 2008; Anagnostou et al., 2013; Kalogiros et al., 2013), including some with integrated

attenuation correction (e.g. Testud et al., 2000; Yoshikawa et al., 2014). The self-consistent with optional parameterization

attenuation correction and microphysics estimation (SCOP-ME) algorithm, developed through studies by Anagnostou et al.

(2009, 2010) and Kalogiros et al. (2013), uses relationships calculated for the Rayleigh limit, corrected for Mie scattering at20

X-band. It performs well compared to contemporary algorithms and disdrometer observations (Anagnostou et al., 2013). In

this paper we present a new method for DSD retrieval that uses the double-moment DSD normalisation of Lee et al. (2004),

and compare it to SCOP-ME.

The rest of this manuscript is organised as follows: we briefly describe the double-moment DSD normalisation technique

of Lee et al. (2004) in Section 2. Bulk rainfall variables that we use are introduced in Section 3. Data used are presented in25

Section 4. In Section 5 we propose a new DSD-retrieval method that uses double-moment normalisation to retrieve the DSD

from polarimetric radar data. Its performance is compared to that of SCOP-ME using radar variables simulated from DSD

measurements in Section 6. In Section 7 we introduce a new method to reduce the effects of noise in radar measurements.

Using this method, the DSD-retrieval algorithms are compared using radar data in Section 8. Conclusions are made in Section

9.30

2 Double-moment DSD normalisation

The DSD is written N(D) [mm−1 m−3], and is defined as the concentration in air of raindrops with equivolume diameter in

the interval [D,D+ δD) mm. The equivolume diameter is used because raindrops become oblate with size (e.g. Thurai et al.,
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2007); it is simply the diameter of a sphere that contains the same volume of water as a drop. Mn [mmn m−3], the nth-order

moment of the DSD, is

Mn =

∞∫
0

N(D)DndD. (1)

The double-moment normalisation method of Lee et al. (2004) allows for the DSD to be expressed as a combination of

two of its moments Mi and Mj of arbitrary orders i and j, and a double-moment normalised DSD h(x) [-], where x=5

DM
1/(j−i)
i M

−1/(j−i)
j [-] is the second-normalised diameter (Lee et al., 2004). Using the normalisation, the DSD can be

written

N(D) =M
(j+1)/(j−i)
i M

(i+1)/(i−j)
j h(x). (2)

The method is flexible because the function h(x) is not prescribed. Lee et al. (2004) suggested that a generalised gamma

model is an appropriate choice for h(x). Following their recommendation, we use the following double-moment normalised10

DSD (Lee et al., 2004):

N̂(D) = M
(j+1)/(j−i)
i M

(i+1)/(i−j)
j ĥ(x), (3)

ĥ(x) = cΓ
(j+cµ)/(i−j)
i Γ

(−i−cµ)/(i−j)
j xcµ−1

× exp

[
−
(

Γi
Γj

)c/(i−j)
xc

]
, (4)

where Γ is the gamma function, Γi = Γ(µ+i/c) and Γj = Γ(µ+j/c), and c [-] and µ [-] are parameters which must be fitted to15

the generalised gamma model. Since this formulation allows any DSD to be described using only two of its statistical moments,

the task of our DSD-retrieval algorithm is to estimate two DSD moments from polarimetric radar data.

The question of whether the double-moment normalised DSD is invariant has been investigated. Compared to previous

single-moment normalisation approaches that vary by rainfall type (Sempere-Torres et al., 2000), the double-moment approach

shows more similarity across such changes (Lee et al., 2004). Raupach and Berne (2017) tested the double-moment normalised20

DSD across spatial displacement and between different climatic regions. They showed that for practical purposes in stratiform

rain and with well-chosen input moments, the double-moment DSD can be considered invariant across space with reasonable

resulting performance on reconstruction of the DSD. Lee et al. (2007) showed that h(x) derived from time-series measurements

at one location had low scatter around the average double-moment normalised DSD. In the DSD-retrieval method proposed

here, we make the assumption that the double-moment normalised DSD function h(x) is invariant in space and time over the25

typical domain of interest, and that variance in the DSD is adequately explained through variance in two moments of the DSD.
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3 Bulk rainfall variables

All bulk rainfall variables can be derived from the DSD (a detailed review is provided by Bringi and Chandrasekar, 2001).

The mass-weighted mean drop diameter Dm [mm], useful as a characteristic drop size, is M4/M3. Liquid water content W [g

m−3] is related to the third moment of the DSD and is written

W =
π

6
10−3ρwM3, (5)5

where ρw [g cm−3] is the density of water. The rain rate R [mm h−1] is defined as

R= 6π10−4
∞∫
0

v(D)D3N(D)dD, (6)

where v(D) [m s−1] is the still-air terminal fall speed of a drop with equivolume diameterD. In this study v(D) was calculated

using the method of Beard (1976), for site-specific altitudes and latitudes, and an assumed sea-level temperature of 15◦ and

relative humidity of 0.95.10

Radar variables can also be derived from the DSD. In Rayleigh scattering, when the radar wavelength is much larger than

the particles being measured and drops are assumed to be spherical, the radar reflectivity is Z =M6 (Marshall et al., 1947). In

Mie scattering, in which the wavelength is of similar size to the particles, reflectivity in horizontal polarisation Zh [mm6 m−3]

is defined as (Bringi and Chandrasekar, 2001)

Zh =
106λ4

π5|K|2

∞∫
0

σbh(D)N(D)dD, (7)15

where λ [cm] is the wavelength, |K|2 [-] is the dielectric factor of water, and σbh(D) [cm2] is the back-scattering cross-section

at horizontal polarisation of a raindrop of equivolume diameter D. Reflectivity in vertical polarisation, Zv [mm6 m−3], is

obtained by replacing σbh(D) with the vertically polarised back-scattering cross-section σbv(D) [cm2]. It is usual practice to

deal with radar reflectivities in dBZ, calculated as ZH = 10log10Zh and ZV = 10log10Zv .

Differential reflectivity ZDR [dB] is ZH −ZV . Differential reflectivity in linear units, ξdr [-], defined as Zh/Zv , has been20

shown to relate to the reflectivity-weighted mean drop axis ratio rz [-] (Jameson, 1983). rz is defined as

rz =

∞∫
0

r(D)D6N(D)dD

∞∫
0

D6N(D)dD

, (8)
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where r(D) is the vertical to horizontal axis ratio of a drop of equivolume diameter D. The relationship found by Jameson

(1983) is

rz ∼ (ξdr)
− 3

7 , (9)

which is valid for narrow distributions of raindrop axis ratio (Bringi and Chandrasekar, 2001).

Dual-polarisation radars measure specific differential phase shift (on propagation) Kdp [◦ km−1], which is the difference5

in phase produced between horizontally and vertically polarised waves that pass through rain. It is defined as (Bringi and

Chandrasekar, 2001)

Kdp =
180λ

π
10−1

∞∫
0

Re [fhh(D)− fvv(D)]N(D)dD, (10)

where Re represents the real part of a complex number and Re(fhh) [cm] and Re(fvv) [cm] are the real parts of the forward

scattering amplitudes for horizontal and vertical polarisation respectively. Jameson (1985) showed that Kdp can be linked to10

the product of liquid water content and the deviation from unity of the mass-weighted mean raindrop axis ratio rm [-]. rm is

defined as

rm =

∞∫
0

r(D)D3N(D)dD

∞∫
0

D3N(D)dD

. (11)

Kdp can be written

Kdp =

(
180

λ

)
10−1CW (1− rm), (12)15

with dimensionless value C ∼ 3.75 (Bringi and Chandrasekar, 2001). Various raindrop axis ratio functions are available (e.g.

Pruppacher and Beard, 1970; Andsager et al., 1999; Brandes et al., 2002; Thurai et al., 2007). We return to the question of axis

ratios and Kdp in Section 5.

The integrals in this section and Equation 1 are idealised because the range of drop sizes is written from zero to infinity.

Using measured data, the integrals were calculated over truncated classes of diameter and second-normalised diameter, with20

D and x as class centres and dD and dx as class widths. Since truncation potentially effects bulk variables (e.g. Willis, 1984;

Ulbrich, 1985; Vivekanandan et al., 2004), we used the same truncation limits for compared quantities. When polarimetric

variables were calculated from DSDs, the T-matrix codes of Mishchenko and Travis (1998) were used to calculate raindrop
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scattering properties, with an assumed temperature of 12.5◦ C, a Gaussian distribution of raindrop canting angles with zero

mean and a standard deviation of 6◦ (stated as reasonable by Bringi and Chandrasekar, 2001), and a radar frequency of 9.4

GHz.

4 Data

To train and test the new method, data from three networks of OTT Parsivel (Löffler-Mang and Joss, 2000) disdrometers were5

used. Each network had a nearby X-band weather radar that scanned above the disdrometers. A full description of the data and

their treatment, and the coordinates for all stations, are provided in Raupach and Berne (2017), in which the same disdrometer

networks were used. Here we provide a summary of the data used in this study.

The first network provided the HyMeX data set. This network was located in Ardèche, France, in the autumns of 2012 and

2013, for the special observation periods of the Hydrological Cycle in the Mediterranean Experiment (HyMeX1, Drobinski10

et al., 2014). In this study we used data from 11 first-generation Parsivel and five Parsivel2 disdrometers located in the ap-

proximately 13 × 7 km2 network. Also used were data from a METEK GmbH micro rain radar (MRR Peters et al., 2002,

2005; Tridon et al., 2011) within the network, which provided vertical profiles of estimated DSDs recorded with 100 m vertical

resolution and 10 s integration time. MXPol, a transportable Doppler dual-polarisation weather radar (for instrument details

see Schneebeli et al., 2013) was located to the north-east of the disdrometer network. In 2013, MXPol recorded “stacked” plan15

position indicator (PPI) scans above the Parsivel network at elevations of four, five, six, eight, 10, 12, 14, 16, and 20 degrees

above horizontal, with a return time of about six minutes. Six rainfall events in which the MRR and MXPol both recorded data

were selected for 2013. The events were from 1.8 to 7.5 hours in length. Temperature data from a weather station at Pradel

Grainage were used to estimate freezing levels cutoff heights, below which precipitation was assumed to be primarily liquid.

These heights ranged from 971 m to 2386 m above sea level, and only those MRR data from below the cutoff level per event20

were used. More network details and the list of identified events are provided in Raupach and Berne (2017). The HyMeX data

set was the only set used in which estimates of the DSD aloft were available.

Two more data sets were used in order to incorporate data from different climatologies. The second instrument network was

composed of five first-generation Parsivel disdrometers, and MXPol, in Payerne, Switzerland, and took measurements from

February to July 2014. We used the MXPol PPI scan at five degrees above horizontal, which had a return time of about five25

minutes. The scans covered the region over three of the disdrometers. The third data set was from a network of 14 Parsivel2

disdrometers (Petersen et al., 2014) deployed in Iowa, United States, during the National Aeronautics and Space Administration

(NASA) Iowa Flood Studies (IFloodS) Global Precipitation Mission (GPM) ground validation campaign. Overlooking this

network was the University of Iowa’s X-band radar XPOL5 (Mishra et al., 2016). We used PPI data recorded at three degrees

above horizontal, with a return time of about eight minutes, for three days of heavy rainfall: the 25th, 26th, and 27th May 2013.30

These scans covered the area over ten of the disdrometers. The three networks were in regions with different climatologies (as

described in Wolfensberger et al., 2015). Table 1 provides a summary of the three networks. Table 2 shows the instruments

1See http://www.hymex.org.
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covered by PPI scans, the distance of each station to the PPI radar volumes used, and the number of radar scans that overlapped

with one-minute observations.

Table 1. Summary of instrument networks used. Coordinates for Parsivel networks are bounding boxes. Altitude is above sea level to nearest

10 m. Hours are provided only for non-instantaneous measurements, and show total hours of rain data across all stations.

Data set Instrument type Coordinates Altitude [m] Hours

HyMeX Parsivel (V1 and V2) 44.5547 — 44.6141◦ N, 4.3826 — 4.5148◦ E 200 — 640 404

MRR 44.5790◦ N, 4.5011◦ E 270 22

X-band radar 44.6141◦ N, 4.5461◦ E 600

Payerne Parsivel (V1) 46.8425 — 46.9783◦ N, 6.9184 — 7.13◦ E 433 — 451 347

X-band radar 46.8133◦ N, 6.9428◦ E 489

Iowa Parsivel (V2) 41.64062 — 41.99267◦ N, 92.09138 — 91.54163◦ W 197 — 286 412

X-band radar 41.8870◦ N, 91.7341◦ W 263

Disdrometer data, which had raw integration times of either 30 s or 60 s, and MRR data with 10 s integration time, were

resampled to one-minute temporal resolution. HyMeX and Payerne Parsivel data were corrected with reference to 2D-video-

disdrometer (2DVD) measurements from the HyMeX campaign (Raupach and Berne, 2015a, b). This procedure removed5

unrealistically large drops and those too far from expected velocities, adjusted velocity measurements, and adjusted drop

concentrations so that DSD moments more closely matched those of the 2DVD. These Parsivel data were quality controlled

so that only error-free time steps containing liquid precipitation were used. Iowa Parsivel data were used as provided without

further quality control.

Parsivel data are subject to uncertainty due to differences across individual instruments and instrument generations (e.g.10

Jaffrain and Berne, 2011; Tokay et al., 2014; Thurai et al., 2011; Raupach and Berne, 2015a), and their limited sampling area

introduces a bias, as reported by Tapiador et al. (2017). The Iowa data were provided in diameter class definitions that differed

from those of the instrument manufacturer (Petersen et al., 2014). The HyMeX and Payerne data sets used the manufacturer’s

diameter class definitions, which implies the assumption of a raindrop axis ratio to equivolume diameter relationship (Battaglia

et al., 2010). Our tests (not shown) showed limited differences made to DSD bulk variables when different axis ratio functions15

were used to modify the class definitions. Given the uncertainties involved in using modified diameter classes, we decided to

use the manufacturer’s class definitions for these two data sets. For each of the three regions, the Parsivel data were randomly

sampled so that 60% of records formed a training data set and the remaining 40% formed an independent validation data set.

Sensitivity of the random sampling was evaluated through repeated tests with different sample realisations and was found to

be low.20

All available disdrometer and PPI data were used, while MRR data were subset to event times so that likely solid precipitation

was not considered. MRR data were attenuation-corrected (METEK, 2010; Peters et al., 2010) and contained DSDs retrieved

with vertical wind ignored (Strauch, 1976; Peters et al., 2002). Negative concentrations (METEK, 2010) in MRR DSDs were
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Table 2. Instrument stations with corresponding PPI volumes, with the number of scans for that volume (S), the volume centre’s height above

the ground (H (ground) [m], to nearest 10 m), height above sea level (H (a.s.l) [m], to nearest 10 m), and horizontal range from the radar (D

[km]). MI [mm h−1] is the maximum one-minute rain intensity recorded by each instrument at a radar scan time.

Network Station S H (ground) H (a.s.l) D MI

Payerne HARAS Avenches 483 914 1349 9.8 15.6

Military Airport Payerne 408 365 816 3.7 16.7

Morat Airport 349 2087 2520 23.2 16.9

HyMeX Lavilledieu 1209 965 1192 8.4 55.5

Les Blaches 1256 549 978 5.4 62.3

Lussas 1277 732 1021 6.0 67.6

Mirabel 1254 374 870 3.8 59.3

Mont-Redon 1267 139 775 2.5 18.7

Pradel 1 1239 682 960 5.1 40.8

Pradel 2 1239 682 960 5.1 36.3

Pradel Grainage 1216 700 971 5.3 44.6

Pradel-Grainage-v2 1216 700 971 5.3 45.1

Pradel-Vignes 1222 733 989 5.5 22.7

Saint-Etienne-de-Fontbellon 1099 1214 1516 13.1 53.6

St-Germain 1139 1103 1307 10.1 76.2

Villeneuve-de-Berg 1150 841 1142 7.7 84.0

Villeneuve-de-Berg 2 1152 841 1142 7.7 74.2

Villeneuve-de-Berg 3 1150 840 1141 7.7 72.5

Pradel Grainage (MRR) 694 700 — 1850 970 — 2120 5.3 97

Iowa apu05 94 1522 1808 29.5 49.0

apu06 88 1566 1840 30.1 49.0

apu07 84 1661 1933 31.9 47.6

apu08 91 1569 1851 30.3 50.7

apu09 110 698 938 12.9 31.4

apu10 112 635 890 12.0 25.1

apu11 103 600 859 11.4 25.9

apu12 97 543 801 10.3 57.0

apu13 102 1727 1924 31.7 65.2

apu14 100 1727 1924 31.7 71.9

reset to zero. PPI radar reflectivities were compared to measurements from disdrometers (and the MRR in HyMeX), and bias

in ZH was corrected on a per-campaign basis. Bias in ZDR was estimated using vertical scans (birdbath scans, similar to

Grazioli et al., 2015), and was corrected in each of the three data sets. Two days of radar data from Payerne (2014-03-22 and

2014-04-08) exhibited higher radar bias due to hardware problems, and were not included in this study. Attenuation correction

for the PPI data was performed using the ZPHI algorithm (Testud et al., 2000), and Kdp was estimated using the method of5
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Schneebeli et al. (2014). PPI scan data were sampled for instrument locations by taking the mean values of radar volumes that

overlapped horizontally the instrument coordinates within the instrument’s corresponding one-minute integration period. To

discount noise, PPI records were subset to those for which ZH was greater than or equal to 10 dBZ and the signal to noise

ratio in horizontal polarisation was greater than or equal to 5 dB. DSD data were treated as in Raupach and Berne (2017):

Parsivel DSDs were truncated to 0.2495 (0.2565) mm to 7 (7.21) mm for HyMeX and Payerne (Iowa) Parsivel data (Raupach5

and Berne, 2015a); to avoid including overestimated numbers of small drops (Peters et al., 2005), DSDs estimated by the MRR

were truncated to 0.6 mm to 5.8 mm (Raupach and Berne, 2017) and MRR data were further subset to records with R≤ 150

mm h−1 (thus removing 0.2% of records); MRR data for altitudes greater than 2200 m were excluded because not enough

points were available at those altitudes; and all DSDs were subset to time steps in which R> 0.1 mm h−1. In each data set,

more than 85% of the DSDs sampled were classified as stratiform type by Raupach and Berne (2017).10

To compare measured versus estimated or retrieved values in this work, we use the median relative bias, the interquartile

range (IQR) of relative bias, and the squared Pearson correlation coefficient (r2) between reference and estimated values. If

VR is the reference value and VE is the estimated value, the relative bias expressed as a percentage of the reference value is

defined as 100(VE −VR)/VR.

5 DSD retrieval from polarimetric radar data15

Raupach and Berne (2017) showed that with reasonably chosen input moments, the double-moment normalised DSD of Lee

et al. (2004) can be assumed invariant across spacial displacement in stratiform rain, with a performance loss that is acceptable

for practical applications. Results on limited data for non-stratiform rain types suggested that while the double-moment nor-

malised DSD varies more in these cases, the assumption of its invariance may still lead to acceptable performance with input

moments that are not both of low or both of high order. Using the assumption of an invariant double-moment normalised DSD20

model, the DSD can be estimated using polarimetric radar data. Given a known double-moment normalised DSD, the task of

DSD reconstruction becomes that of estimating from radar information the values of two DSD moments. In this section we

present a new DSD-retrieval method that uses this idea. The aim of the proposed DSD-retrieval technique is to retrieve two

DSD moments using only polarimetric radar data.

The SCOP-ME method was trained with DSDs simulated using a DSD model and a wide range of DSD parameter values.25

In contrast, we used empirical DSDs measured by Parsivels to train our method, to avoid any assumption about the shape of

the DSD. A trade-off that must be made is that the measured DSDs are truncated. However, previous studies have shown that

if the considered range of drop diameters is large enough around the median drop diameter D0 [mm], the effect of truncation

on calculated bulk variables is limited (Willis, 1984; Vivekanandan et al., 2004). Willis (1984) concluded that the effect of

maximum considered drop size Dmax on bulk variables is negligible if Dmax exceeds 2.5D0. Using D0 calculated from the30

recorded (truncated) Parsivel DSDs, this criteria was met for 99.6% of the records. The criteria of Vivekanandan et al. (2004)

is that, for there to be less than five percent error on bulk variables, the minimum drop size Dmin should be less than D0/2

and Dmax should exceed 4D0. This constraint was met by 90.4% of the DSDs (93.5% met this criteria for the upper drop
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size limit). Calculated D0 may also be subject to error because of the truncation, but we consider that these calculations give

broad confidence in the bulk variables we used to train the method. Further, the truncation on the Parsivel data effects primarily

very small drops since large drops are rare, and therefore its influence on the higher-order moments we use is expected to be

negligible.

The training data set was sampled as 60% of each of the three Parsivel data sets, and contained 182079 measured one-minute5

DSDs. ZH , Kdp and ZDR were calculated for these DSDs for the MXPol stacked PPI incidence angles, temperatures of five,

10, and 15 degrees C, and each of four drop axis ratio functions: those of Andsager et al. (1999), Brandes et al. (2002), Thurai

et al. (2007), and that of Beard and Chuang (1987) in the form shown in Kalogiros et al. (2013). Unusual records with ZDR or

Kdp less than or equal to zero (0.16% of all simulated radar records) were excluded.

5.1 Retrieval of DSD moment six10

Radar reflectivity in linear units, Zh [mm6 m−3], is the sixth moment of the DSD in the Rayleigh scattering regime for

spherical drops (Bringi and Chandrasekar, 2001). At X-band frequencies, larger drops enter into the Mie scattering regime and

differences appear between M6 and Zh. We use the observation that Zh departs from M6 for heavier rain, and assume that this

departure occurs when ZH is greater than a threshold value. This threshold was determined through comparison of M6 and

Zh for DSDs, classed by ZH in classes of width 2 dBZ between 10 dBZ and 40 dBZ, and was set to 28 dBZ. For both smaller15

and larger reflectivity values, a power law relationship was found using orthogonal least squares fitting in log-log space. The

resulting relationship is

M̂6 =

Z
1.01
h if 10log10(Zh)≤ 28

2.71Z0.86
h if 10log10(Zh)> 28.

(13)

On the training set, median relative bias between M̂6 and M6 was 0.1%, the IQR of relative bias was 2.5 percentage points,

and the r2 value was 0.98. The fitted relationship is shown on samples of training data in Figure 1. Temperature made only20

limited difference to the fitted parameters: the pre-factor varied from 2.49 to 2.94 for the larger values of ZH , and the other

parameters differed by 0.01 or less from the value found for all temperatures combined.

5.2 Retrieval of DSD moment three

Retrieving a second, lower-order DSD moment is more difficult than estimating M6, because radar variables are more closely

linked to the higher-order moments of the DSD. Using theoretical relationships as much as possible, we present a method25

to estimate the third moment of the DSD from polarimetric data. As shown in Equation 9, the reflectivity-weighted mean

drop axis ratio, rz , is related to a negative power of the differential reflectivity in linear units. In Kalogiros et al. (2013), the

reflectivity-weighted and mass-weighted drop axis ratios were assumed to be the same and differences were dealt with through

fitting of qualitative relationships between radar variables. A similar approach is taken here. Since rz and the mass-weighted
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Figure 1. A sample of 20,000 points from the training set, showing the relationship between radar reflectivity and DSD moment six in dB

scale. The one-to-one line is shown in black; the red dashed line shows the fitted relationship of Equation 13. The ZH threshold of 28 dBZ

is shown with a triangle.

mean drop axis ratio rm are both weighted mean drop axis ratios, we assume that rm is also related to differential reflectivity,

and estimate rm using a polynomial fit to ZDR, such that

r̂m =

5∑
i=0

ciZ
i
DR. (14)

With our training data, this polynomial of order five produced low relative bias on retrieval of M3. Recall from Equation 5

that M3 relates to W : substituting Equation 5 into Equation 12, and solving for M3, we have5

M3 =
λ

0.003πCρw

Kdp

(1− rm)
. (15)

At X-band (9.4 GHz, λ= 3.189 cm), assuming that ρw = 1 g cm−3, and replacing rm with its estimate based on ZDR, M3 is

predicted by

M3 =
338.4

Ĉ

Kdp

(1− r̂m)
, (16)

where Ĉ is a single representative value for C.10

Kdp is sensitive to the raindrop axis ratio (e.g. Bringi and Chandrasekar, 2001), so values for ci and Ĉ were found per axis

ratio function. The coefficients ci in Equation 14 were found using least-squares polynomial fitting. In rare cases for large

values of ZDR the relationships returned unrealistic values of rm (0≤ rm or rm ≥ 1). In these few cases, r̂m was set to 0.75.

Estimated r̂m values were used to find C for each training DSD, and the mean of these values was used as Ĉ. The results and
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Table 3. Fitted values of Ĉ (Equation 16) and ci (Equation 14), by drop axis ratio function (Ratio).M3 estimation performance in the training

data is shown in terms of median relative bias (RB [%]), IQR of relative bias (IQR [% pts]), and r2. Max ZDR [dB] shows the maximum

value of ZDR each relationship can use.

Ratio Ĉ c0 c1 c2 c3 c4 c5 RB IQR r2 Max ZDR

Thurai 3.419 1 -0.075720 0.046043 -0.019965 0.003264 -0.000164 0.8 25 0.97 7.27

Brandes 3.274 1 -0.080221 0.052613 -0.023125 0.004237 -0.000279 -0.8 22 0.97 8.12

Andsager 3.220 1 -0.092664 0.074970 -0.036663 0.007466 -0.000549 -0.3 21 0.97 7.17

Beard 3.202 1 -0.088418 0.054731 -0.021392 0.003208 -0.000149 -0.7 22 0.97 7.47

their performance statistics are shown in Table 3. Fitted parameters differed across the three tested temperatures. However, pa-

rameters fitted using all training data performed similarly on training data for individual temperatures, with the median relative

bias remaining within ±1% of the all-temperatures value, and IQR of relative bias varying by less than one percentage point.

The values fitted using combined training data were used.

5.3 Summary of DSD-retrieval technique5

The proposed DSD retrieval method is summarised as follows: the double-moment normalised DSD ĥ(x) with parameters c

and µ is assumed trained from data and known. Then, givenKdp, ZDR and Zh, (1) DSD moment six is estimated using Equation

13, and (2) DSD moment three is estimated using Equations 14 and 16 and parameters from Table 3. The DSD is then retrieved

using Equation 4 with i= 3 and j = 6.

6 Comparison to an existing DSD-retrieval method10

The new DSD retrieval method was compared to SCOP-ME (Anagnostou et al., 2009, 2010; Kalogiros et al., 2013). We im-

plemented SCOP-ME using its description in Anagnostou et al. (2013). SCOP-ME was developed for X-band using simulated

DSDs and T-matrix simulations of radar variables, and in Anagnostou et al. (2013) it is shown to outperform the algorithms

of Anagnostou et al. (2008) and Park et al. (2005a). The DSD model used by SCOP-ME is based on the normalised DSD of

Willis (1984) (see also Bringi and Chandrasekar, 2001). Kalogiros et al. (2013) provided an explicit expression for rain rate15

using polarimetric variables, but since we are interested in the whole DSD, in the following we compare R computed from

reconstructed DSDs. The comparison of the two methods is first shown using Parsivel data in which the radar values were

simulated using T-matrix codes and were therefore free of radar measurement noise.

Comparisons of the two techniques were made using the Parsivel validation data set composed of 40% of the records from

HyMeX, Payerne, and Iowa. For each one-minute DSD record, Zh, Kdp and ZDR were calculated using T-matrix codes, for an20

elevation angle of 4◦ above horizontal, and using each of the four drop axis ratio functions. For the double-moment technique,

the generalised gamma model ĥ(x) (Equation 4) for i= 3 and j = 6 was used. ĥ(x) was fitted to non-zero median values of

h(x) in classes of x with width 0.2, using weighted least squares fitting in log space, with each class weighted by its number

12



of observations (Raupach and Berne, 2017). The parameters found for the combined Parsivel training data were c= 0.54 and

µ= 3.06. SCOP-ME and the double-moment method were used to retrieve the DSD concentrations N(D) for D in the class

centres of the truncated Parsivel diameter classes. For each technique and axis ratio function, retrieved DSDs were compared

to measured DSDs by comparing moments zero to seven, Dm and R.

Comparisons of relative error distributions by technique are shown in Figure 2. Example scatter plot results are shown for5

the HyMeX data set and the drop axis ratio model of Beard and Chuang (1987) in Figure 3. The Beard model, which has

been shown to match well to observations (Thurai et al., 2009), is shown because it provided the equilibrium drop shapes

around which the SCOP-ME training set was simulated (Kalogiros et al., 2013). Full performance results are shown for the

HyMeX data set in Table A1, for Payerne in Table A2, and for Iowa in Table A3. The metrics used were median relative bias,

IQR of relative bias, r2, and the slope of the linear regression on measured vs. reconstructed points. Differences between the10

performance metrics for the two techniques were calculated such that a negative difference indicates that the double-moment

technique performed better than SCOP-ME. These differences are shown visually in Figure 4, in which red colours show

negative differences.

Table 4. Average differences between double-moment and SCOP-ME techniques, on Parsivel data, over three regions and four raindrop axis

ratios. Negative values show an improvement by the double-moment technique over SCOP-ME.

Variable RB IQR r2 Slope

Dm 0.19 1.07 0.04 -0.07

M0 3.67 11.97 -0.01 0.03

M1 0.44 4.44 0.04 0.09

M2 -0.23 0.89 0.02 -0.04

M3 -1.28 0.46 0.00 -0.00

M4 -0.61 2.03 -0.00 0.06

M5 -0.49 2.36 -0.00 -0.02

M6 -1.57 -0.22 -0.01 -0.11

M7 -2.65 8.55 -0.03 -0.05

R -0.98 2.06 0.00 0.07

In over half of the tested region, axis ratio function, and variable combinations, the double-moment technique produced a

better median relative bias than the SCOP-ME technique, with an overall average difference of -0.35 percentage points. IQR15

of relative bias was usually slightly higher for the double-moment technique, with an average difference of 3.4 percentage

points. Correlation coefficients and scatter plot slopes were usually similar for both techniques. The average differences across

the three tested regions and four tested raindrop axis ratio functions are shown in Table 4. On average, the double-moment

technique produced better median relative bias than SCOP-ME on R and DSD moments two to seven. IQRs were similar on

average, with the exception of moments zero, one, and seven for which SCOP-ME produced notably smaller IQRs. As shown20

in Tables A1, A2, and A3, the results differed across the different drop axis ratio functions and regions. It was often the case

that SCOP-ME produced a less biased estimate of DSD moment zero, but in many of these cases the double-moment technique
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Figure 2. Relative bias distributions for the double-moment and SCOP-ME DSD-retrieval methods, by drop axis ratio function and data set

(H stands for HyMeX, P for Payerne, and I for Iowa). Variables are moment order n [mmn m−3], Dm [mm], and R [mm h−1]. Bold bars

show medians, boxes show IQRs, whiskers show 10th to 90th percentile ranges

produced a better r2. The double-moment technique’s performance variations relate to the accuracy of the prediction of DSD

moment three from Kdp and ZDR, and to the fit of the generalised gamma function ĥ(x). ĥ(x) was trained on data from all

data sets combined, in order to have the most general model possible. Our experiments showed that performance for low-order

moments could be increased in any one region by training the gamma model on data from that region only. This aligns with

the conclusions of Raupach and Berne (2017), who noted that while the double-normalised DSD can be assumed invariant for5

practical purposes, some residual variability remains and results in performance loss that depends on the input moments used.

We now move to testing the two techniques on measured radar data, in which noise is a problem that must be dealt with.
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Figure 3. Density scatter plots of retrieved versus measured moments Mn [mmn m−3], R [mm h−1], and Dm [mm] for the double-moment

method, on the HyMeX data set, using the axis ratio function of Beard and Chuang (1987). One-to-one lines are shown in black. Regres-

sion lines for the double-moment method are shown in solid red, and dotted red lines show linear regressions for SCOP-ME, for which the

densities are not shown. Values of Dm above 5 mm are extremely rare; less than 0.02% of DSDs in each data set show these values.

7 Reducing the effects of noise

Radar data is noisy at light rain rates, particularly for Kdp and ZDR (e.g. Bringi et al., 2002; Schneebeli et al., 2014). We

propose here a method to deal with this noise for the current application of DSD retrieval. Regressions on Zh and ξdr are used
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Figure 4. Differences in performance between the double-moment technique and SCOP-ME, using radar variables simulated from Parsivel

data, by region and drop axis ratio function (differences in Tables A1, A2, and A3). Reds indicate negative differences, where the double-

moment technique outperformed SCOP-ME. Variables are moment order n [mmn m−3], Dm [mm], and R [mm h−1]. Differences are

shown for median relative bias (RB [% pts]), IQR of relative bias (IQR [% pts]), r2 (difference in deviations from unity, multiplied by 100

for display on this scale), and regression slope (S, difference in deviations from unity, multiplied by 100).

to determine “expected” values for these variables, which can be used when the measured values are likely to be noisy. We

found that ZDR can be reasonably predicted from Zh using

ẐDR ∼ αZZβZ

h , (17)

and Kdp can be predicted from Zh and ξdr using

K̂dp ∼ αKZβK1

h ξβK2

dr (18)5
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Table 5. Fitted coefficients and the performance of the fits on the training data, for Equations 17 and 18, by raindrop axis ratio function

(Ratio). Performance is shown in terms of median relative bias (RB [%]) and the IQR [% pts] of relative bias.

ZDR performance Kdp performance

Ratio αZ βZ RB IQR αK βK1 βK2 RB IQR

Thurai 0.030 0.436 -5 64 0.00010 1.057 -3.171 -1 19

Brandes 0.027 0.449 -4 70 0.00010 1.037 -2.723 -1 13

Andsager 0.043 0.377 -3 57 0.00017 0.976 -3.262 0 16

Beard 0.048 0.384 -4 59 0.00017 1.015 -3.365 -0 13

with parameters αZ , βZ , αK , βK1 and βK2. Least-squares fitting in log-log space, using the training data set described in

Section 5, was used to find best-fitting parameter values per raindrop axis ratio function. Just as for the retrieval of DSD

moment six, assumed air temperature made only a small difference (parameter values fitted to individual temperature data sets

differed by less than 4% from those fitted using combined temperatures), whereas different axis ratios produced more diverse

parameter values. Resulting parameter values and performance statistics are shown in Table 5.5

Threshold values are used to determine when Kdp and ZDR may be noisy. A threshold value on ZH selects values of ZH

for which Kdp and ZDR showed large variation around their expected values in the three radar data sets used here. Threshold

values on ZDR and Kdp are those of Bringi et al. (2002). To reduce the effects of noise, then, if ZH < 37 dBZ or ZDR< 0.2

dB, measured ZDR is replaced by the the expected value ẐDR and ξdr is replaced by 10(ẐDR/10). Likewise, if ZH < 37 dBZ or

Kdp< 0.3 ◦ km−1, Kdp is replaced by K̂dp (calculated with ξ̂dr if ξdr was replaced). This treatment method allows radar data10

with negative or zero Kdp or ZDR to be used. The treatment improved DSD-retrieval performance for both the double-moment

and SCOP-ME techniques. For example, when retrieved DSDs were matched to measured MRR data (Section 8.1), the median

relative bias was reduced by an average (across variables) of ∼6 percentage points for SCOP-ME and by ∼16 percentage

points for the double-moment technique, while average IQRs were reduced more; for example on the comparison with MRR

data the IQRs were reduced by∼81 (69) percentage points for the SCOP-ME (double-moment) method. When retrieved DSDs15

were compared to Parsivel data (Section 8.2), the noise in the radar data contributed to errors to such an extent that for both

techniques the proposed treatment reduced the IQR and at times the median of relative bias by hundreds of percentage points

for some variables. We note that because most values of ZH recorded in the PPIs analysed here were lower than 37 dBZ, the

noise correction affected the majority of radar records.

8 Comparisons using radar data20

The DSD-retrieval techniques were applied to PPI radar data from the three locations. The double-moment technique was run

on noise-corrected data. SCOP-ME was run on uncorrected PPI data (subset to Kdp> 0 and ZDR> 0) and noise-corrected data.

We used the elevation angles of the stacked PPIs for HyMeX, 5◦ for Payerne, and 3◦ for Iowa. Measured radar variables ZH ,

Kdp and ZDR were recovered for volumes corresponding to instrument locations. DSD retrieval was performed using these
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values, and the resulting DSDs compared to those that were measured by other instruments. All comparisons using PPI data

involved a difference in measurement volume – a change-of-support problem that we expect will introduce error spread (e.g.

Raupach and Berne, 2016). There were, at times, significant vertical distances between the radar volume and the ground-based

Parsivels used in these comparisons (see Table 2). These factors and uncertainty in the noise correction technique combine to

create greater uncertainty in the comparisons of the two techniques made using real data than in those made using simulated5

radar variables from disdrometer data.

Because the axis ratio of Thurai et al. (2007) produced good results using the double-moment technique on the Parsivel

data, the double-moment technique was used with parameters for this axis ratio function. Note that the assumption of axis ratio

function affects only parameters of the double-moment technique, because the radar data used in this section are measured, not

simulated, and the SCOP-ME technique is used as presented in Anagnostou et al. (2013). In the HyMeX campaign, the lowest10

available PPI elevation angle (4◦) was used to compare results to Parsivels, but there was also an MRR at Pradel Grainage

which retrieved estimates of the DSD aloft. MRR-derived DSDs were compared at eight different altitudes using the MXPol

stacked PPIs (except 20◦ elevation) above the HyMeX instrument network. We first address the comparisons with MRR for

HyMeX, then move to the comparisons with the Parsivel networks in all three regions.

8.1 Comparisons to MRR DSD estimates aloft15

MXPol volume centre altitudes were projected onto MRR altitude classes for comparison. The double-moment DSD-retrieval

algorithm was used with generalised gamma model ĥ parameters (Equation 4) for MRR data and i= 3 and j = 6. These pa-

rameters were found using the same fitting technique as for Parsivel data (Section 6), but differ since instrumental differences

produce different forms of h(x) (Raupach and Berne, 2017). The parameters were set to c= 0.4 and µ= 32.25 (the value of

µ was reduced from 32.28 to stay within the computational limits of the software used). The large value of µ is due to the20

large numbers of small drops returned by the DSD-retrieval algorithm used by the MRR (Raupach and Berne, 2017), and is

compensated somewhat by the small value of c. The reconstructed DSDs were found for classes of drop diameter from 0.65

to 5.75 mm with a class width of 0.1 mm, so that the reconstructed truncation matched that of the MRR data. PPI values from

eight 100 m altitude classes between about 900 and 2100 m above sea level were compared to MRR estimates of the DSD

aloft. Two output pairings are shown here: the first in which both techniques used noise-corrected data, and the second in which25

the SCOP-ME technique used raw data and the double-moment technique used the same raw data set corrected for noise. This

second pairing was made to ensure that the performance of SCOP-ME was not compromised by the noise-correction technique.

Results of comparisons between MRR- and PPI-derived DSDs are shown for three example altitudes in Figure 5. There was

good agreement between the recorded radar reflectivity recorded by both instruments, with a median relative bias of −3%, an

IQR on relative bias of 16 percentage points, and a value of r2 of 0.63. The improvement in SCOP-ME performance made30

by the noise correction is clear. When both techniques used noise-corrected input, both overestimated DSD moment orders

zero to four and underestimated orders six and seven. Rain rate was recovered with a median relative bias of 2% (IQR 94 %

pts) by the double-moment technique and 17% (IQR 106 % pts) by SCOP-ME. The double-moment technique showed lower

median relative bias than SCOP-ME on moments one to four, seven, and R, and smaller IQRs on moment two to six, Dm, and
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R. Similar to some of the Parsivel results, the double-moment technique overestimated moments zero and one of the DSD. r2

values were low for both techniques (the maximum was 0.31, by SCOP-ME for Dm), but the double-moment technique had

the same or a slightly higher value of r2 in the majority of cases. High best-fit slopes were observed for both techniques for

moments five, six, and seven, and show the effect of a few outlier points in these cases. Performance differences between the

two techniques using noise-corrected data are shown in Table A4. Overall, the double-moment technique for DSD-retrieval5

out-performed SCOP-ME for the retrieval of DSD moments above order zero and rain rate measured aloft by the MRR.

A, 971 m A, 1571 m A, 2071 m

B, 971 m B, 1571 m B, 2071 m

0

200

400

0

200

400

0 1 2 3 4 5 6 7 Dm R 0 1 2 3 4 5 6 7 Dm R 0 1 2 3 4 5 6 7 Dm R

Variable

R
el

. b
ia

s 
[%

]

Method
DM

SM

Figure 5. Distributions of relative bias on DSD moments zero to seven, comparing DSDs retrieved using PPI data to those measured by the

MRR at Pradel Grainage. The results are classed by altitude for a selection of three altitudes across the compared range. Two comparisons

are shown: in comparison A, SCOP-ME used raw PPI data and the double-moment technique used the noise-corrected version of the same

data set. In B, both techniques used noise-corrected data sets. Symbols as for Figure 2.

8.2 Comparisons to DSDs measured by Parsivels

DSDs retrieved from polarimetric radar data were also compared to those recorded by ground-based Parsivels in the three

regions we studied. Unlike in previous sections where training and validation divisions of the Parsivel data were used, here we

compared DSDs derived using independent radar data to all available matching Parsivel records. The DSDs were retrieved in10

truncated Parsivel drop diameter classes, using the Parsivel generalised gamma model parameters quoted in Section 6. In the

Payerne and Iowa data sets, the noise-correction routine was required in order to retrieve realistic DSDs; the results shown here

are thus for the SCOP-ME and double-moment techniques both run on noise-corrected PPI data. Figure 6 shows distributions

of DSD-retrieval relative error for each region.
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Figure 6. Distributions of relative bias on DSD moments zero to seven, comparing DSDs retrieved using noise-corrected PPI data, and those

measured by Parsivel networks. Symbols as for Figure 2.
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Figure 7. Differences in performance between the double-moment technique and SCOP-ME using noise-corrected radar data, for MRR and

for Parsivels by region (differences in Table A4). Variables and performance statistics as for Figure 4. Red indicates that the double-moment

technique outperformed SCOP-ME. Grey indicates an r2 difference greater than 50 on this scale; these slopes were affected by outliers.

The double-moment technique produced smaller ranges of relative bias than SCOP-ME for moments five, six, and seven. For

moment orders zero and one, the double-moment technique produced better median relative bias than SCOP-ME in the HyMeX

and Iowa data sets, but worse in Payerne. Where the double-moment technique produced better median relative bias, the aver-

age improvement was of four percentage points, while in cases where SCOP-ME performed better, the average improvement

was five percentage points. Values of r2 and scatter plot slope were similar between the two techniques, with the majority5

of cases showing differences of less than 0.05 for both variables. Differences in performance between the two techniques are

shown in Figure 7 and Table A4.
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The performance of the double-moment technique is reliant on how accurately two DSD moments can be extracted from

radar data, and in turn on how accurate the radar data are. Both retrieval techniques appear to be similarly affected by radar

inaccuracies such as bias in ZH , and experiments with different reflectivity bias corrections (not shown here) showed similar

patterns of results. In Parsivel comparisons, the proposed DSD-retrieval technique was applied using a single double-moment

normalised DSD model in all three tested regions, without significant performance loss between regions. This supports previous5

findings (Raupach and Berne, 2017) that for practical use with real radar data in primarily stratiform rain, the double-moment

normalised DSD may be considered invariant in regions at similar latitudes.

9 Conclusions

Given the assumption of an invariant normalised DSD, and an estimate of that function, the DSD can be predicted using only

two of its moments using the double-moment normalisation method of Lee et al. (2004). Two DSD moments are available10

from polarimetric radar data. At X-band, radar reflectivity can be used to accurately predict the sixth moment of the DSD, and

moment three can be retrieved relatively accurately usingKdp and ZDR. We showed that by estimating these two DSD moments

from radar data, the DSD for a radar volume can be predicted using the double-moment formulation. Tests on disdrometer data

from three networks in different climatic regions showed that DSD-retrieval using this new technique produced similar or

slightly better performance than the SCOP-ME DSD-retrieval technique of Kalogiros et al. (2013). The proposed method is15

also more flexible, because there is no prescribed functional form for the double-moment normalised DSD, and even a non-

parametric ĥ(x) could be used. Nor is there a prescribed method of DSD moment extraction, which means that the moments

used could be tailored to the intended purpose.

A new method for treatment of radar data with possibly noisy values of Kdp and ZDR was proposed. The method is based

on predicting the expected values of these variables from radar reflectivity, and considerably improved the performance of20

both the DSD-retrieval techniques. DSDs were predicted from polarimetric variables in noise-corrected PPI scans measured

by X-band radars in each of the three regions. Comparisons of the retrieved DSDs to MRR data for DSDs aloft in the HyMeX

region in France, and of radar-retrieved DSDs to disdrometer data from the three regions, showed reasonable agreement but

large error spread for both methods. This study provides a proof-of-concept for DSD-retrieval using noise-corrected radar data,

the double-moment normalisation method of (Lee et al., 2004), and a generalised gamma model for the normalised DSD.25

Performance improvements may be possible through future work, that should test the approach using different instruments and

data sets, address more precise prediction of low-order DSD moments from polarimetric radar data, and investigate different

models and fitting methods for the double-moment normalised DSD..
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Table A1. Comparison of double-moment method to SCOP-ME results on all Parsivel data in the HyMeX data set by axis ratio function

(Ratio). RB [%] is median relative bias, IQR [% pts] is interquartile range of relative bias [% points], r2 is squared correlation coefficient. S

is the slope on measured vs. reconstructed regression. Difference is difference in absolute values for RB and IQR, and difference in deviation

from unity for r2 and slope. A negative difference shows that the double-moment method improved on SCOP-ME’s performance.

Double-moment SCOP-ME Difference

Ratio Var RB IQR r2 S RB IQR r2 S RB IQR r2 S

Ands. Dm −1 10 0.85 0.99 −2 9 0.88 0.83 −1 1 0.04 −0.17

M0 20 80 0.70 0.97 13 70 0.66 0.98 7 10 −0.04 0.01

M1 10 52 0.79 0.97 12 50 0.80 1.09 −1 2 0.02 −0.06

M2 6 34 0.89 1.03 10 34 0.91 1.13 −4 −0 0.02 −0.10

M3 4 21 0.97 1.09 8 21 0.97 1.07 −4 0 0.00 0.02

M4 3 12 0.99 1.09 6 11 0.99 0.99 −3 1 0.00 0.08

M5 1 6 0.99 1.03 3 4 0.99 0.93 −2 2 0.00 −0.04

M6 0 3 0.98 0.94 2 3 0.98 0.89 −2 1 −0.01 −0.06

M7 −1 14 0.98 0.83 1 3 0.94 0.83 0 11 −0.04 0.00

R 3 14 0.99 1.11 6 12 0.98 1.02 −3 2 0.00 0.09

Thur. Dm −1 13 0.83 0.99 −0 12 0.87 0.78 1 1 0.04 −0.21

M0 14 94 0.64 0.91 2 74 0.55 0.89 13 20 −0.09 −0.03

M1 7 64 0.75 0.94 1 55 0.73 1.05 6 9 −0.02 0.02

M2 4 42 0.88 1.02 1 39 0.88 1.15 3 3 0.00 −0.13

M3 4 26 0.96 1.09 1 26 0.96 1.14 3 1 0.00 −0.05

M4 3 14 0.99 1.09 1 14 0.99 1.06 2 0 0.00 0.03

M5 1 7 0.99 1.03 1 5 0.99 0.98 0 2 0.00 0.02

M6 0 2 0.99 0.94 2 2 0.98 0.92 −2 0 −0.01 −0.02

M7 −1 12 0.98 0.81 4 5 0.94 0.84 −3 7 −0.04 0.03

R 3 16 0.99 1.12 1 16 0.99 1.09 2 0 0.00 0.02

Bran. Dm −0 11 0.83 0.99 1 10 0.87 0.80 −0 0 0.04 −0.18

M0 14 79 0.66 0.90 −3 66 0.58 0.86 11 13 −0.08 −0.04

M1 5 53 0.75 0.92 −3 48 0.75 1.00 3 5 −0.01 0.08

M2 2 35 0.87 1.02 −2 34 0.88 1.08 −1 1 0.01 −0.07

M3 0 23 0.96 1.10 −2 22 0.96 1.07 −1 1 0.00 0.03

M4 0 15 0.99 1.11 −1 12 0.99 1.00 −1 3 0.00 0.10

M5 −1 7 0.99 1.06 −0 4 0.99 0.94 0 3 0.00 −0.01

M6 0 3 0.98 0.98 2 3 0.98 0.89 −2 −0 −0.01 −0.08

M7 1 15 0.98 0.87 5 6 0.94 0.84 −5 9 −0.04 −0.03

R −0 17 0.98 1.12 −1 13 0.98 1.02 −1 4 0.00 0.10

Beard Dm −1 10 0.85 0.99 −1 10 0.88 0.80 −0 1 0.04 −0.19

M0 15 78 0.69 0.93 6 69 0.61 0.94 9 9 −0.08 0.02

M1 6 52 0.78 0.94 5 50 0.77 1.08 1 2 −0.01 −0.02

M2 3 34 0.89 1.03 4 34 0.90 1.16 −1 −0 0.01 −0.13

M3 2 22 0.97 1.10 4 21 0.97 1.13 −2 1 0.00 −0.02

M4 2 13 0.99 1.11 3 11 0.99 1.05 −1 3 0.00 0.07

M5 1 7 0.99 1.06 2 4 1.00 0.98 −1 4 0.01 0.03

M6 1 3 0.98 0.96 2 3 0.98 0.93 −1 −0 0.00 −0.03

M7 0 14 0.98 0.83 3 4 0.95 0.86 −2 10 −0.03 0.03

R 2 15 0.99 1.13 3 12 0.99 1.08 −1 3 0.00 0.05
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Table A2. Comparison of double-moment method to SCOP-ME results on all Parsivel data in the Payerne data set by axis ratio function

(Ratio). Columns are as for Table A1.

Double-moment SCOP-ME Difference

Ratio Var RB IQR r2 S RB IQR r2 S RB IQR r2 S

Ands. Dm 1 8 0.85 1.15 −0 7 0.88 0.92 1 1 0.04 0.08

M0 10 63 0.60 0.88 −1 45 0.70 0.89 9 17 0.09 0.01

M1 2 40 0.74 0.89 1 35 0.80 0.96 1 5 0.06 0.07

M2 −0 25 0.87 0.94 3 25 0.89 0.99 −3 −0 0.02 0.05

M3 −0 14 0.96 1.00 4 16 0.95 0.98 −4 −2 −0.01 −0.01

M4 1 8 0.99 1.05 4 8 0.98 0.94 −3 −0 −0.01 −0.01

M5 1 4 0.99 1.05 3 3 0.98 0.84 −2 1 −0.01 −0.11

M6 0 2 0.98 0.93 2 2 0.96 0.71 −2 −0 −0.02 −0.22

M7 0 9 0.96 0.76 1 2 0.95 0.59 −1 7 −0.01 −0.17

R 0 9 0.99 1.04 4 9 0.97 0.97 −4 −0 −0.01 0.01

Thur. Dm 1 10 0.83 1.18 2 9 0.87 0.90 −1 2 0.04 0.08

M0 7 73 0.56 0.85 −11 46 0.66 0.82 −4 27 0.11 −0.03

M1 0 48 0.70 0.86 −8 36 0.78 0.90 −8 12 0.08 0.04

M2 −1 31 0.84 0.91 −6 27 0.88 0.95 −4 4 0.04 0.04

M3 −0 19 0.95 0.97 −3 18 0.95 0.97 −3 0 0.00 0.00

M4 1 10 0.99 1.03 −1 10 0.98 0.96 −0 −0 −0.01 −0.02

M5 1 4 0.99 1.03 0 4 0.98 0.87 1 0 −0.01 −0.10

M6 0 2 0.98 0.92 2 2 0.96 0.73 −2 −0 −0.02 −0.19

M7 −0 7 0.96 0.75 4 4 0.95 0.61 −4 3 −0.01 −0.15

R 0 11 0.98 1.02 −1 12 0.98 0.98 −1 −1 0.00 0.00

Bran. Dm 2 10 0.83 1.15 3 9 0.87 0.90 −1 1 0.04 0.05

M0 3 65 0.57 0.83 −14 44 0.66 0.80 −12 21 0.09 −0.03

M1 −3 44 0.72 0.86 −12 35 0.78 0.87 −8 10 0.06 0.02

M2 −4 29 0.85 0.92 −9 26 0.88 0.93 −4 3 0.03 0.01

M3 −3 18 0.95 1.00 −5 18 0.95 0.96 −3 0 0.00 −0.04

M4 −1 10 0.99 1.08 −3 10 0.98 0.94 −2 0 0.00 0.02

M5 −0 5 0.99 1.10 −0 4 0.98 0.87 −0 1 0.00 −0.03

M6 0 2 0.98 0.99 3 2 0.97 0.74 −2 −0 −0.01 −0.25

M7 1 9 0.96 0.82 6 4 0.96 0.63 −4 5 −0.01 −0.19

R −2 11 0.98 1.06 −3 11 0.98 0.96 −1 0 −0.01 0.02

Beard Dm 1 9 0.84 1.14 1 8 0.88 0.89 0 1 0.04 0.03

M0 6 61 0.60 0.86 −7 45 0.68 0.87 −1 16 0.08 0.01

M1 −1 40 0.74 0.89 −5 34 0.80 0.95 −4 6 0.06 0.06

M2 −3 25 0.87 0.95 −2 25 0.89 1.00 0 1 0.03 0.05

M3 −2 16 0.96 1.02 −0 16 0.96 1.02 1 −0 0.00 0.00

M4 −0 10 0.99 1.07 1 9 0.99 0.99 −1 1 −0.01 0.06

M5 1 5 0.99 1.07 2 3 0.98 0.90 −1 2 0.00 −0.03

M6 1 2 0.98 0.94 2 2 0.97 0.75 −1 −0 −0.01 −0.19

M7 1 9 0.96 0.76 3 3 0.96 0.63 −2 6 0.00 −0.13

R −1 11 0.99 1.07 1 10 0.98 1.01 −0 1 0.00 0.05
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Table A3. Comparison of double-moment method to SCOP-ME results on all Parsivel data in the Iowa data set by axis ratio function (Ratio).

Columns are as for Table A1.

Double-moment SCOP-ME Difference

Ratio Var RB IQR r2 S RB IQR r2 S RB IQR r2 S

Ands. Dm 2 13 0.86 1.07 0 12 0.91 0.85 2 1 0.04 −0.08

M0 −11 72 0.53 0.61 −4 73 0.48 0.75 6 −1 −0.04 0.14

M1 −9 52 0.70 0.74 −2 54 0.75 1.03 7 −2 0.05 0.23

M2 −6 36 0.89 0.92 0 37 0.92 1.11 6 −1 0.03 −0.03

M3 −2 25 0.97 1.09 2 23 0.98 1.04 0 2 0.01 0.04

M4 1 17 0.99 1.14 2 12 1.00 0.97 −1 5 0.01 0.11

M5 0 8 0.99 1.08 1 5 0.99 0.91 −1 4 0.00 −0.02

M6 1 4 0.99 0.93 2 4 0.98 0.85 −1 0 −0.01 −0.08

M7 0 19 0.98 0.77 2 5 0.95 0.79 −2 14 −0.03 0.02

R 1 19 0.99 1.16 2 14 0.99 1.00 −1 5 0.01 0.16

Thur. Dm 2 15 0.86 1.10 1 13 0.90 0.83 1 2 0.04 −0.07

M0 −11 85 0.46 0.59 −9 78 0.39 0.69 2 7 −0.06 0.10

M1 −9 63 0.66 0.71 −6 59 0.70 1.03 3 4 0.05 0.26

M2 −4 44 0.88 0.88 −3 42 0.91 1.16 1 2 0.03 −0.04

M3 0 27 0.98 1.04 −1 27 0.98 1.10 −1 0 0.01 −0.06

M4 3 15 0.99 1.11 0 14 1.00 1.01 3 1 0.00 0.09

M5 2 7 0.99 1.05 0 5 0.99 0.93 1 2 0.00 −0.02

M6 1 3 0.99 0.92 2 3 0.97 0.86 −1 −0 −0.01 −0.06

M7 −1 14 0.98 0.77 3 6 0.95 0.80 −3 8 −0.03 0.02

R 3 17 0.99 1.11 0 16 0.99 1.05 2 1 0.01 0.06

Bran. Dm 2 14 0.86 1.10 1 12 0.90 0.86 0 1 0.04 −0.04

M0 −9 77 0.61 0.77 −10 71 0.56 0.82 −1 6 −0.05 0.05

M1 −8 56 0.71 0.76 −8 52 0.76 1.01 1 3 0.05 0.22

M2 −5 38 0.89 0.90 −5 37 0.92 1.08 0 1 0.03 0.02

M3 −2 25 0.97 1.08 −3 24 0.98 1.03 −1 1 0.01 0.05

M4 1 17 0.99 1.15 −2 12 1.00 0.96 −1 4 0.01 0.11

M5 0 8 0.99 1.10 −1 5 0.99 0.90 −1 3 0.00 0.01

M6 1 3 0.99 0.97 2 4 0.97 0.85 −1 −1 −0.01 −0.12

M7 1 17 0.98 0.82 4 8 0.95 0.80 −3 9 −0.04 −0.02

R −0 18 0.98 1.16 −2 14 0.99 0.99 −2 4 0.01 0.15

Beard Dm 2 13 0.86 1.07 0 12 0.91 0.83 2 1 0.04 −0.10

M0 −9 76 0.52 0.62 −5 78 0.45 0.77 4 −3 −0.07 0.14

M1 −8 55 0.70 0.75 −2 58 0.73 1.08 6 −3 0.04 0.17

M2 −4 38 0.89 0.94 0 40 0.92 1.18 4 −2 0.02 −0.12

M3 −0 26 0.98 1.09 2 25 0.98 1.11 −2 1 0.00 −0.01

M4 3 18 0.99 1.14 2 13 1.00 1.01 0 6 0.00 0.13

M5 1 9 0.99 1.08 2 4 0.99 0.93 −0 5 0.00 0.00

M6 1 3 0.99 0.94 2 3 0.97 0.86 −1 −0 −0.02 −0.08

M7 0 18 0.98 0.78 3 5 0.95 0.79 −2 13 −0.03 0.01

R 2 20 0.99 1.16 2 15 0.99 1.06 −0 6 0.00 0.11
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Table A4. Differences in performance by variable and region, for DSDs retrieved from noise-corrected PPI data using the double-moment

technique and SCOP-ME, compared to the MRR at Pradel Grainage (MRR) and Parsivels by region (HyMeX, Payerne, and Iowa). Metrics

and differences are defined as for Table A1. An exception is Z, which refers to ZH measured by the radar, not reconstructed through

DSD-retrieval (hence it is the same for both techniques).

Double-moment SCOP-ME Difference

Variable RB IQR r2 S RB IQR r2 S RB IQR r2 S

MRR Dm −7 26 0.28 0.42 −6 26 0.31 0.43 1 −1 0.03 0.01

M0 26 181 0.00 0.01 17 160 0.00 0.01 9 21 0.00 0.00

M1 21 156 0.01 0.02 24 149 0.01 0.02 −3 7 0.00 0.00

M2 19 133 0.01 0.05 27 134 0.01 0.04 −7 −1 0.00 0.00

M3 11 107 0.02 0.12 22 113 0.01 0.11 −11 −5 −0.01 0.00

M4 −1 88 0.04 0.44 12 99 0.03 0.41 −11 −11 −0.01 −0.03

M5 −8 74 0.13 1.79 3 83 0.11 1.56 6 −9 −0.02 0.23

M6 −15 78 0.26 3.61 −12 82 0.18 2.97 3 −4 −0.08 0.64

M7 −19 91 0.29 4.07 −26 88 0.18 3.21 −7 3 −0.11 0.86

R 2 94 0.03 0.27 17 106 0.03 0.26 −15 −12 0.00 −0.01

Z −3 16 0.63 0.89 −3 16 0.63 0.89 0 0 0.00 0.00

HyMeX Dm −6 26 0.29 0.50 −5 25 0.31 0.43 1 1 0.02 −0.07

M0 −3 150 0.02 0.28 −10 120 0.04 0.26 −7 30 0.02 −0.02

M1 −10 122 0.04 0.36 −13 110 0.07 0.35 −3 12 0.03 −0.01

M2 −14 104 0.11 0.46 −16 100 0.13 0.45 −2 4 0.02 −0.01

M3 −20 95 0.21 0.49 −21 93 0.21 0.48 −2 1 0.00 −0.01

M4 −26 94 0.22 0.41 −26 93 0.24 0.41 −1 1 0.02 0.00

M5 −32 96 0.13 0.30 −32 96 0.19 0.31 0 −0 0.06 0.01

M6 −39 100 0.05 0.21 −37 105 0.11 0.22 2 −6 0.06 0.01

M7 −46 106 0.02 0.16 −41 118 0.06 0.17 5 −12 0.04 0.01

R −21 97 0.24 0.47 −22 96 0.23 0.46 −1 2 −0.01 −0.01

Z −9 26 0.50 0.68 −9 26 0.50 0.68 0 0 0.00 0.00

Payerne Dm −7 22 0.21 0.34 −5 22 0.21 0.30 2 −0 0.00 −0.03

M0 31 171 0.07 0.50 −4 124 0.11 0.34 27 47 0.04 −0.16

M1 17 138 0.08 0.43 −1 121 0.11 0.36 16 17 0.03 −0.08

M2 6 119 0.12 0.43 −1 114 0.14 0.40 5 5 0.02 −0.03

M3 −4 106 0.19 0.46 −5 105 0.20 0.46 −2 2 0.01 −0.01

M4 −13 99 0.29 0.48 −12 99 0.27 0.50 1 0 −0.02 0.01

M5 −22 103 0.29 0.37 −21 104 0.26 0.41 1 −1 −0.03 0.04

M6 −31 107 0.12 0.12 −29 110 0.11 0.15 2 −3 −0.01 0.02

M7 −42 109 0.03 0.02 −40 116 0.02 0.03 2 −8 −0.01 0.01

R −7 108 0.26 0.51 −6 107 0.25 0.51 1 1 −0.01 0.01

Z −8 28 0.42 0.57 −8 28 0.42 0.57 0 0 0.00 0.00

Iowa Dm −10 28 0.33 0.39 −11 26 0.37 0.34 −1 1 0.04 −0.04

M0 8 111 0.08 0.72 26 129 0.09 0.56 −18 −18 0.01 −0.16

M1 7 100 0.14 0.79 19 118 0.14 0.67 −12 −18 0.00 −0.13

M2 6 109 0.22 0.75 11 114 0.22 0.68 −5 −5 0.00 −0.08

M3 4 106 0.31 0.59 4 105 0.30 0.56 −0 1 −0.01 −0.02

M4 −5 107 0.33 0.37 −6 105 0.32 0.39 −1 2 −0.01 0.02

M5 −17 109 0.25 0.19 −15 110 0.28 0.23 2 −1 0.03 0.04

M6 −32 116 0.13 0.08 −25 123 0.18 0.12 7 −7 0.05 0.03

M7 −44 114 0.04 0.03 −35 135 0.09 0.06 10 −21 0.05 0.02

R 4 113 0.33 0.49 2 109 0.32 0.50 3 4 −0.01 0.01

Z −5 25 0.54 0.62 −5 25 0.54 0.62 0 0 0.00 0.00
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