Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-334-AC6, 2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.

Interactive comment on "Advanced characterization of aerosol properties from measurements of spectral optical depth using the GRASP algorithm" by B. Torres et al.

B. Torres et al.

benjator5@gmail.com

Received and published: 19 June 2017

Interactive comment on "Advanced characterization of aerosol properties from measurements of spectral optical depth using the GRASP algorithm" by B. Torres et al. F. Dulac (Editor) francois.dulac@cea.fr Received and published: 18 January 2017

I find you methodology interesting and well explained but I wish to question the 0.3-0.9 range of Tau-a(440) values for direct tests: on one side 0.3 is already a significant AOD, significantly larger than the average value in many AERONET stations, especially for places like Lanai where sea-salt is controlling the AOD; conversely, 0.9 does not cover the range of high values regularly observed at stations under desert dust influence;

C1

using such a limited range yields the reader to the conclusion that your algorithm is not consolidated at moderate and very high AOD; I would therefore suggest to include both a lower test value (e.g. 0.1) and a larger value for dust only (e.g. 1.5) to offer a better assessment of your algorithm ran

We have added 4 new aerosol cases: GSFC0 and LANA0 with $\tau(440) = 0.1$ and SOLV4 ZAMB4 with $\tau(440) = 1.5$ (low and large aerosol optical load).

Interactive comment on Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-334, 2016.