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Reviewer #2: 

This paper presents  studies  related  to  the use and  selection of a  convective  initiation  (CI) 

algorithm  for  application  to Himawari‐8  AHI  data,  specifically  collected  for  the  Korean 

Peninsula. The paper  addresses  questions within  the  scope  of AMT  although  it does not 

introduce new concepts or ideas. It reaches interesting conclusions in the context of applying 

the data to the Korean Peninsula and, although the novelty of the paper is minimal, it gives a 

reasonable description of the issues involved with detecting CI. Publication of such analyses 

is not unusual for new instrumentation as it assists others and it provides a benchmark in the 

analysis process. In this case, the data analysis is limited in the confidence which we can have 

by  the small number of days  (in  the  figures)  for which  the results of  the  training data are 

applied. If  the algorithms are  truly  to be  ‘validated over Northeast Asia’, we need a better 

(larger) validation data‐set. The English language in the paper would benefit from the advice 

of a native English speaker but it is not disastrous and the reader would not be led to confusion 

or misinterpretation.   

 

 Thank you for your comments. We added five (5) more CI events for validation during 

June to August 2015‐2016 because CI models were developed for the summer season 

in 2015. A total of validation datasets were eight (8), which we think reasonable when 

compared to previous CI studies (Mecikalski et al. 2006; Mecikalski et al. 2008; Walker 

et al. 2012; Merk and Zinner. 2013; Mecikalski et al. 2015).   

 

We are developing seasonal CI models, which is the main topic of our next research 

paper. As Himawari‐8 is relatively new, it takes time to get sufficient training samples 

for CI detection models for different seasons.   

 

English was carefully revised. We also used a professional editing service to improve 

the clarity and readability of the manuscript.   

 

The novelty of our present study when compared to the previous studies lies in the 

following  two points: 1) Our present  study  is, as we know of,  the  first paper  that 

evaluated Himawari‐8 AHI data for CI detection. In our study, we solely focused on 

using AHI channel data without any ancillary data  to detect CI  for an operational 

purpose. While CI detection research has been widely conducted over US and Europe, 

it  has  had  minimum  exploration  over  Northeast  Asia.  This  present  study  can 

contribute to the forecast and mitigation of heavy rainfall in Northeast Asia, especially 

during  the  rainy  season  (i.e.,  summer).  2) Our  proposed machine  learning‐based 

approaches contain  two new post processes—majority voting and  region growing, 

which are included in the revision. Since pixel‐based CI detection is known to often 

result in salt‐and‐pepper noise and non‐compact CI output, our proposed approaches 

include  the  post‐processing  to  minimize  such  problems.  The  post‐processing 

generally resulted in an increase of POD and a decrease of FAR.     
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other reviewer. We improved our approaches by incorporating two post‐processing 

techniques  and  added  five  additional  validation  cases  (i.e.,  a  total  of  8  validation 

datasets) with more discussion  to  improve  the quality of our  study. Figures were 

updated with more clarity. Although it is not possible to directly compare our results 

to others’ as different input and reference data were used, this present study showed 

good results comparable with Mecikalski et al. (2015). This implies that Himawari‐8 

satellite data (or future weather satellites with similar/more advanced specifications 

such  as GOES‐R  and GK‐2A)  can  be  solely  used  to  detect CI, which  enables  the 

development of operational CI detection algorithms with high POD and  low FAR. 

However,  as  shown  in Mecikalski  et  al.  (2015), model  results  such  as  convective 

available potential energy (CAPE), convective inhibition (CIN), and vertical shear (0‐

6km) can be effectively used to reduce FAR in the proposed CI detection algorithms. 
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Abstract. The detection of Convective Initiation (CI) is very important because convective clouds bring heavy rainfall and 10 

thunderstorms that typically cause severe socioeconomic damage. In this study, deterministic and probabilistic CI detection 

models based on decision trees (DT), random forest (RF), and logistic regression (LR) were developed using Himawari-8 

Advanced Himawari Imager (AHI) data obtained from June to August 2016 over the Korean Peninsula. A total of 12 interest 

fields that contain brightness temperature, spectral differences of the brightness temperatures, and their time trends were 

used to develop CI detection models. While, in our study, the interest field of 11.2μm ஻ܶ was considered the most crucial to 15 

detect CI in the deterministic models and the probabilistic RF model, the trispectral difference, i.e., (8.6-11.2 μm) - (11.2-

12.4 μm), was determined as the most important one in the LR model. The performance of the four models varied by CI case 

and validation data. Nonetheless, the DT model typically showed higher probability of detection (POD), while the RF model 

produced higher overall accuracy (OA) and critical success index (CSI) and lower false alarm rate (FAR) than the other 

models. The CI detection of the mean lead times by the four models were in the range of 20 - 40 min, which implies that 20 

convective clouds can be detected 30 min in advance before precipitation intensity exceeds 35 dBZ over the Korean 

Peninsula in summer using the Himawari-8 AHI data. 

 

1 Introduction 

Atmospheric deep moist convection initiates shallow cumulus clouds, which may continue to grow vertically as 25 

cumulonimbus clouds, and so this process is called the convective initiation (CI) (Banacos et al., 2005; Bluestein et al., 1990; 

Weckwerth and Parsons, 2006). The moist convection appears in a variety of horizontal scales ranging from 1-10 km as 

individual convective clouds to ~1000 km as mesoscale convective systems (Houze Jr., 2004; Roberts and Lean, 1998; 

Miyamoto et al., 2013) with heavy rainfall and thunderstorm events (Amorati et al., 2000; Sieglaff et al., 2011; Zuidema, 

2003; Haile et al., 2010; Hane et al., 2002; Vondou et al., 2010). The convective events in Northeast Asia often occur during 30 
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the summer season accompanied by many meteorological hazards such as lightning, floods, and strong winds (Kim and Lee, 

2006; Wang et al., 2004). These hazards destroy infrastructure in the region and result in huge economic losses. Therefore, it 

is desirable to forecast CI in Northeast Asia with high accuracy in order to prevent socioeconomic damage caused by the 

convective events.  

The decrease of atmospheric stability drives CI, which is attributed to various weather systems such as large-scale 5 

monsoonal fronts, the migration of frontal cyclones, and mesoscale convective systems (Craven et al., 2002; Houze Jr., 2004; 

Mecikalski and Bedka, 2006). Although such unstable weather systems can increase the potential risk of CI over a vast area, 

they actually trigger CI occupying much smaller areas, making it difficult to predict the exact location. CI is characterized by 

the rapid variation of temperature and the increase of cloud-tops, which can be effectively measured by brightness 

temperature ( ஻ܶ ) changes at multispectral channels including visible and infrared (IR) (Mecikalski and Bedka, 2006; 10 

Mecikalski et al., 2010). Geostationary satellites carry optical sensors that scan over a few thousand square kilometers with 

high temporal resolution (~ minutes) in the multispectral channels. Therefore, these geostationary satellites can be extremely 

useful in CI nowcasting. Previous studies developed CI nowcasting algorithms for geostationary satellites by determining a 

threshold or a range of values of ஻ܶ at specific channels, and their spectral and/or temporal differences (Mecikalski and 

Bedka, 2006; Mecikalski et al., 2008; Walker et al., 2012; Morel and Senesi, 2002; Jewett et al., 2013; Merk and Zinner, 15 

2013; Siewert et al., 2010; Sobajima, 2012; Han et al., 2015). Geostationary Operational Environmental Satellite (GOES) 

systems and Meteorological Second Generation (MSG) are the representative geostationary satellites operated at the 

National Oceanic and Atmospheric Administration (NOAA) and European Organization for the Exploitation of 

Meteorological Satellites (EUMETSAT), respectively. These two satellites have forecasted CI using their operational 

algorithms, i.e., SATellite Convection Analysis and Tracking (SATCAST) and Rapid Development Thunderstorms (RDT), 20 

respectively, which are basically based on the empirical determination of the thresholds of interest fields in terms of CI 

development (Mecikalski and Bedka, 2006; Walker et al., 2012; Morel and Senesi, 2002). These algorithms have been 

assessed for CI cases in North America and showed a probability of detection (POD) over 0.8 (80%) and a false alarm rate 

(FAR) around 0.6 (60%). However, these algorithms for CI detection have not yet been validated over Northeast Asia.  

Several algorithms for detecting CI over Northeast Asia have been developed by Korea Meteorological Administration 25 

(KMA) for the Multi-functional Transport SATellite-2 (MTSAT-2) geostationary satellite operated by Japan Meteorological 

Agency (JMA) and the Communication, Ocean, and Meteorological Satellite (COMS). The main instrument of MTSAT-2 is 

Imager, which is composed of a total of 5 channels: a visible channel with 1 km-spatial resolution and 4 infrared channels 

with 4 km spatial resolution. JMA have developed the algorithm for the detection of CI using MTSAT-2 Imager over Japan 

area i.e., the Rapidly Developing Cumulus Areas (RDCA) derivation algorithm (Sobajima, 2012). The RDCA algorithm 30 

detects CI using several interest fields, but it was only validated during the summer season in 2011 (Sobajima, 2012). The 

performance of the MTSAT-2 RDCA algorithm needs to be evaluated in different times and circumstances. Han et al. (2015) 

developed CI detection algorithms for COMS Meteorological Imager (MI) data by determining new rules and thresholds for 

the interest fields used in the RDCA through machine learning, based on the fact that the characteristics of the spectral 
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channels of COMS MI is similar to those of MTSAT-2. The algorithms were validated for various CI cases over Korea, 

demonstrating good performance with a POD as high as 75.5% and a FAR as low as 46.2%. Himawari-8, launched on 7 

October 2014, is one of the geostationary satellites operated by JMA. The primary payload of Himawari-8 is the Advanced 

Himawari Imager (AHI) which captures the Asia-Pacific region using a 16-channel multispectral imager composed of 3 

visible (blue, green, and red) and 13 IR channels with a spatial resolution of 0.5–2 km depending on the spectral channel 5 

(Bessho et al., 2016). Himawari-8 AHI scans the whole Earth full disk, as seen from the satellite (11000 × 11000 km), every 

10 min. The scan interval for the full disk of Himawari-8 AHI is much shorter than that of MTSAT Imager (60 min) and 

COMS MI (180 min). Furthermore, the spatial and spectral resolutions of Himawari-8 AHI have been substantially improved 

in comparison to its predecessors. Therefore, Himawari-8 AHI can help enhance the performance of CI detection in 

Northeast Asia. However, there is no available algorithm for CI detection for Himawari-8 AHI so far. The spectral 10 

characteristics of Himawari-8 AHI are comparable to the Advanced Baseline Imager (ABI) integrated onto the Geostationary 

Operational Environmental Satellite-R series (GOES-R) satellites (Schmit et al., 2005), a series of geostationary satellites of 

which the first one will be launched in November 2016 and operated by the National Oceanic and Atmospheric 

Administration (NOAA). The University of Alabama in Huntsville with NOAA has developed a CI detection algorithm for 

GOES-R using 12 interest fields designed for the spectral bands of ABI (Walker and Mecikalski, 2011; Walker et al., 2012; 15 

Mecikalski et al., 2015). The interest fields of the GOES-R CI algorithm can be directly adopted for Himawari-8 AHI. 

However, the critical threshold values of the interest fields were empirically determined based on simulations and have not 

been fully assessed due to the lack of ABI-class datasets. This implies that the criteria of the interest fields should be 

optimized for use with Himawari-8 AHI data. 

The existing literature on nowcasting CI has commonly used deterministic approaches which classify clouds into CI and 20 

non-CI using the criteria of several interest fields based on simple thresholding approaches (Mecikalski and Bedka, 2006; 

Mecikalski et al., 2008; Mecikalski et al., 2010; Morel and Senesi, 2002; Sieglaff et al., 2011; Roberts and Rutledge, 2003; 

Sobajima, 2012). Such deterministic approaches might provide incorrect classification results for unsampled pixels (or 

objects), especially around the boundaries of CI, increasing the FAR of predictions. Probabilistic approaches produce 

significantly lower FAR than the deterministic ones through the selection of an appropriate probability threshold (Mecikalski 25 

et al., 2015). Mecikalski et al. (2015) developed CI nowcasting algorithms combining the interest fields derived from GOES 

and numerical weather prediction (NWP) model data based on probabilistic approaches. They validated the performance of 

the probabilistic algorithms for CI cases in the United States, resulting in a FAR of 10-18%, which is much lower than the 

existing deterministic CI detection algorithms for GOES (FAR ~48–60%) (Walker et al., 2012). However, Mecikalski et al. 

(2015) used fewer satellite-based interest fields than the GOES-R CI algorithm due to the limited number of spectral 30 

channels of GOES, which implies that it is unknown if such probabilistic approaches would work for Himawari-8 AHI as 

well.  

In this study, CI detection algorithms for Himawari-8 AHI are developed and validated over the Korean Peninsula in East 

Asia. The objectives of this research were to (1) develop deterministic and probabilistic CI detection algorithms for 
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Himawari-8 AHI data based on rule-based decision trees and random forest approaches and a logistic regression modelling 

technique, (2) evaluate the CI detection models in terms of performance and efficiency, (3) assess the strengths and 

weaknesses of the deterministic and probabilistic CI detection models based on CI cases and validation datasets, and (4) 

examine key predictor variables for CI detection. This study extends our previous research in Han et al. (2015), where the 

COMS MI data was used. One of the main limitations of using COMS MI data in the previous study is its relatively coarse 5 

spatial resolution (4km), which is not enough to detect small convective clouds. The Himawari-8 AHI used in the present 

study has a higher spatial resolution of 2 km for IR channels. In addition, the higher spectral (i.e., 16 channels) and temporal 

(i.e., 10 min) resolutions of AHI compared to COMS MI can significantly improve the forecast skill. The present research 

proposes not only deterministic approaches but also probabilistic ones for CI detection using Himawari-8 AHI data. 

Consequently, the use of advanced geostationary satellite data and various modelling techniques is expected to produce 10 

better CI forecast performance. 

2 Data 

2.1 Himawari-8 Advanced Himawari Imager (AHI) 

The specifications of Himawari-8 AHI are summarized in Table 1. Himawari-8 AHI scans three levels of regions: full disk, 

Japan area, and target area. Full disk images are acquired over the whole Earth as seen from the satellite every 10 min. Japan 15 

area images, collected every 2.5 min, cover the northeastern and southwestern areas of Japan (3,000 × 3,000 km). Himawari-

8 AHI also scans a target area of 1,000 × 1,000 km every 2.5 min, which is dedicated to monitoring high impact 

meteorological events. In this study, the full disk images were used even though Himawari-8 AHI scans the Japan area four 

times more often. This is because the Japan Area images do not cover the upstream side of storm developments in the East 

China Sea and western part of the Yellow Sea, which are important areas when forecasting CI over the Korean Peninsula and 20 

Japan. The full disk images obtained for 10 cases of CI from June to August 2015 (Table 2) were used to develop and 

validate the deterministic and probabilistic CI detection models.  

2.2 Weather radar echo and lightning data 

Rainfall with ≥35 dBZ precipitation intensity measured by weather radar is known to have significant correlation with the 

eventual development of cumulonimbus clouds (Mecikalski and Bedka, 2006; Mueller et al., 2003). Therefore, the threshold 25 

of ≥35 dBZ precipitation intensity has been widely used as the definition of convective events (Mecikalski and Bedka, 2006; 

Mecikalski et al., 2008, 2010; Roberts and Rutledge, 2003; Walker et al., 2012). In this study, the first occurrence of rainfall 

with ≥35 dBZ precipitation intensity was defined as CI. KMA has operated a total of 10 weather radars in South Korea. They 

have produced Plan Position Indicator (PPI) in which the precipitation echoes measured at a given elevation angle are 

projected on a plane every 10 min and Constant Altitude PPI (CAPPI) images, which are calculated using several PPI 30 
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elevations. A 1.5 km CAPPI with mosaic image was used to determine the area and time of each CI occurrence. Since the 

effective radius of the 1.5 km CAPPI is about 100 km, only the 1.5 km CAPPI echo at each radar within 100 km was used. 

Lightning observation data was used as supplementary data for validating the CI detection results, especially for ocean areas. 

The lightning data was provided by KMA, which operates a ground-based Total Lightning Detection System (TLDS) since 

2001. The TLDS has an average accuracy of 90% for lightning detection, with locational accuracy of 500 m over the land 5 

and 2 km over the ocean (Kar and Ha, 2003). The TLDS lightning observation data during the same period was used with the 

ground radar measurements for the validation of the CI detection models.  

3 Methods to detect CI using geostationary satellite data 

Because of the large similarity in spectral channels between Himawari-8 AHI and GOES-R ABI, the GOES-R CI algorithm 

might be adopted and tuned to develop CI algorithms for Himawari-8 AHI. The interest fields from GOES-R CI algorithm 10 

and threshold values have not been validated for Himawari-8 AHI. In order to develop more objective CI models for 

Himawari-8 AHI, rule-based decision trees and random forest machine learning approaches were used as well as a logistic 

regression model. The interest fields identified in the GOES-R CI algorithm were used as predictor variables in both 

deterministic and probabilistic approaches. The processing flow diagram of the proposed CI detection approaches is shown 

in Fig. 1. Since pixel-based CI detection is known to often result in salt-and-pepper noise and non-compact CI output (Han et 15 

al., 2015), the proposed approaches include post-processing to minimize such problems. 

3.1 Interest fields of GOES-R Advanced Baseline Imager (ABI) CI algorithm 

The interest fields of the GOES-R ABI CI algorithm (Table 3) were used as a set of predictors to develop the deterministic 

and probabilistic CI detection models for Himawari-8 AHI. All the interest fields are calculated only from IR channels in 

order to predict CI using both daytime and nighttime images. ஻ܶmeasured at 11.2 μm and its time trend represent cloud-top 20 

temperature and cloud-top cooling rate, respectively (Mecikalsk and Bedka, 2006; Mecikalski et al., 2010; Walker and 

Mecikalski, 2011). The interest fields from spectral differences provide information on cloud-top height (cloud depth) and 

glaciation at the time of image, while those from temporal differences provide information on the rate of vertical cloud-top 

growth.  

Prior to the calculation of the interest fields, cloudless and cirrus regions were masked out from Himawari-8 AHI images 25 

using the criteria of the ஻ܶ at 11.2 μm-channel < 288.5 K, -3 K < 12.4-11.2 μm-channels difference < 3 K, and -3 K < the 

trispectral difference < 3 K. Such criteria have been empirically used to identify clear sky and thin clouds in summer by 

KMA. The first criterion was used to remove land surface and cirrus from AHI images, while the others were employed to 

remove clear sky areas. To determine the time-dependent interest fields, it is essential to track the motion of cloud objects. A 

simple temporal overlap object tracking method (Walker and Mecikalski, 2011) was adopted in this study, which uses two 30 
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consecutively obtained AHI images in order to track cloud objects. This object tracking method has a weakness; fast moving 

cloud objects of small size might not be traced. However, the frequent scanning interval and fine spatial resolution of 

Himawari-8 AHI help mitigate the weakness of the tracking method. The motion of cloud objects was traced from two 

consecutive 11.2 μm-channel images of AHI and then the time-dependent interest fields were calculated. 

3.2 Deterministic and probabilistic approaches for CI detection 5 

The event of CI (i.e., CI vs. non-CI) is used as a dependent (i.e., response) variable in the CI detection models based on 

deterministic and probabilistic approaches. For seven Himawari-8 AHI images including CI events over the Korean 

Peninsula, the pixels within cloud objects corresponding to the first occurrence of ≥35 dBZ precipitation intensity were 

extracted and considered as convective clouds (CI areas). The other clouds were identified as non-CI regions. In order to 

collect interest field samples to develop CI detection models, each CI and non-CI area was tracked through visual 10 

interpretation of the 11.2 μm-channel images obtained 10–60 min before the first occurrence of ≥35 dBZ precipitation 

intensity, rather than using the temporal overlap object tracking method (Zinner et al., 2008) that was used to calculate the 

time-dependent interest fields. A total of 3,204 CI reference data (1,324 CI and 1,880 non-CI samples) were extracted from 

the AHI images and used to train and validate the deterministic and probabilistic CI detection models. From eight percent of 

the total images (42 scenes), 1,060 CI samples and 1,504 non-CI samples were extracted and used as training data, while 264 15 

CI samples and 376 non-CI samples extracted from the remaining AHI images (18 scenes) were used to validate the models. 

The models were further validated using 3 additional CI events, which were not used to extract samples. 

In this study, three approaches including decision trees (DT), random forest (RF), and logistic regression (LR) were used for 

the development of CI detection models. DT and LR were used for deterministic and probabilistic CI detection, respectively. 

Meanwhile, RF was used for both deterministic and probabilistic detection of CI. DT has been widely used for classification 20 

and regression tasks in the remote sensing field (Li et al., 2013; Lu et al., 2014; Kim et al., 2014; Torbick and Corbiere, 

2015). See5, developed by RuleQuest Research, Inc. (Quinlan, 2015), was employed to perform the DT-based classification 

of clouds into CI and non-CI. See5 works by repeatedly splitting samples into two groups of greater homogeneity using an 

entropy-based parameter to generate a tree (Quinlan, 2015; Jensen and Im, 2007). Pruning to avoid overfitting is often 

applied when a decision tree is generated. One of the merits of See5 compared to other DT algorithms is that the generated 25 

tree can be reproduced with multiple if-then rules, which makes it easier to interpret the results than the original tree (Im et 

al., 2008; Jensen et al., 2008; Rhee et al., 2008; Im et al., 2012; Kim et al., 2015).  

RF uses a bootstrapping strategy from the original training data to produce a series of Classification and Regression Trees 

(CART) that is a non-parametric decision tree, which produces either classification or regression trees depending on whether 

the dependent variable is categorical or numerical (i.e., continuous) (Breiman, 2001). The numerous independent trees (e.g., 30 

500, 1000) are grown based on two randomizations including (1) a randomly selected subset of the training samples for each 

tree and (2) a randomly selected subset of input variables at each node of the tree. This way, RF overcomes the well-known 



7 
 

limitation of CART, in that results are sensitive to the configuration and quality of training data (Lawrence and Wright, 2001; 

Rhee et al., 2014). Thus, RF has recently gained popularity in remote sensing classification and regression (Kim et al., 2014; 

Li et al., 2014; Liu et al., 2015; Lu et al., 2013; Park et al., 2016; Yoo et al., 2012). Two approaches are generally adopted to 

reach a final conclusion from the independent decision trees including a simple majority voting and weighted majority 

voting strategy for classification, while a final value is either simply averaged from the results of the multiple regression 5 

trees or averaged with weights for regression. In the probabilistic RF, the probability of an event occurrence is calculated 

using the ratio of voting for CI and Non-CI cases with 500 trees.  

LR is one of the statistical regression methods that is used for modelling a categorical dependent variable using independent 

variables (Hosmer and Lemeshow, 2000). In this study, binary LR, a type of LR technique that deals with only two values 

for a dependent variable, was used to estimate the probability of CI occurrence. The logistic function is given as follows: 10 

 
0

1

1

1 exp
k

j j
j

E Y

X 



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                (1) 

where E is the expected value of the dependent variable Y, k is the number of independent variables and ௝ܺ is the value of the 

jth independent variable, ߚ଴ is the intercept from the linear regression equation, and ߚ௝ is the weighting coefficient for the jth 

independent variable. The logistic function produces E values of [0, 1] which are used as the probability of whether CI will 

occur or not. DT, RF, and LR provide the relative importance of input variables when developing models such as attribute 15 

usage, mean decrease accuracy, and the absolute value of weighting coefficients, respectively. See5 produces the information 

on how frequently each variable is used in the results. RF calculates the decrease in accuracy of the model using out-of-bag 

data through the random permutation of a variable. Therefore, a higher mean decrease accuracy of a variable indicates a 

larger contribution from the variable to develop a model. In the LR, the exponentiation of weighting coefficients of the 

independent variables reflects the relative importance of the variables, which refers to the changes in the odds ratio attributed 20 

to an input variable.  

A series of typical accuracy metrics were calculated through confusion matrices to assess the performance of the CI 

detection models, including producer’s and user’s accuracies, overall accuracy, and kappa coefficients. In addition, the 

prediction results of the models were further assessed for the 3 cases of CI events over the Korean Peninsula by computing 

POD, FAR, overall accuracy (OA), and Critical Success Index (CSI) reflecting effects of both POD and FAR as follows 25 

(Mecikalski et al., 2015): 

POD = A/(A+B)              (2) 

FAR = C/(A+C)                               (3) 

OA = (A+D)/(A+B+C+D)                   (4)  

CSI = (A)/(A+B+C)                                     (5) 30 
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where A is the number of CI objects that are correctly detected as CI (i.e., hits), B is the number of CI objects incorrectly 

classified as non-CI (i.e., misses), C is the number of non-CI objects incorrectly identified as CI (i.e., false alarm), and D 

indicates correct negatives. A through D were counted from the results of the CI detection models using the Himawari-8 AHI 

images obtained 0–10, 10–20, 20–30, 30–40, and 40–50 min before the first occurrence of ≥35 dBZ intensity from the 

weather radar data based on CI objects. In order to identify CI objects in the AHI images that were obtained 0-50 min before 5 

the CI event occurred, distances from cloud objects to the location of the CI occurrence (i.e., ≥35 dBZ precipitation intensity) 

were calculated using the atmospheric motion vector (AMV) product generated hourly from COMS MI (as Himawari-8 AHI 

does not provide AMV yet), assuming that the velocity and direction of moving clouds were constant over 1 h. Mean 

velocities and directions of the AMV of each cloud object for each case day were used to identify an overall motion vector. 

The cloud objects with a given direction within a given distance from the location of the first occurrence of ≥35 dBZ 10 

precipitation intensity were considered as CI. Overall POD, FAR, OA, and CSI for each CI detection model were computed 

based on the A-D values of three case days.  

For the 3 case days, the lead time for CI detection was calculated using a weighted mean depending on A (i.e., Hits) detected 

from the AHI images obtained before precipitation intensity exceeds 35 dBZ as follows (Han et al., 2015): 

∑஺೟ൈ௡

∑௡
    (t = 0, 10, 20, 30, 40, 50, 60 min)            (6)  15 

where At is the number of A counted from the AHI images obtained t minutes before the first occurrence of ≥35 dBZ 

intensity and n is the number of At. The lead time of each CI detection model was determined using the At and n of all case 

days. 

3.3 Post-processing of CI cloud objects 

Similar to the existing studies (citations), pixel-based CI detection models were developed in this study. However, pixel-20 

based CI detection has some drawbacks. First, salt-and-pepper noise with one to three pixels often occurs, which is not 

related to CI cloud clusters. Second, although CI clouds are typically compact, non-compact CI cloud objects are sometimes 

detected due to rough cloud tops. In order to minimize these problems, two techniques were adopted—majority filtering and 

region growing. We tested different window sizes (from 2 to 5 pixels) for majority filtering, and determined a 2x2 window 

as an optimum size based on visual inspection of the resultant CI cloud objects. If there were only one or two CI pixels in the 25 

2x2 window, the CI pixels were excluded. Otherwise (i.e., more than two CI pixels), all pixels were considered as CI pixels. 

After the majority filtering, region growing was conducted to make the detected CI cloud objects more compact and 

aggregated. Region growing has been widely used to segment images to produce objects (i.e., homogeneous regions) in the 

field of remote sensing. The basic concept of region growing is to examine neighboring pixels from seed pixels and 

determine whether they should be added to the region of a seed (citations). In this study, CI pixels were designated as seed 30 

points and ஻ܶ	at 11.2 μm was used as a background field to examine the homogeneity of regions. Regions grow while the 

difference between the temperature averaged within a region and temperature at a neighboring pixel is less than 0.5, which is 
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empirically determined. This post-processing was conducted to reduce salt-and-pepper noise and false alarm rates (FAR) for 

CI detection. 

4 Performance and validation of CI detection models 

4.1 Performance of CI detection models with post-processing 

The box plots of the 12 interest fields generated using CI and Non-CI reference data are depicted in Fig. 2. A line inside a 5 

coloured box indicates the median value of the data. The height of the coloured boxes represents the interquartile range of 

the data, and the 1.5 times interquartile range is shown with the vertical centre lines. The dots above and below the vertical 

lines are outliers. The p-values in the upper left corner of each box plot were derived from t-test at the 95% confidence level. 

All the interest fields except for 6.2 - 7.3 μm time trend ஻ܶ showed p-values below 0.05. In particular, the interest fields of 

11.2, 6.2 - 11.2, and 6.2 - 7.3 μm ஻ܶ showed noticeably low p-values (< 0.001), of which the interquartile ranges of CI and 10 

non-CI samples do not overlap each other.   

The performances of the four CI detection models were assessed using confusion matrices produced from the test dataset 

(Tables 4-7). Since the probabilistic models produce the possibility of CI occurrence ranging from 0 to 100 %, the pixels 

with a possibility higher than 50 % were regarded as the predicted CI areas in order to produce the confusion matrices. 

Among the four CI detection models, the deterministic RF model showed the highest overall accuracy (94.27 %) and kappa 15 

coefficient (89.28 %). The better performance of deterministic RF than DT (overall accuracy of 92.67 % and kappa 

coefficient of 84.84 %) can possibly be attributed to randomization strategies of deterministic RF such as bootstrap 

aggregating and randomized node optimization which can reduce variance and overfitting in building decision trees. The 

overall accuracy and kappa coefficient value of the probabilistic RF model (94.27 and 89.98 %, respectively) were similar to 

those of the deterministic RF model because the same randomization strategies were used in the two models. The LR model 20 

showed inferior performance in terms of overall accuracy and kappa coefficient (90.63 % and 80.7 2%, respectively) 

possibly due to the limited capability of the model to handle the non-linear behavior of the data (Tu, 1996) (Table 6). 

However, these accuracies using the test dataset could not be generalized to predict real CI cases.  

The relative importance of the interest fields that were used for CI detection identified by DT and the deterministic RF are 

shown in Fig. 3, respectively. The 11.2 μm ஻ܶ, representing cloud top temperature, was identified as the most contributing 25 

interest field for the discrimination of the two classes (i.e., CI and non-CI) in both DT and deterministic RF models. This 

corresponds well with the findings of Mecikalski et al. (2015), which used 25 satellite-based and numerical weather 

prediction (NWP)-based interest fields to predict CI and identified cloud top temperature as the most contributing satellite-

derived variable. The next contributing variables in both DT and deterministic RF models were 13.3-11.2 μm ஻ܶ and the 

trispectral difference time trend (Fig. 3). The interest field of 13.3-11.2 μm ஻ܶ is closely related with cloud top height, which 30 

increases as cloud objects evolve into convective ones. Meanwhile, the trispectral difference time trend, representing the 
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temporal variation of the cloud-top glaciation, increases during the growth of convective clouds. The interest field of 6.2-7.3 

μm ஻ܶ time trend, the only variable showing a p-value greater than 0.05, was defined as the least contributing interest field in 

the DT-based CI detection model and the second least one in the deterministic RF model. The relative importance of the 

interest fields for the LR-based CI detection model can be evaluated using the values of the Exp(b) that are listed in Table 8. 

The variable of trispectral difference, (8.6-11.2 μm)-(11.2-12.4 μm), has the highest value of the Exp(b), 2.190, which means 5 

the probability that a pixel is an actual CI increases by 2.19 times per 1 K increase in the trispectral difference. The 6.2-11.2 

μm time trend (Exp(b) = 0.348) was also identified as a contributing variable in the LR model, which decreases the 

probability that a pixel is an actual CI by 65.2 % per 1 K decrease in the 6.-11.2 μm time trend. These two important 

variables in the LR model, however, were not ranked high on the variable importance determined by the DT and RF models. 

The 6.2-11.2 μm time trend was even identified as the least contributing variable in the RF model. 10 

As convective clouds grow vertically in the troposphere (Jorgensen et al., 1989; Trier et al., 2004; Rosenfeld et al., 2008; 

Sieglaff et al., 2011), time trend variables that represent the vertical growth of clouds might be useful to detect CI. However, 

the time trend variables among the interest fields here resulted in relatively lower contributions in both DT and RF models. 

A simple overlap method using two temporally consecutive images was used to determine the temporal change of clouds, 

instead of AMV that has been widely used to track clouds, because AMV is not yet available for Himawari-8. This may 15 

result in a somewhat inaccurate estimation of the vertical growth of clouds. Thus, the incorporation of AMV from Himawari-

8 in the models may improve the performance of CI detection.  

Fig. 4 shows CI detection results before and after the two post-processes. Incorrectly detected small CI pixels (Figs. 4a, 4c) 

were removed through the majority voting. In addition, the CI objects had a more compact shape with few holes (Figs. 4b, 

4d) through the region growing. This post-processing resulted in decreasing FAR and increasing POD by making CI objects 20 

grow and merge, which is discussed in the next sub-section.   

Fig. 5 depicts the accuracy metrics before and after the post-processing—majority voting and region growing. The figure 

clearly shows that the post-processing led to an increase of POD and decrease of FAR. In particular, FAR decreased about 4% 

after the post-processing was applied when lightning data was used for validation. Higher POD and lower FAR resulted in 

higher OA and CSI, which implies that the proposed post-processing was effectively used to improve the performance of the 25 

CI detection models.   

4.2 Validation of three CI cases with ground radar and lightning data.  

The four CI detection models were applied to the eight cases of CI events over the Korean Peninsula and validated using two 

types of reference datasets (i.e., weather radar and lightning observations). Figs. 6 and 7 show the validation metrics of the 

models based on each reference dataset. Fig. 8 represents averaged lead time for each validation by model.  30 

Overall, DT produced the highest POD values regardless of the reference data used (i.e., for both lightning and ground radar). 

However, it over-predicted CI objects, which resulted in high FAR. Although RF yielded slightly lower POD than DT when 
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lightning data was used, RF showed much lower FAR than DT, which led to higher OA and CSI than DT (Fig. 6). On the 

other hand, when ground radar was used for validation, since FAR was calculated considering the effective radius of the 

radar, RF produced FAR similar to that of DT, which resulted in higher OA for DT than RF (Fig. 7). 

There is not much difference in FAR values between DT and RF when radar reference data were used. However, CI objects 

produced from DT tended to be largely scattered through visual inspection of the results, which may result in confusion to 5 

the users of CI product (i.e., forecasters). For probabilistic RF and LR models, 50% was used as a threshold to detect CI. 

Both produced relatively lower FAR and POD values than DT. Although the threshold to detect CI can be optimized for 

probabilistic RF and LR models to improve the performance, it is beyond the scope of this research. Considering both results 

used lightning and ground radar data, RF appeared to be the best CI detection model, which can be confirmed by the 

averaged CSI values (Figs. 6 and 7). Since lead time is calculated based on hits, DT mostly produced the longer averaged 10 

lead time than the other three models (Fig. 8). However, when radar data was used for validation, the difference in averaged 

lead time between DT and RF was less than 1 min. 

Mecikalski et al. (2015) used 50% as the threshold to identify CI from the results of probabilistic RF and LR and showed 

results similar to ours depicted in Fig. 7, i.e., a slightly better performance by probabilistic RF than LR. Unlike Mecikalski et 

al. (2015) that used both 9 channels of GOES satellite data and 16 NWP model data, this present study solely focused on 15 

using satellite data—Himawari-8 AHI channels. Although it is not possible to directly compare our results to others’ as 

different input and reference data were used, this present study showed good results comparable with Mecikalski et al. 

(2015). This implies that Himawari-8 satellite data (or future weather satellites with similar/more advanced specifications) 

can be solely used to detect CI, which enables the development of operational CI detection algorithms with high POD and 

low FAR. However, model results such as convective available potential energy (CAPE), convective inhibition (CIN), and 20 

vertical shear (0-6km) can be effectively used to reduce FAR in the proposed CI detection algorithms. 

Fig. 9 shows CI areas for the case of CI events on 7th August 2015 07:50 (UTC) predicted by the DT, deterministic RF, 

probabilistic RF, and LR models, respectively. All models showed better performance in terms of FAR, OA, and CSI based 

on the weather radar observations rather than the lightning observations. This is because the number of CI objects detected 

by the radar is smaller than that by the lightning observations due to the limited effective radius, similar to the case on 12th 25 

June. The DT and deterministic RF models detected CI areas around the Northwestern Korean peninsula. Such predicted CI 

areas might be correct despite the lack of lightning observations, but the weather radar data from China Meteorological 

Administration (CMA) has not been available over the region and hence we were not able to confirm whether the CI objects 

were correctly identified. CI events on 30 June 2016 08:40 (UTC) were depicted in Fig. 10. The DT and LR models over-

detected CI objects, which resulted in high FAR. While FAR based on radar data was much lower than that based on 30 

lightning data, the averaged lead time based on lightning data was longer than that based on radar data because there were 

missing CI objects in radar echoes above 35 dBZ around the latitude of 38°N and longitude of 128.5°E. 

CI occurrence on 6th July 2016 05:30 (UTC) was shown in Fig. 11. All models were not able to detect CI events which 

occurred around the west coast of Korean Peninsula, even at the same time as CI occurred. The CI objects located around the 
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west coast had a relatively high temperature at 11.2 μm. It is reported that warm-type heavy rainfall, lower storm height, 

with lower ice content have often developed over the ocean in East Asia (Sohn et al. 2013; Song and Sohn, 2015). 

Considering the temperature range of the CI objects, they appeared to be warm-type heavy rainfall clouds. As all four 

models are empirical, the missed CI cases imply that the training data didn’t contain such warm-type CI clouds. Fig. 12 

shows CI events on 24th July 2016 14:50 (UTC) generated by four models. No lightning data was available in this case. CI 5 

objects were detected around latitude 38°N and longitude 128°E by all models except for the probabilistic RF model. Since 

CI objects in this case rapidly grew, it made lead time short and early detection of CI difficult. While FAR was almost zero, 

the averaged lead time was less than 20 min (Figs. 7 and 8).  

The two validation datasets, i.e., the weather radar and lightning observations, influenced the assessment of model 

performance. Since the weather radar sites are located inland, convective clouds over the ocean were out of the detection 10 

radius and therefore less likely to be detected. Meanwhile, lightning observations can even detect CI objects over the distant 

sea, but it is hard to identify the exact location of lightning in clustered clouds. These limitations in each verification dataset 

provide uncertainty in estimating the actual forecast skill of the CI detection models. Furthermore, since there were some 

heavy rainfall clouds without lightning observations, lighting data for CI reference was not reliable in the algorithm 

development stage. 15 

Due to the similar number of hits from the four models, the lead time of all four models was around 32 to 40 min. This 

indicates that CI over the Korean Peninsula can be forecasted using the Himawari-8 AHI images with a usable lead time of 

30 to 40 min, which is reasonably comparable to the lead time for CI detection (~30–45 min) in the literature (Han et al., 

2015; Mecikalski et al., 2015). AHI images 50 min before CI occurrence were used to detect CI in this study. If the AHI data 

collected a few hours before CI occurrence was used in the development of CI detection models, a longer lead time could 20 

possibly be achieved (refer to the supplementary material as an example). Additionally, a rapid scan mode with 2 min 

temporal resolution may be used for rapidly growing clouds. 

A limitation of this research is that visible channels, which are critical in identifying cloud tops (Mecikalski et al., 2010), 

were not used. This was because many of the CI cases over the Korean Peninsula used in this study occurred at night time. 

The visible channels of Himawari-8 AHI have spatial resolutions of 0.5–1 km which can be used to improve the performance 25 

of CI detection models. The use of training samples and validation cases only from summer is another limitation. As the 

development of convective systems have a clear seasonality (Mecikalski et al., 2010), training samples and validation cases 

over different seasons should be incorporated to develop robust CI detection models. 

5 Conclusions 

CI detection models for Himawari-8 AHI data over the Korean Peninsula in East Asia were developed based on DT, RF, and 30 

LR. An accuracy assessment of the developed models was conducted using weather radar and lightning observations. The 

interest field of 11.2 μm ஻ܶ , representing cloud-top temperature, was identified as the most contributing variable in the 
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deterministic models and the probabilistic RF model. In the LR model, the trispectral difference, i.e., (8.6-11.2 μm)-(11.2-

12.4 μm), was identified as the most important one. The developed CI detection models showed varied performance in terms 

of POD, FAR, OA, and CSI by CI cases and validation datasets. Nevertheless, the DT model produced generally higher POD 

than the other models, while the RF model showed higher OA and CSI, and lower FAR. The averaged lead time of the CI 

detection models was calculated between 20 and 40 min, which means that a 30-min forecast of CI over the Korean 5 

Peninsula during summer is possible when using Himawari-8 AHI data.  

The overlying method could produce a potential error when calculating the time trend interest fields that represent the 

vertical growth of convective clouds. AMV might mitigate the error and enhance the availability of time trend variables. 

Future research includes (1) improving CI detection algorithms using visible reflectance with 0.5 km resolution, (2) 

increasing training samples and validation cases to reflect diverse convective environments with different seasons, and (3) 10 

expanding the period of the Himawari-8 AHI data 2 hours before CI occurrence. 
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Table 1. Characteristics of the spectral channels of Himawari-8 AHI 

No. Band Central wavelength (μm)
Bandwidth  

(μm) 
Spatial resolution (km) 

1 0.455 0.05 1 

2 0.510 0.02 1 

3 0.645 0.03 0.5 

4 0.86 0.02 1 

5 1.61 0.02 2 

6 2.26 0.02 2 

7 3.85 0.22 2 

8 6.25 0.37 2 

9 6.95 0.12 2 

10 7.35 0.17 2 

11 8.60 0.32 2 

12 9.63 0.18 2 

13 10.45 0.30 2 

14 11.20 0.20 2 

15 12.35 0.30 2 

16 13.30 0.20 2 
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Table 2. Convective initiation (CI) cases used to develop and validate the deterministic and probabilistic CI detection 

models  

ID Date 
Time  

(hh:mm, UTC) 
Usage 

1 13 June 2015 09:40 

Training dataset 

2 13 June 2015 11:10 

3 16 June 2015 14:30 

4 17 June 2015 10:30 

5 4 July 2015 06:30 

6 25 July 2015 00:10 

7 16 August 2015 10:30 

8 12 June 2015 14:30 

Validation dataset 

9 1 August 2015 07:50 

10 1 August 2015 19:10 

11 7 August 2015 08:00 

12 30 June 2016 08:40 

13 6 July 2016 06:20 

14 24 July 2016 15:00 

15 1 August 2016 06:20 
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Table 3. Summary of the interest fields to develop convective initiation (CI) detection models used in this study (Walker and 

Mecikalski, 2011) 

ID Interest field Contribution 

1 11.2 μm BT  Cloud-top temperature assessment 

2 6.2-11.2 μm 

Cloud-top height relative to tropopause 3 6.2-7.3 μm  

4 13.3-11.2 μm  

5 12.3-11.2 μm  
Cloud-top glaciation 

6 8.6-11.2 μm  

7 11.2 μm time trend Cloud-top cooling rate 

8 6.2-11.2 μm time trend 

Temporal changes in cloud-top height 9 6.2-7.3 μm time trend 

10 12.3-11.2 μm time trend 

11 (8.6-11.2 μm)-(11.2-12.3 μm)  Cloud-top glaciation 

12 (8.6-11.2 μm)-(11.2-12.3 μm) time 

trend 
Temporal changes in cloud-top glaciation 

 

 

 5 
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Table 4. Assessment of the DT model for CI detection using the test data. 

Reference 

Classification 
CI Non-CI Sum User’s accuracy 

CI 239 21 260 91.92 % 

Non-CI 26 355 381 93.18 % 

Sum 265 376 641  

Producer’s accuracy 90.19 % 91.41 %   

Overall accuracy 92.67 % 

Kappa coefficient 84.84 % 

 

Table 5. Assessment of the RF model for CI detection using the test data. 

Reference 

Classification 
CI Non-CI Sum User’s accuracy 

CI 245 11 256 95.70 % 

Non-CI 20 365 385 94.81 % 

Sum 265 376 641  

Producer’s accuracy 92.45 % 97.07 %   

Overall accuracy 94.27 % 

Kappa coefficient 89.98 % 

 

Table 6. Assessment of the probabilistic RF model for CI detection using the test dataset. CI probabilities above 50% 5 

considered as a CI. 

Reference 

Classification 
CI Non-CI Sum User’s accuracy 

CI 242 13 255 94.90 % 

Non-CI 23 363 386 94.04 % 

Sum 265 376 641  

Producer’s accuracy 91.32 % 96.54 %   

Overall accuracy 94.38 % 

Kappa coefficient 88.36 % 
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Table 7. Assessment of the LR model for CI detection using the test dataset. CI probabilities above 50% considered as a CI. 

Reference 

Classification 
CI Non-CI Sum User’s accuracy 

CI 237 33 270 82.78 % 

Non-CI 27 343 370 92.70 % 

Sum 264 376 640  

Producer’s accuracy 89.77 % 91.22 %   

Overall accuracy 90.63 % 

Kappa coefficient 80.72 % 

 

Table 8. Exp (b) values from the logistic regression (LR) model, which are odds ratios derived by SPSS at the significance 

level 95 %. 

Interest field  Exp (b) 

(8.6-11.2 μm)-(11.2-12.4 μm)  2.190 

12.4-11.2 μm time trend 1.456 

6.2-11.2 μm 1.146 

13.3-11.2 μm  1.059 

6.2-7.3 μm time trend 0.979 

(8.6-11.2 μm)-(11.2-12.4 μm) time trend 0.979 

6.2-7.3 μm  0.923 

12.4-11.2 μm  0.802 

11.2 μm 0.670 

11.2 μm time trend 0.585 

8.6-11.2 μm  0.483 

6.2-11.2 μm time trend 0.348 

 5 
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Figure 1. Processing flow of deterministic and probabilistic CI detection based on machine learning and statistical methods. 
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Figure 2. Box plots of 12 input variables (i.e., interest fields) generated based on the reference data used for CI detection 

models: (a) 11.2 μm ࢈ࢀ, (b) 6.2 – 11.2 μm ࢈ࢀ, (c) 6.2 – 7.3 μm ࢈ࢀ, (d) 13.3 – 11.2 μm ࢈ࢀ, (e) 12.4 – 11.2 μm ࢈ࢀ, (f) 8.6 – 

11.2 μm ࢈ࢀ, (g) 11.2 μm time trend ࢈ࢀ, (h) 6.2 – 11.2 μm time trend ࢈ࢀ, (i) 6.2 – 7.3 μm time trend ࢈ࢀ, (j) 12.4 – 11.2 μm 

time trend ࢈ࢀ, (k) Tri-spectral μm ࢈ࢀ, (l) Tri-spectral μm time trend 5 .࢈ࢀ 



25 
 

 

Figure 3. (a) Attribute usage information in percentage by interest field produced in the DT model. (b) Mean Decrease 

Accuracy (MDA) in percentage by interest field produced in the RF model. MDA is calculated using out-of-bag (OOB) data 

when an interest field was randomly permuted. The higher the MDA of an interest field, the more the field contributes to 

identify CI. 5 
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Figure 4. Before and after post-processing of CI cloud objects using majority voting and region growing. (a) An example of 

deterministic CI detection generated by DT before post-processing. (b) Deterministic CI detection generated by DT after 

post-processing. (c) Deterministic CI detection generated by RF before post-processing. (d) Deterministic CI detection 

generated by RF after post-processing. While dashed white circles show that region growing made CI objects more compact 5 

with few holes, dashed yellow circles show that majority voting effectively removed salt-and-pepper noise. 

 



27 
 

 

 

Figure 5. Quantitative assessment based on deterministic RF before and after post-processing. (a) validation metrics of RF 

using lightning data before post-processing. (b) validation metrics of RF using lightning data after post-processing. (c) 

validation metrics of RF using radar CAPPI data before post-processing. (d) validation metrics of RF using radar CAPPI 5 

data after post-processing. The values next to boxes correspond to the average metric values in percentage.   
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Figure 6. Validation metrics based on lightning data for the (a) deterministic DT and (b) RF, (c) probabilistic RF, and (d) LR 

models. Boxplots of validation metrics based on lightning data for (e) POD, (f) FAR, (g) OA, and (h) CSI. While red lines in 

the boxes represent mean values, grey lines represent median values. 
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Figure 7. Validation metrics based on radar CAPPI data for the (a) deterministic DT and (b) RF, (c) probabilistic RF, and (d) 

LR models. Boxplots of validation metrics based on radar CAPPI data for (e) POD, (f) FAR, (g) OA, and (h) CSI. While red 

lines in the boxes represent mean values, grey lines represent median values. 
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Figure 8. Averaged lead time based on lightning and radar CAPPI data for the deterministic DT and RF, probabilistic RF, 

and LR models. Box plot of lead time based on lightning and radar CAPPI data for the (c) lead time based on lightning data 

and (d) lead time based on radar CAPPI data. While red lines represent in the boxes mean value, grey lines represent median 

value. 5 
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Figure 9. Deterministic CI detection map derived by DT, RF, probabilistic RF, and LR on 7 August 2015 07:30 (UTC): (a) 

DT, (b) RF, (c) Prob RF, and (d) LR 30 min before CI occurrence. (e) is the 1.5 km radar CAPPI image at 08:00 (UTC). 

While predicted CI is in red, the locations of lightning occurrences at 08:00 (UTC) are presented in yellow dots. The radar 

echoes above 35 dBZ beyond the effective radius of radar are shaded with red hatch. 5 
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Figure 10. Deterministic CI detection map derived by DT, RF, probabilistic RF, and LR on 30 June 2016 08:00 (UTC): (a) 

DT, (b) RF, (c) probabilistic RF, and (d) LR 40 min before CI occurrence. (e) is the 1.5 km radar CAPPI image at 08:40 

(UTC). While predicted CI is in red, the locations of lightning occurrences at 08:00 (UTC) are presented in yellow dots. 

 5 
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Figure 11. Deterministic CI detection map derived by DT, RF, probabilistic RF, and LR on 6 July 2016 05:30 (UTC): (a) 

DT, (b) RF, (c) probabilistic RF, and (d) LR 40 min before CI occurrence. (e) is the 1.5 km radar CAPPI image at 06:10 

(UTC). While predicted CI is in red, the locations of lightning occurrences at 06:10 (UTC) are presented in yellow dots. The 

radar echoes above 35 dBZ beyond the effective radius of radar are shaded with red hatch. 5 
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Figure 12. Deterministic CI detection map derived by DT, RF, probabilistic RF, and LR on 24 July 2016 14:50 (UTC): (a) 

DT, (b) RF, (c) probabilistic RF, and (d) LR 10 min before CI occurrence. (e) is the 1.5 km radar CAPPI image at 15:00 

(UTC). The radar echoes above 35 dBZ beyond the effective radius of radar are shaded with red hatch. 
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