Supporting information for "Evaluation of the new capture vaporizer for Aerosol Mass Spectrometers (AMS) through laboratory studies of inorganic species"

Weiwei Hu^{1,2}, Pedro Campuzano-Jost^{1,2}, Douglas A. Day^{1,2}, Philip Croteau³, Manjula R. Canagaratna³, John T. Jayne³, Douglas R. Worsnop³, Jose L. Jimenez^{1,2*}

1 Cooperative Institute for Research in the Environmental Sciences (CIRES), University of Colorado at Boulder, 216 UCB, Boulder, CO 80309, USA

2 Department of Chemistry & Biochemistry, University of Colorado at Boulder, 216 UCB, Boulder, CO 80309, USA

3 Aerodyne Research, Inc., Billerica, Massachusetts, USA

Correspondence to: J. L. Jimenez (jose.jimenez@colorado.edu)

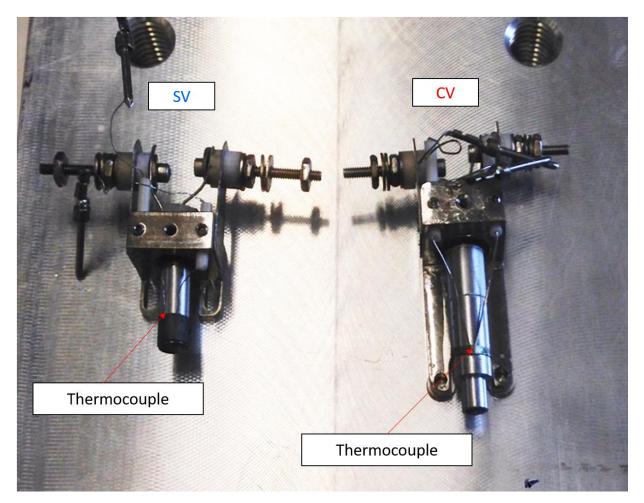


Figure S1. Picture of a standard vaporizer (SV, left) and a capture vaporizer (CV, right).

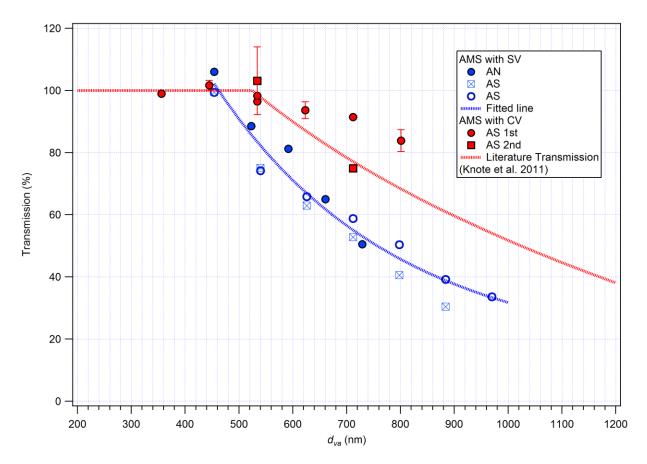


Figure S2. Lens transmission curve measured in this study for the AMSs with CV and SV. For d_{va} below 460 nm in SV AMS and 550 nm in CV AMS, no lens transmission correction was needed (E_L =1). In the experiments shown in this study, only NaNO₃ needs a transition loss correction for its high d_{va} (=680nm). During the experiment, an underperforming lens (that has since been replaced) was used in AMS with SV, thus showed a larger particle loss than the AMS with CV at high d_{va} . Normally, lens transmission curve is similar to that from CV AMS in this study, however individual AMS lens transmission calibrations are always recommended.