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Abstract. Large variability is inherent to turbulent flux observations. We review different methods used to estimate the flux 

random errors. Flux errors are calculated using measured turbulent and simulated artificial records. We recommend two flux 

errors with clear physical meaning: the flux error of the co-variance, defining the error of the measured flux as one standard 10 

deviation of the random uncertainty of turbulent flux observed over an averaging period of typically 30 min to 1 hour 

duration; and the error of the flux due to the instrumental noise. We suggest that the numerical approximation by Finkelstein 

and Sims (2001) is a robust and accurate method for calculation of the first error estimate. The method appeared insensitive 

to the integration period and the value 200 s sufficient to obtain the estimate without significant bias for variety of sites and 

wide range of observation conditions. The error proposed by Wienhold et al. (1995) is a good approximation to the total flux 15 

random uncertainty provided that independent cross-covariance values far from the maximum are used in estimation as 

suggested in this study. For the error due to instrumental noise the method by Lenschow et al. (2000) is useful in evaluation 

of the respective uncertainty. The method was found to be reliable for signal-to-noise ratio, defined by the ratio of the 

standard deviation of the signal to that of the noise in this study, less than three. Finally, the random uncertainty of the error 

estimates was determined to be in the order of 10 to 30% for the total flux error depending on the conditions and method of 20 

estimation. 

 

1 Introduction 

The eddy covariance (EC) method is the most direct and defensible way to measure vertical turbulent fluxes of momentum, 

energy and gases between the atmosphere and biosphere. Considering an optimal measurement setup and a standardized 25 

scheme for post-field processing of the measured EC raw data, we can assume that the systematic error is minimized, and 

then the random error of the fluxes is typically dominating the EC flux measurement uncertainty at short time scales. The 

accuracy of flux random error estimates becomes important for interpretation of measurements especially when detecting 

small fluxes in terms of turbulent exchange or signal-to-noise ratio (SNR) of the instrumentation. Moreover, it is desirable to 

estimate the total random uncertainty for each averaging period as well as to separate it into the main components, e.g. one-30 

point sampling error and instrumental noise (Businger et al., 1996). For the uncertainty due to instrumental noise, the method 

proposed by Lenschow et al. (2000) have been recently applied to EC measurements not only for energy and CO2 (Mauder et 

al., 2013; Mammarella et al., 2015), but also for CH4 (Peltola et al., 2014) and N2O fluxes (Rannik et al., 2015). Few authors 

(Detto et al., 2011; Schmidt et al., 2012; Sturm et al., 2012; Peltola et al., 2013; Deventer et al., 2015) have used the method 

proposed by Billesbach (2011) as a mean of estimating the random instrumental noise. This approach, also called “random 35 

shuffle method”, consists on randomly shuffling one of the data records in time and then estimating the error as covariance 

between the two decorrelated time series. 
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Recently Langford et al. (2015) analysed in detail the uncertainties related to flux detection from the EC data with low SNR. 

The authors evaluated the impact of the time-lag determination and called for caution since under low SNR condition the 

traditional methods of maximising the cross-covariance function can lead to a systematic bias in determined fluxes. The 

study also reviewed the approaches for estimation of flux random errors. For quantifying the flux uncertainty Langford et al. 

(2015) suggest to use the method by Wienhold et al. (1995), and following Spirig et al. (2005) suggest to multiply the flux 5 

error standard deviation by a factor of three to obtain the limit of detection at 99% confidence level. The method by 

Lenschow et al. (2000) to calculate the effect of instrumental noise on the flux error was also validated for data with low 

SNR by Langford et al. (2015). They compared the method with estimates derived from the root mean square (RMS) 

deviation of co-variance of white noise and vertical velocity records and found that the error was not sensitive to the type of 

distribution of the noise and the RMS approach was consistent with the method by Lenschow et al. (2000). 10 

In the current study we review available methods for the random error estimation of turbulent fluxes, which are widely used 

by the flux community. We perform calculation and analysis of flux errors by considering different error formulations 

described in Sect. 2. 

We use the measured natural turbulent records for (i) quantitative comparison of the error estimates by Finkelstein and Sims 

(2001), Wienhold et al. (1995), Lenschow et al. (2000), and Billesbach (2011), and (ii) evaluation of sensitivity of error 15 

estimates on numerical approximations and calculation details. Based on the analysis we provide recommendations 

regarding the choice of the flux random error estimates, together with calculation guidelines for numerical evaluation. 

In addition, we generate artificial records with pre-defined statistical properties characteristic to atmospheric turbulence to 

(iii) evaluate the flux error estimates with high accuracy. Numerically evaluated error estimates are compared with the 

analytical predictions to validate the theoretical expressions for different error estimates. From simulated time series the 20 

calculated error estimates allow us also to (iv) evaluate the uncertainty of the flux random errors. 

 

2 Theory 

Turbulent fluxes averaged over a limited time period have random errors because of the stochastic nature of turbulence 

(Lenschow et al. 1994; Rannik et al., 2006) as well as due to noise present in measured signals (Lenschow and Kristensen, 25 

1985). 

 

2.1 Random error of the flux 

The random error of the flux defined by ))(('' sswwswF −−== , where the angle brackets denote ensemble 

averaging, w the vertical wind speed and s the scalar, can be evaluated as the standard deviation of the co-variance, hereafter 30 

in the manuscript denoted by Fδ , being the measure of one standard deviation of the random uncertainty of turbulent flux 

observed over an averaging period T. Theoretically, there are several ways to approximate the same error estimate. 

For stationary time series, in the limit � → ∞, the flux random error can be expressed by using the instantaneous flux 

))(('' sswwsw −−==ϕ  statistics according to (Wyngaard, 1973; Lenschow et al., 1994) 
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where ))'()()(()'( ϕϕϕϕϕ −+−= ttttR  is the auto-covariance function of ϕ, t´ the time delay and 
2
ϕσ  is the variance 5 

of ϕ. Eq. (2) can be used directly to estimate the time scale ϕτ  by integration of the auto-covariance function of ϕ, 

calculated from the high-frequency data records. 

Rannik et al. (2009) estimated the time scale ϕτ  and compared with simple parameterisations used in practical applications. 
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For unstable conditions the value 0.24 (for temperature fluxes) to 0.27 (aerosol particle number concentration fluxes) was 10 

obtained for nϕ. It was established that normalised frequency was not a function of stability under unstable conditions. Under 

stable stratification the frequency ϕn  was determined to increase with stability, which was parameterised by 
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The flux uncertainty estimate according to the spectral or the Fourier method is defined as (Lenschow and Kristensen, 1985; 

Rannik and Vesala, 1999) 15 
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where the spectrum of time series x = w, s, xS , can be represented as the squared magnitude of the Fourier Transform (FT) 

of x, 
2

)(xFTSx = , with normalisation over frequencies f is assumed as 2( )x xS f df σ
∞
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=∫ . The cross-spectrum can be 

represented as
*)()( sFTwFTSws = , where * stands for complex conjugate. 

Perhaps the most frequently used method to estimate the flux error is the method equivalent to the spectral method proposed 20 

by Lenschow and Kristensen (1985) in the time domain as 
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in the limit � → ∞, where ))'()()(()'( wttwwtwtRw −+−=  (and sR for scalar s) represents the auto-covariance and 

))'()()(()'( sttswtwtRws −+−=  the cross-covariance functions. 

The Eq. (5) above is numerically approximated by Finkelstein and Sims (2001) as 
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with suitably chosen value of m, where n equals the amount of data points within the averaging period and 5 
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. Note that throughout of this study we use the unbiased estimates of the auto- 

and cross-covariance functions.  

All the error estimates presented in Sect. 2.1 are different methods for evaluation of the same flux error provided that the 

averaging period T is much larger than the ITS ϕτ . 

 10 

2.2 Flux random error due to instrumental noise  

Random uncertainty of the observed co-variance due to presence of noise in instrumental signal, assuming the white noise 

with variance independent of frequency, gives essentially the lowest limit of the flux that the system is able to measure. Such 

uncertainty estimate can be expressed in its simplest form as 

fT

fnw

NF

,
,

σσ
δ = ,           (7) 15 

where σw and σn, f  denote the standard deviation of the turbulent record of vertical wind speed and the standard deviation of 

instrumental noise as observed at frequency f. It should be noted that the signal noise at frequency f can be expressed through 

its value at frequency 1 Hz by 

Hzfnfn f 1,, == σσ ,           (8) 

assuming averaging of the signal over periods 
1−f  and 1 s, respectively. This enables us to re-write the Eq. (7) as 20 

T

Hzfnw

NF

1,
,

=
=

σσ
δ . The Eq. (7) assumes that the noise component of the vertical wind speed measurement is negligible, 

which is generally the case with modern sonic anemometers. The method was derived rigorously by Lenschow et al. (2000) 

and applied to EC fluxes by Mauder et al. (2013) to estimate the flux error due to instrumental noise. Lenschow et al. (2000) 

derived the method to estimate the instrumental random noise variance 
2
, fnσ  from the auto-covariance function of the 

measured turbulent record close to zero-shift, enabling to determine the respective error for each half-hour flux averaging 25 

period under field conditions. In this study, the auto-covariance is linearly extrapolated to lag zero using the auto-covariance 

values at lags 1…5 (at 10 Hz frequency sampling rate) and the difference between this extrapolation and the observed auto-
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covariance value at lag zero (i.e. the variance of the time series) is the variance related to instrumental noise. The lag interval 

from 0.1 to 0.5 s was chosen as a compromise between accuracy and precision of the variance estimate. This method relies 

on the property of the noise that it is not correlated with the true signal variation. In following, the noise variance estimate 

obtained according to Lenschow et al. (2000) approach is denoted by 
2
,ˆ
fnσ  and the respective flux error according to Eq. (7) 

by NF ,δ̂ . 5 

 

 2.3 Other flux random error estimates 

Wienhold et al. (1995) use a method to calculate “the error in the flux determination, the flux detection limit”, calculating the 

standard deviation of the co-variance function wsR  between the intervals from -50 ≤ ∆�� ≤ -40 and 40 ≤ ∆�� ≤ 50 as 
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where ∆�� = ∆	
��  is the normalised interval of the record, � = �40 �
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calculates several values of the co-variance at lags where correlation between the time series w and s has vanished, and 

assuming these are all independent estimates, calculates the standard deviation as the error estimate. Provided that the 

variance of the co-variance function is calculated from the independent values at long enough lags, this method is equivalent 15 

to calculating the error estimate according to 
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which is expected to underestimate the total flux error presented by Eq. (5). On the other hand it produces larger error values 

compared to the flux error due to instrumental noise as defined by Eq. (7) and compared to the error estimate by Billesbach 

(2011, Eq. (11) below). We also demonstrate below (Sect. 4.1) that the subsequent values of wsR  are not statistically fully 20 

independent and the numerical estimate Eq. (9) converges to the theoretical expression Eq. (10) only if independent values of 

wsR  are selected for calculation of the standard deviation as the error estimate WF ,δ̂ . 

Billesbach (2011) proposed a method to calculate the flux error estimate, which according to the authors was “designed to 

only be sensitive to random instrument noise”. The error is calculated according to 
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where � ∈ [1. . �] but the values are in the random order. Random shuffling of the time series s with respect to w essentially 

decorrelates s (assumed to consist of the sum of turbulent signal and instrumental noise) from w, resulting in two 

independent variables. This error estimate is equivalent to Eq. (7) as modified to 
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where the scalar time series variance is the sum of the variances of turbulent scalar concentration and that of the noise, i.e. 

2
,

22
fncs σσσ += . Therefore the method interprets the variance of turbulent variation as a part of the random noise and 

produces an error estimate that overestimates the flux error due to instrumental noise only. Also, since turbulence spectrum 

does not follow the property described by Eq. (8), the error estimate according to Eq. (11) becomes dependent on the choice 5 

of the frequency f and cannot therefore be considered as a robust method to estimate the flux error.  

Lenschow and Kristensen (1985) have shown that the auto-covariance function for the Poisson type of noise has the form 
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are independent due to shuffling, making the term corresponding to the product of the cross-covariances vanish, the error 

estimate for the method by Billesbach (2011) becomes 10 
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which after integration becomes equivalent to Eq. (12).  

 

2.4 The random error of the ensemble average flux 

If an average over fluxes Fi (i = 1..N) is calculated, each of these representing a flux value observed over averaging period T 15 

and being characterised by an error iF ,δ , then the error of the average flux ∑ =
=
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i iF
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3 Materials and methods 

3.1 Sites and measurements 20 

Measurements from three different and contrasting sites with different surface properties and observation heights of about 23 

m (forest site in Hyytiälä, SMEAR II), 2.7 m (Siikaneva fen site) and 1.5 m (Lake Kuivajärvi) above surface were used to 

evaluate the flux error estimates for June 2012 (July 2012 at Kuivajärvi) for measured temperature, carbon dioxide (CO2), 

water vapour (H2O) and methane (CH4, Siikaneva only) fluxes. 

 25 

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-31, 2016
Manuscript under review for journal Atmos. Meas. Tech.
Published: 15 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



 

7 

 

3.1.1 SMEAR II (Forest site) 

The first set of measurements was done at the SMEAR II station (Station for Measuring Forest Ecosystem-Atmosphere 

Relationships), Hyytiälä, Southern Finland (61°51′ N, 24°17′ E, 181 m ASL). The station is surrounded by extended areas 

of coniferous forests and the tower of the EC measurements is located in a 50-years-old (in 2012) Scots pine (Pinus 

sylvestris L.) forest with dominant tree height of 17 m. The EC measurements were performed at 23 m height, approximately 5 

6 m above the forest canopy. The wind speed components and sonic temperature were measured by an ultrasonic 

anemometer (Solent Research 1012R2, Gill Ltd, UK), and fast response CO2 and H2O mole fraction by an infrared gas 

analyser (LI-6262, LI-COR Inc., Lincoln, NE, USA). Description of the measurement in micrometeorological context at 

SMEAR II station can be found in Rannik (1998), more detailed description of the station and the measurements in Hari and 

Kulmala (2005). 10 

 

3.1.2 Kuivajärvi (Lake site) 

The second dataset is taken from Lake Kuivajärvi (61°50′N, 24°17′E), located close to the Hyytiälä Forestry Field Station 

and SMEAR II Station. Lake Kuivajärvi is a small humic boreal lake extending about 2.6 km in northwest to southeast 

direction, and it is a few hundred meters wide (surface area is 0.63 km2). The measurement platform, firmly anchored from 15 

all the four corners, is located approximately 1.8 km and 0.8 km from the northern end and southern end, respectively. 

Turbulent fluxes of momentum, heat, CO2, and H2O are measured by an EC system (located on the above mentioned 

platform), which includes an ultrasonic anemometer (Metek USA-1, GmbH, Elmshorn, Germany) to measure the three wind 

velocity components and sonic temperature and the enclosed path infrared gas analyzer LI-7200 (LI-COR Inc., Lincoln, NE, 

USA) that measures CO2 and H2O concentrations. The data are sampled at 10 Hz, and the gas inlet is at 1.7 m above the 20 

water surface close to the sonic anemometer. More details about the site and measurements can be found in Mammarella et 

al. (2015). 

 

3.1.3 Siikaneva (Fen site) 

The third dataset was collected at Siikaneva fen site (61˚49.961’ N, 24˚11.567’ E). The EC data used in this study were 25 

measured with a 3D sonic anemometer (Metek USA-1, GmbH, Elmshorn, Germany) and one closed-path analyser (LI-7000, 

LI-COR Inc., Lincoln, NE, USA) for CO2 and H2O. The sonic anemometer and the gas inlet was situated at 2.75 m above 

peat surface and the air was drawn to the analyser through a 16.8 m long heated sampling line. CH4 mole fraction was 

measured with a closed-path gas analyser (FMA, Los Gatos research, USA). Further details about the site and measurements 

can be found from Peltola et al. (2013). 30 

 

3.2 Flux processing 

Turbulent fluxes and other statistics reported in the study were calculated over 30 min averaging period by block averaging 

approach (i.e. no detrending was applied if not mentioned otherwise) using the EddyUH software (Mammarella et al., 2016). 
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Prior to flux calculation, raw data despiking, conversion of CO2 and H2O from wet to dry mole fraction and two-dimensional 

co-ordinate rotation of wind vector was performed (Kaimal and Finnigan, 1994). The fluxes were corrected for frequency 

response underestimation at low and high frequencies by using the co-spectral transfer functions calculated according to 

Rannik et al. (1999) and Mammarella et al. (2009) respectively, together with in-situ parameterisation of the co-spectral 

model derived from ensemble mean of measured temperature co-spectra (Mammarella et al., 2009; Peltola et al., 2013; 5 

Mammarella et al., 2015). 

The measured data (wind speed and concentration records) were quality screened for spikes (all 30 min periods with a single 

data point exceeding physically meaningful value excluded), and according to Vickers and Mahrt (1997) by applying the 

following statistics and selection thresholds: data with concentration skewness outside (-2, 2), or kurtosis outside (1, 8), or 

Haar mean and Haar variance exceeding 2 were rejected. In addition, flux data were rejected if the 2nd coordinate rotation 10 

angle was outside the range (-15°,15°) and at Kuivajärvi data were rejected if the wind was not blowing along the lake 

(directions 345°–135° and 170°–290°). Additional quality screening was performed for flux stationarity by using the 

threshold value 1 (Foken and Wichura, 1996). 

 

3.3 Superimposing Gaussian noise to the measured records 15 

SNR is defined in the current study as 
fn

fns
SNR

,

2
,

2

σ

σσ −
= . Records with low noise level (sonic temperature at the three 

sites) were used to evaluate the performance of the Lenschow et al. (2000) and Billesbach (2011) methods (Sect. 4.3.1 and 

4.3.2, respectively), superimposing the measured signal with Gaussian noise. Natural variability of records in combination 

with different noise levels Hzfn 10, =σ  (0.025, 0.152 and 0.30 K) led to a range of SNR-s from about 0.3 to 20, enabling to 

determine the range and threshold of SNR where the Lenschow et al. (2000) method can be used. In addition, the 20 

temperature signal was high pass filtered with a simple first-order low-pass filter in order to simulate scalar measurements 

(CO2, H2O, CH4, etc.) with a closed-path analyser performing as the low-pass filter to measured signal. Low-pass filtering 

was executed using 0.1 s, 0.3 s and 0.6 s time constants. However, since the results for different time constants did not differ 

qualitatively, we present only the results for the time constant 0.3 s (Sect. 4.3.1). 

 25 

3.4 Simulation of artificial records 

We generated artificial records with pre-defined statistical properties characteristic to atmospheric turbulence. Gaussian 

probability density functions were assumed for vertical wind speed and concentration time series. The atmospheric surface 

layer similarity relationships were assumed for the variances of the records and the time scales of the auto-correlated 

processes were defined via normalised frequencies (Appendix A). 30 

The analysis was carried out as following. First, we calculated the flux errors according to analytical expressions (A4), (A5) 

and (12) for the three flux errors Fδ , WF ,δ , and BF ,δ , respectively. 
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Second, we calculated from the repeated simulated artificial records time series (N = 10 000) the fluxes and evaluated the 

error estimates according to  

�� = �� = �〈 !〉 − 〈 〉!,           (15) 

where  denotes ensemble averaging over a large number of records with duration T = 30 min. In order to estimate WF ,δ , 

we retained auto-correlation of the series w and c but assumed no cross-correlation, i.e. with $%& = 0. In order to obtain the 5 

estimate for BF ,δ  we assumed uncorrelated time series w and c by taking $% = 0, $& = 0 and $%& = 0 in Eqs. (A1) and 

(A2). 

Third, we evaluated the errors estimates FSF ,δ̂ , WF ,δ̂  and BF ,δ̂ according to Eqs. (6), (9) and (11), respectively. These error 

values allow us to evaluate also the uncertainty of the random flux errors via calculation of the variance of the error 

estimates  10 

�(�(�) = �*+, = -〈�(�!〉 − 〈�(�〉!.          (16) 

 

4 Results 

4.1 Evaluation of error estimates based on simulated time series 

The random errors of the co-variance time series as presented in Appendix A can be derived analytically as the total error 15 

(Eq. A4) and as the error for the Wienhold et al. (1995) method (Eq. A5). Assuming the atmospheric surface layer similarity 

forms, the relative flux errors defined by ��	| |0� vary with wind speed and stability (Fig. 1). The error WF ,δ  ignores the 

covariance part of the error expression and is therefore slightly smaller. Nevertheless, the method by Wienhold et al. (1995) 

provides good approximation of the total flux error Fδ . The error according to the Billesbach (2011) method ( BF ,δ ) is 

much lower (estimated according to Eq. 12) and the relative error does not show dependence on wind speed. 20 

According to ASL similarity functions the relative flux error is largest at near-neutral stability and decreases both for 

unstable and stable conditions. In stable case the errors are smaller because turbulent spectrum is shifted towards higher 

frequencies resulting in more efficient averaging (over the same period T) and reduced relative random uncertainty. This is 

similar to the effect of wind speed where higher wind speed implies higher frequency turbulence and lower relative random 

uncertainty. In unstable case the normalised frequencies nw and nc are independent of stability and the stability dependence 25 

of the relative error is caused by the functions in Eq. (A6). 

Further we analysed in detail the flux errors for conditions characterised by Z U
-1 = 10 s and three stability cases Z L

-1 = -1, 

0, 1. Table 1 indicates that the simulated error estimates according to Eq. (15) are close to the analytical expectations. Also 

the numerical methods by Finkelstein and Sims (2001) and Billesbach (2011) produce similar values. However, the error 

estimated according to the Wienhold et al. (1995) method, WF ,δ̂  in Eq. (9), deviates from what we expected theoretically 30 

(Eqs. 10 and A5). The underestimation is particularly evident under neutral conditions when the relative error is largest. We 
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modified the method to essentially decorrelate the individual wsR  values by using values after every 10 second time shift 

and obtained much better correspondence to the expectations according to theory and simulations. Therefore we believe the 

error estimate WF ,δ̂  can underestimate the flux error not only because it omits the co-variance term but also because the 

subsequent values of wsR  are not independent, leading to underestimation of the total variability. 

The variability of the error estimates (calculated according to Eq. 16) is around 10 to 20% for FSF ,δ̂  and is slightly larger for 5 

WF ,δ̂ . The uncertainty of the random error estimate is larger for unstable and neutral conditions and smaller for stable. 

 

4.2 Comparison of flux errors 

The flux uncertainty estimates increase approximately linearly with the flux magnitude at all sites (Fig. 2 and Table 2). As 

expected from theory, the error estimate FSF ,δ̂  yielded largest values for the uncertainty. The error WF ,δ̂  gave few tens of 10 

percentages smaller uncertainty estimates (CO2: Forest 29%, Fen 35%, Lake: 45%; H2O: Forest 33 %, Fen 23%, Lake 15%; 

CH4: Fen 18 %) than FSF ,δ̂ . This is related to the difference between Eqs. (5) and (10): the estimate FSF ,δ̂  included a cross-

covariance term, whereas WF ,δ̂  estimated the flux uncertainty related only to the auto-covariance term. Also, the method by 

Wienhold et al. (1995) as defined by Eq. (9) likely underestimates the error as discussed in Sect. 4.1. The error BF ,δ̂  

obtained according to Lenschow et al. (2000) gave systematically higher uncertainty estimates than NF ,δ̂ , as predicted in 15 

Sect. 2.3. As NF ,δ̂  is expected to estimate the flux uncertainties due to instrumental noise, then BF ,δ̂  is clearly a different 

error estimate. 

Based on the linear regression statistics presented in Table 2, a few findings can be emphasised. The intercept values are 

small (compared to the flux error magnitudes) and imply that flux uncertainties tend to vanish with no turbulent exchange. 

Generally the relative flux error is larger over the Forest (slope 0.14 and 0.18 for CO2 and LE) compared to Fen site 20 

(respective slopes 0.08 and 0.09). Surprisingly, the relative flux error is largest for CO2 over the Lake. This could be due to 

advective conditions for CO2. During the calm conditions, in particular at nights, CO2 is expected to drain downhill towards 

the lake and accumulate, causing the concentration to increase and induce variation which is not related to local exchange 

over the Lake. Additional variance in concentration record would impact also the flux error estimate. 

The error due to instrumental noise ( NF ,δ̂ ) is weakly correlated with flux value as expected from theory. The method BF ,δ̂  25 

gives correlated estimates with fluxes and this is expected due to correlation between the concentration variance and the flux 

(turbulent exchange naturally gives rise to concentration fluctuations). 

For qualitative comparison with the behaviour of our theoretical model based on ASL similarity theory we constructed a plot 

similar to the one presented in Sect. 4.1 (Fig. 1), see Fig. 3. The figure illustrates that the observed behaviour holds: the 
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relative flux errors increase with increasing (z-d) U
-1 (i.e. with lower wind speeds) and the stability dependence looks similar. 

Our theoretical model predicted the highest relative errors for near-neutral conditions. This holds for CO2 but in case of H2O 

the peak is shifted towards stable stratifications side. This apparent dissimilarity of scalars could be the result of different 

source-sink behaviour. 

The method BF ,δ̂  produces wind speed invariant relative error estimates and again similar behaviour with stability as 5 

presented in Fig. 1. 

In most cases the flux random uncertainty is dominated by the stochastic nature of turbulence and the instrumental noise is a 

minor part of the total uncertainty. The uncertainty estimate calculated by the Finkelstein and Sims (2001) method accounts 

for the total uncertainty of the covariance and thus the relative contribution of instrumental noise to the total uncertainty can 

be assessed by comparing the flux error estimates FSF ,δ̂  and NF ,δ̂ . Fig. 4 shows that for CO2 flux measurements at the Fen 10 

site the instrumental noise causes around 5…10 % of the flux random uncertainty indicating that instrumental noise level is 

low enough for flux measurements at the given site. For sites with very low fluxes the situation might be opposite and the 

instrumental noise becomes limiting in detection of surface exchange. 

 

4.3 Numerical guidelines for error calculation 15 

4.3.1 Instrumental noise according to Lenschow et al. (2000) 

The calculated 
2
,ˆ
fnσ  values were grouped according to SNR and ITS ϕτ . Note that the ITS for ϕ  is smaller roughly by a 

factor of 3 compared to the time scale of concentration c (cf. Eqs. 3 and A8). The results are shown in Fig. 5. At all three 

sites, the method by Lenschow et al. (2000) overestimated the noise variance if SNR>3, the ITS was small and temperature 

signal was not low-pass filtered (cf. Fig. 5a…5c). In these cases the signal was high compared to noise (SNR>3), large part 20 

of the signal was at high frequencies (implying small ITS) and the high frequencies were not attenuated. When the ITS was 

larger, the noise was estimated more accurately, especially at the Lake and Fen sites. On the other hand, if SNR<3, the 

accuracy of the noise estimation did not significantly depend on the ITS, and the relative error of the noise estimation was in 

general within 10 %. 

If the temperature signal was low-pass filtered before superimposing the signal with Gaussian noise, the accuracy of the 25 

noise estimation was improved (cf. Fig. 5d…5f). When the SNR was below 5, the noise variance was estimated successfully 

(relative error within ±30 %), regardless of the ITS. Increasing the ITS improved the results, especially at the fen site (cf. Fig 

5e). In addition, stronger high frequency signal damping generally increased the accuracy of the noise estimate (not shown). 

This result suggests that the Lenschow et al. (2000) method is more suitable for signals which are high-pass filtered 

(measurements with closed-path gas analysers) than for less attenuated signals (measurements with open-path gas analysers 30 

and sonic anemometers). 

On the whole, the accuracy of the Lenschow et al. (2000) method depends on how strong is the signal relative to noise at 

high frequencies, since the noise is estimated using small time shifts close to the auto-covariance peak. The signal-to-noise 

ratio at high frequencies decreases if i) the total SNR decreases, ii) the ITS increases (power spectrum shifts to lower 
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frequencies) or iii) the high frequency variation in the signal is dampened. Thus for instance for signals measured at a tall 

tower with a closed-path analyser, the method should work well in estimating the instrumental noise, since most of the 

turbulent signal is at relatively low frequencies (high measurement height) and the high frequency variation in the signal is 

dampened. On the other hand, for measurements close to the ground with an open-path analyser the method does not 

perform equally well under all conditions. The reliability of the Lenschow et al. (2000) in estimating the instrumental noise 5 

from the signal is determined by the SNR, as illustrated in the Fig. 5. Therefore, a priori knowledge on the instrumental 

precision characteristics is needed when analysing the outcome of the method.  

We analysed in more detail the performance of the Lenschow et al. (2000) method in Fig. 6. In case of low SNR and high 

ITS the method estimates the true noise with relatively small bias (Fig. 6 a, d). For the same SNR but low ITS value the 

variance is strongly over estimated (Fig. 6 b, e). We argued earlier that low-pass filtered signals enable to obtain better noise 10 

variance estimates (Fig. 5). However, in case of high SNR (Fig. 6 c, f) the method leads to significant under estimation of the 

true variance. Thus filtered signals (instruments with not perfect frequency response) are not always preferred in terms of the 

method’s ability to determine the signal noise. 

In Table 3 we report the estimated signal noise statistics for the instruments used in the current study by defining reliable 

values according to criterion SNR<3. The fraction of reliable estimates is low for the instruments with high precision 15 

characteristics. For example, the method does not typically work for estimation of the precision of wind speed measurements 

of the sonic anemometers. The estimated signal noise characteristics are in good correspondence with instrument 

specifications (where available) except for the CH4 analyser, which had much better precision value than reported by the 

manufacturer. 

 20 

4.3.2 Random error according to Billesbach (2011) 

Billesbach (2011) introduced the so-called “random shuffle” method to estimate the instrumental noise from EC 

measurements. However, as argued in Sect. 2.3 this method does not estimate the flux error due to the instrumental noise 

since it mixes turbulent variation with noise and thus the error corresponding to the sum of the variances of the turbulent 

signal and the noise is deduced by the method. This is exemplified by Fig. 7a and 7b: the error estimated with the “random 25 

shuffle” method ( BF ,δ̂ ) is equal to the calculation using the combined variances of signal and noise (Fig. 7b) and not to the 

calculation using the variance of the noise only (Fig 7a). Thus the method cannot be expected to be suitable for estimation of 

the flux error due to (instrumental) noise in the signal. 

 

4.3.3 Integration time in the Finkelstein and Sims (2001) method 30 

Under different wind speed and stability conditions the ITS of turbulence varies and therefore it becomes relevant what 

would be the appropriate integration time for the method by Finkelstein and Sims (2001). The integration time of the flux 

error FSF ,δ̂  is studied by varying m in Eq. (6) up to 1500 s. Further, to see the influence of different high-pass filtering 

techniques used in EC flux calculation, we applied the method to time series of sonic temperature from the Forest site with 

following detrending options: mean removal (no detrending applied), linear detrending and auto-regressive high pass 35 
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filtering with time constant 200 s. In general, the flux error estimate increases with integration time up to about 300 s (Fig. 

8). At short integration times the high-pass filtered time series converge faster to the limit at longer integration times. This 

indicates contribution of low-frequency part of the spectra to the error estimates. Possibly part of this low frequency 

variation is contributed by non-stationarity of the series. At larger integration times than about 300 s the error estimates 

essentially do not change. We choose further to normalise the error estimates with average value over the interval from 400 5 

to 600 s. 

Plots for different sites (varying the observation level and surface type), and wind speed and stability influences as reflected 

by ITS classes indicate that integration time 200 s serves as an optimal choice for all conditions (Fig. 9). This would 

guarantee less than 10% systematic underestimation of the flux error even in case of 25% largest ITS values (ITS > 75th 

percentile) for Fen and Lake sites. The figure also illustrates that the cross-covariance term in Eq. (5) contributes 10 to 30% 10 

of the error estimate, suggesting that the method by Wienhold et al. (1995), which ignores this term, underestimates the error 

by the same fraction. 

 

5 Discussion and conclusions 

Commonly applied random error estimates of turbulent fluxes were tested and compared in this study. The method proposed 15 

by Finkelstein and Sims (2001), the error estimate FSF ,δ̂  according to Eq. (6), approximates the random flux error defined as 

one standard deviation of the random uncertainty of turbulent flux observed over an averaging period T. Wienhold et al. 

(1995) defined an error estimate ( WF ,δ̂ , Eq. (9) in this study), calculating the standard deviation of cross-covariance function 

over the lag interval far from the maximum. They called the error estimate as the detection limit of the flux. It was shown in 

the current study that the error estimate WF ,δ̂  is in a good correspondence with FSF ,δ̂  even though it does not rigorously 20 

define the same flux error. The method WF ,δ̂  underestimates the flux random uncertainty by a few tens of percent owing to 

the fact that it ignores the co-variance part of the estimate in Eq. (5). We also demonstrated in this study that the error 

estimate WF ,δ̂  as formulated by Wienhold et al. (1995) underestimates the true flux uncertainty due to the fact that the cross-

covariance estimates at neighbouring lags are not independent. To overcome this deficiency we suggest to calculate the flux 

error variance from the cross-correlation values over longer lag interval but separated in time. For example, in the numerical 25 

exercise we chose the cross-covariance values with 10 s intervals within the lag ranges from -300 to -100 and +100 to +300 

s. The modified approach reproduced the flux error values close to theoretical expectations whereas the original method 

underestimated the theoretical value up to 26% (from three studied cases). 

An alternative to one point statistical estimation of the flux random errors as described in this study (Sect 2.1) is the two 

tower approach, where the flux random error is evaluated by using the difference of the fluxes measured at two EC towers 30 

(e.g., Hollinger et al., 2004). The method assumes statistically similar observation conditions with independent realisations 

of turbulence at the two towers. Since the conditions are difficult to realise because of spatial correlation in measurements 

(e.g. Rannik et al., 2006), we suggest that the one-point statistical approach provides rigorous but more convenient method to 

estimate the flux random errors. Nevertheless, the two tower approach was shown to give close results to the method by 

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-31, 2016
Manuscript under review for journal Atmos. Meas. Tech.
Published: 15 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



 

14 

 

Finkelstein and Sims (2001) when similar weather conditions at the two sites were included in the analysis (Post et al., 

2015). 

The error estimates with very clear physical meaning are the total error resulting from stochastic nature of turbulence due to 

limited sampling in time and/or in space, the method by Finkelstein and Sims (2001) and to a good approximation the 

method by Wienhold et al. (1995), and the random error due to instrumental noise only. To estimate the latter from the field 5 

measurements (not from laboratory experiment) Lenschow et al. (2000) suggested to calculate the signal noise variance from 

the difference between the signal auto-covariance at zero lag and the extrapolated value of the auto-covariance function to 

zero lag. The noise variance enables to calculate the flux error according to Eq. (7), which gives essentially the flux 

uncertainty under conditions of no turbulent exchange (and thus variability) of scalar concentration. 

Billesbach (2011) proposed the flux error estimate based on the product of vertical wind speed and concentration 10 

fluctuations, randomly re-distributing one of the series (denoted by BF ,δ̂ , Eq. (11) in this study). The method was called as 

the “shuffling method” and the authors proposed that the method was designed to only be sensitive to random instrument 

noise. We point out in this study that the method effectively adds the variance of turbulent scalar variation to noise variance 

and therefore the method is not equivalent to (overestimating) the method proposed by Lenschow et al. (2000) and also not 

to the Finkelstein and Sims (2001) method by strongly under estimating the total flux uncertainty. 15 

Different flux error estimates have been assigned the meaning of the flux detection limit. For example, Wienhold et al. 

(1995) called their method as “detection limit of the flux”. Billesbach (2011) suggested that the method they introduced “was 

sensitive to random instrument noise”. The method by Lenschow et al. (2000) estimates the flux value that the system is able 

to detect within an averaging period T under hypothetical conditions of no turbulent variation of concentration. This error 

estimate serves as the theoretical lowest detection limit of the EC system. However, under natural turbulent exchange 20 

conditions the flux random uncertainty is contributed in addition to signal noise also by the stochastic nature of turbulence 

and the total flux error is larger, also meaning that the detection limit is larger than compared to the error introduced by the 

instrumental noise. Respectively, Langford et al. (2015) have defined “limit of detection” as 3x WF ,δ̂  (the uncertainty 

according to Wienhold et al. (1995) method) to give the flux measurement precision within 99% confidence interval. By 

default most of the publications refer to one standard deviation of flux random variability (which corresponds to 68% 25 

confidence intervals assuming normal distribution) when talking about the flux precision or random errors. If different 

confidence level is aimed, as by Langford et al. (2015), this should be explicitly stated. 

The flux detection limit has been used also in conjunction with other flux measurement techniques. For example, in case of 

chamber measurements the flux detection limit has been used to denote the flux error arising from all possible error sources. 

The traditional way to perform chamber measurements is to determine the gas concentration at several time moments during 30 

the chamber operation. In such data collection the sources of uncertainty are the imprecision related to gas sampling (either 

manual or automatic) as well as instrumental uncertainty (e.g. Venterea et al., 2009), leading to a measurement precision 

which is called a detection limit of chamber based flux measurement system. It has to be noted that the flux detection limit of 

the chamber systems depends on several factors such as the type of the chamber and respective sampling method, the 

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-31, 2016
Manuscript under review for journal Atmos. Meas. Tech.
Published: 15 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



 

15 

 

precision of the instrument, chamber dimensions and operation time. Therefore the flux detection limit of the chamber based 

systems (which accounts for all possible sources of uncertainty) is comparable to the total stochastic error of the EC fluxes. 

We also studied the performance of the Lenschow et al. (2000) and Finkelstein and Sims (2001) flux error estimation 

methods over different ecosystems and observation conditions. The performance of the Lenschow et al. (2000) method is 

affected by the SNR and the ITS of turbulence. We established that the method provides reliable estimates for SNR < 3 (in 5 

statistical sense, single biased values can occur). However, no criterion based on the ITS could be provided as the results 

deviated among sites. 

Application of the EC method requires stationarity of time series within averaging period (e.g. Foken and Wichura, 1996). 

Non-stationarity results in higher random uncertainty of the flux value and therefore the stationarity requirement has to be 

fulfilled if each 30 min or 1 hour average value is expected to be statistically significant. We tested sensitivity of the flux 10 

errors derived by the Finkelstein and Sims (2001) method on integration time and high-pass filtering of the fluxes performed 

by mean removal, linear detrending and auto-regressive filtering. It was observed that the flux error increased with 

integration time up to about 300 s revealing the influence of the low-frequency (possibly non-stationary) signal variance on 

the flux estimates. The high-pass filtered time series were less affected. For consistency, the flux errors should be calculated 

based on the same time series (in terms of filtering) as used for flux calculation. Apart from the impact of the low-frequency 15 

contribution to flux errors (and fluxes), which we believe is related to non-stationarity of the conditions, we observed that, in 

order to obtain FSF ,δ̂  with good accuracy, integration of Eq. (6) over 200 s is sufficient for wide range of sites as well as 

observation conditions. Finkelstein and Sims (2001) originally performed summation over 20 s and suggested that the results 

changed less than 1 to 2% for summation over 10 to 40 s for the dataset they used. Our results suggested that longer 

summation period is needed for robust determination of the error in case of tower based measurements over variety of 20 

surfaces and wide range of observation conditions.  

The EC fluxes are uncertain due to stochastic nature of turbulence by about 10 to 20% under typical observation conditions. 

By using simulation of time series with statistical properties similar to natural records we deduce that the flux error estimates 

in turn are uncertain by about 10 to 30%.  

 25 

Appendix A. Markovian simulation of time series 

The wind speed and scalar concentration time series were simulated as 1(�) = $%1(� −Δ�) + 3%4%(�)�%																													5(�) = $&5(� −Δ�) + 3&%[$%&4%(�) + 3%&4&(�)]�&,        (A1) 

where 4%(�) and 4&(�) are Gaussian random processes with zero means and unit variances, and to preserve the variances and 

covariance, the coefficients were chosen as 30 

36 = �(1 − $6!),			8 = 1, 5, 15$%& = 9:;(�0<:<;)=:=; 																							.          (A2) 
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Here >%& = ?:;(@)A:A;  is the cross-correlation between w and c. By taking $% = exp	E0∆	F: G and $& = exp	E0∆	F; G , where ∆� is the 

simulation time step (much shorter than the time scales H% and H&), the constructed processes have the following exponential 

covariance and cross-covariance functions: 

I%(H) = �%! exp E− |F|F:G																					I&(H) = �&! exp E− |F|F;G																						
I%&(H) = JK∗5∗ exp E− |F|F;G , H > 0	

K∗5∗ exp E− |F|F:G , H < 0
 .         (A3) 

The theoretical random error estimate for the flux calculated from described artificial time series is given according to Eq. 5 

(5) by 

��! = 2(�%!�&! + K∗5∗) P F:F;Q(F:RF;)S,           (A4) 

where K∗ and 5∗ represent the friction velocity and the flux concentration, defining the flux by  =	K∗5∗. For the error 

estimate by Wienhold et al. (1995), Eq. (10), the respective error would read as  

��,T! = 2�%!�&! P F:F;Q(F:RF;)S.           (A5) 10 

For unstable stratification (L<0) the following scaling of variances was assumed (Monin and Yaglom, 1971; Rannik, 1998) 

A:U∗ = 1.25 E1 − 3 �XG�/ZA;&∗ = 3E1 − 28 �XG0�/Z 	 .           (A6) 

Under stable stratification the neutral limits of the above expressions were used. 

In addition, the time scales were related to wind speed and stability via 

�% = \	0.5,																							] < 0	0.5 + 0.755_,			] > 0 ,          (A7) 15 

where the normalised frequency � = `�
  is used and _ = a/], and  

�& = \0.062,																											] < 0	0.062 + 0.415_@.c,			] > 0 .          (A8) 

Time scales and frequencies are related via d6 = �!eFf.  
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Table 1. Flux error estimates 
Fδ , WF ,δ , and BF ,δ  obtained from simulations. Height to wind speed ratios Z U

-1 = 10 s. 

Number of simulated realisations N = 10 000. H% and H& denote the time scales of simulated series w and c in Eq. (A1). The 

values in the parenthesis indicate the uncertainty of the error estimates (obtained from Eq. 16) relative to the average values 

in percent i.e. 100% ∗ �j�(�k	〈�(�〉0�. 

 5 a] 
H%, H& 

100 x �� 	| |0� 100 x ��,T	| |0� 100 x ��,l 	| |0� 

  Anal. 

Eq. 

(A4) 

Simul. �� Eq. 

(15) 

Eq. (6) 〈�(�,�m〉± �(�(�,�m)
Anal. 

Eq. 

(A5) 

Simul.1�� Eq. 

(15) 

Eq. (9) 〈�(�,T〉± �(�(�,T) 
Eq. (9)2 〈�(�,T〉± �(�(�,T) 

Anal.  

Eq. 

(12) 

Simul.3�� Eq. 

(15) 

Eq. (11) 〈�(�,l〉± �(�(�,l) 
-1 0.32, 

2.57 

12.2 12.2 13.1± 2.9 

(22%) 

10.9 10.8  8.3±  

2.5 

(30%) 

 9.9±  

2.6 

(26%) 

1.44 1.46 1.40± 

0.27 

(19%) 

0 0.32, 

2.57 

21.8 21.7 22.2± 4.0 

(18%) 

21.0 21.0 15.6± 4.2 

(27%) 

19.5± 4.2 

(22%) 

2.80 2.81 2.71± 

0.51 

(19%) 

1 0.13, 

0.33 

12.4 12.4 12.6± 0.9  

(7%) 

12.0 11.7 11.6± 1.5 

(13%) 

12.6± 1.6 

(12%) 

2.80 2.83 2.74± 

0.44 

(16%) 

1Assuming auto-correlated but independent variables w(t) and c(t), with $%& = 0. 

2The method was modified such that in Eq. (9) the co-variances )'(tRws
were calculated with 10 s intervals within the lag 

ranges from -300 to -100 and +100 to +300 s making essentially the estimates independent. 
3Assuming independent random variables w(t) and c(t), with $% = 0, $& = 0 and $%& = 0. 
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Table 2. Linear fitting parameters between absolute value of the flux and flux uncertainty estimates (uncertainty = |flux| x S 

+ I) obtained from measurements at three sites. Robust fitting method was used to minimise the effect of outliers.  

 

  CO2  LE  CH4  

  S (-) I 

(µmol  

m-2 s-1) 

r2 S (-) I 

(W m-2) 

r2 S (-) I 

(nmol  

m-2 s-1) 

r2 

Forest 
FSF ,δ̂  

0.139 0.23 0.83 0.18 1.952 0.91    

WF ,δ̂  
0.109 0.16 0.87 0.13 1.332 0.93    

BF ,δ̂  
0.013 0.06 0.66 0.02 0.358 0.85    

NF ,δ̂  
0.004 0.03 0.35 0.01 0.070 0.45    

Fen 
FSF ,δ̂  

0.084 0.15 0.75 0.09 1.767 0.91 0.112 -0.55 0.99 

WF ,δ̂  
0.076 0.08 0.82 0.08 1.093 0.94 0.092 -0.28 0.98 

BF ,δ̂  
0.015 0.03 0.64 0.02 0.209 0.91 0.017 0.10 0.98 

NF ,δ̂  
0.005 0.01 0.30 0.01 0.022 0.52 0.002 0.20 0.02 

Lake 
FSF ,δ̂  

0.343 0.14 0.75 0.09 1.827 0.76    

WF ,δ̂  
0.206 0.10 0.72 0.09 1.196 0.75    

BF ,δ̂  
0.030 0.04 0.55 0.02 0.078 0.79    

NF ,δ̂  
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Table 3. Amount and magnitude of reliable noise estimates obtained by using Lenschow et al. (2000) method. The reported 

values are estimates of 1 std at 10 Hz sampling rate (i.e. Hzfn 10,ˆ
=σ ). Noise estimate was considered reliable if SNR<3, 

where SNR was calculated using the modal value of Hzfn 10,ˆ
=σ  obtained from the measurements. Also the performance 

specifications reported by instrument manufacturers are given for comparison. They are RMS values of 10 Hz data if not 

otherwise noted. 5 

 

  % of reliable 

estimates (%) 

Median 

value 

25th 

percentile 

75th 

percentile 

Specifications of 

analysers 

Forest u (m s-1) 0     

Ts (°C) 3 0.023 0.021 0.025  

CO2 (ppm) 61 0.28 0.27 0.28 0.61 

H2O (ppth) 11 0.015 0.015 0.016 0.061 

Fen u (m s-1) 6 0.062 0.052 0.066  

Ts (°C) 15 0.048 0.041 0.059  

CO2 (ppm) 57 0.23 0.23 0.24 0.16 

H2O (ppth) 1 0.011 0.010 0.011 0.011 

CH4 (ppb) 5 1.67 1.60 1.78 9.52 

Lake u (m s-1) 0     

Ts (°C) 3 0.034 0.030 0.038  

CO2 (ppm) 0    0.11 

H2O (ppth) 0    0.0047 

1 Peak-to-peak value. For the comparison with 1 std precision characteristic should be divided by a factor of 3. 
2 Converted from a value reported for 1 Hz data using Eq. (8) 
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Figure 1. Dependence of relative flux random errors on a) Z U
-1 and b) Z L

-1. The error estimates 
Fδ , BF ,δ  and WF ,δ  were 

calculated according to Eqs. (A4), (12) and (A5), respectively. 
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Figure 2. Flux error estimates FSF ,δ̂ , WF ,δ̂ , BF ,δ̂  and NF ,δ̂  versus the flux magnitude. Individual outliers were left 

outside the plots in order to show the majority of the data better.  
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Figure 3. Dependence of relative errors on (z-d) U
-1 and (z-d) L

-1 at the SMEAR II forest site. Data were binned before 

plotting (circles: medians, areas: interquartile range). For subplots a) and c) only periods with |(z-d) L
-1|<0.1 were used, and 

for subplots b) and d) periods when 2 m s-1 < U < 4 m s-1 were selected. 
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Figure 4. Frequency distribution of the ratio between the flux instrumental noise error (the error estimate NF ,δ̂ ) and total 

flux uncertainty (the error estimate FSF ,δ̂ ). CO2 data measured at the fen site with SNR<3 (see Sect. 4.3.1) were used in the 

plot. 5 
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Figure 5. Relative difference between the estimated (
2
,ˆ
fnσ ) and the actual (

2
, fnσ ) signal noise variance as a function of 

SNR and ITS calculated as 
o0p!eqr
, where �s was found according to Eq. (3). The data were bin averaged before plotting. 

The values for τ  in the subplots show the time constant used in low-pass (auto-regressive) filtering of the original 5 

temperature time series (i.e. before superimposing the noise). The dashed lines highlight the zero line (no systematic error in 

the noise estimate), whereas the dotted lines show the ±30 % thresholds. The top row shows data with no low-pass filtering. 
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Figure 6. Three example cases for application of the Lenschow et al. (2000) method with presented spectra (upper plots) and 

auto-correlation functions (lower plots). Case 1 (plots a, d): No filtering, low SNR, high ITS. Case 2 (plots b, e): No filtering, 

low SNR, low ITS. Case 3 (plots c, e): Filtering used, high SNR, moderate ITS. Red lines correspond to the original signal; 

Black lines correspond the original signal (high-passed filtered in case 3) superimposed with the noise; Blue lines: linear fits 5 

to the auto-correlation functions for lags from 0.1 to 0.5 s; Green line in spectral plots indicates the +1 slope on log-log 

representation. 
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Figure 7. Error estimate calculated based on the Billesbach (2011) method ( BF ,δ̂ , Eq. (11) in this study) plotted against flux 

uncertainty caused by instrumental noise (subplot a) and a combination of noise and signal variances (subplot b). If the 

method would estimate purely the instrumental noise, the points in the subplot a) would follow 1:1 line. Instead, as predicted 

by Eq. (12), the points follow 1:1 line in the subplot b). Sonic temperature data from the Forest site was used with different 5 

level of noise added as shown in the legend. 
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Figure 8. Normalised errors FSF ,δ̂  up to integration time 1500 s. Estimated from time series with 2 hrs (7 200 s) duration to 

avoid large uncertainties of the auto-covariance function at long lags. Normalisation is done with the average between 400 

and 600 s. Lines show medians and the areas interquartile ranges around the medians. The time constant used in the high 5 

pass filtered case is given in the plot. Sonic temperature data from the Forest site were used. 

 

 

Figure 9. Normalised uncertainty estimate according to Finkelstein and Sims (2001), FSF ,δ̂ , as a function of integration 

time used in Eq. (6). Contribution of the cross-covariance (blue area) and auto-covariance (green area) terms in the Eq. (6) 10 
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are shown separately. The values were normalised with average FSF ,δ̂  at integration times between 400…600 s and grouped 

in two ITS classes before plotting. No detrending of time series was used. 
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