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Abstract. Detailed uncertainty budgets of three major UV ozone absorption cross-section datasets that are used in remote 

sensing application are provided and discussed. The datasets are Bass-Paur (BP), Brion-Daumont-Malicet (BDM), and the 

more recent Serdyuchenko-Gorshelev (SG). For most remote sensing application the temperature dependence of the Huggins 

ozone band is described by a quadratic polynomial in temperature (Bass-Paur parameterisation) by applying a regression to 10 

the cross-section data measured at selected atmospherically relevant temperatures. For traceability of atmospheric ozone 

measurements uncertainties from the laboratory measurements as well as from the temperature parameterisation of the ozone 

cross-section data are needed as an input to detailed uncertainty calculation of atmospheric ozone measurements. In this 

paper the uncertainty budgets of the three major ozone cross-section datasets are summarised from the original literature. 

The quadratic temperature dependence of the cross-section datasets is investigated. Combined uncertainty budgets is 15 

provided for all data sets based upon Monte Carlo simulation that includes uncertainties from the laboratory measurements 

as well as uncertainties from the temperature parameterisation. Between 300 and 330 nm both BDM and SG have an overall 

uncertainty of 1.5%, while BP has a somewhat larger uncertainty of 2.1%. At temperatures below about 215 K, uncertainties 

in the BDM data increase more strongly than the others due to the lack of very low temperature laboratory measurements 

(lowest temperature of BDM available is 218 K).  20 

1 Introduction 

The three ozone absorption cross-sections in common use for many remote sensing applications are the Bass Paur (BP) data 

(Bass and Paur 1985; Paur and Bass, 1985), the Daumont-Brion-Malicet (BDM) data (Daumont et al., 1992; Brion et al., 

1993; Malicet et al., 1995) and the very recent Serdyuchenko-Gorshelev (SG) data (Gorshelev et al., 2014; Serdyuchenko et 

al., 2011; 2014). While the data from BDM and SG are absolute cross-section measurements, the BP data were scaled to the 25 

so-called Hearn value at the Hg line wavelength (253.65 nm). The standard retrievals applied to the ground Brewer and 

Dobson spectrophotometer data use the BP data (e.g. Redondas et al., 2014), while the satellite community uses any of the 

three data sets or other data (WMO-GAW, 2015; ACSO, 2010; Orphal et al., Absorption cross-sections of ozone - Status 

report  2015, manuscript in preparation). 
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For the review of uncertainties, original publications reporting on results of the experimental work were considered first. 30 

Since BP data was absolutely scaled using Hearn data (Hearn, 1961), the latter is also included in this review. There is a lack 

of consistency in the presentation of measurement uncertainty budgets across different papers. Neither of the publications 

uses the guidelines and recommended definitions as outlined in JCGM-100 (2008). An attempt to analyze and harmonize the 

reported uncertainties is made in the following sections. In some cases not all measured quantities were reported and in most 

cases detailed description of the data processing procedures is missing. It is very likely that the published measurement 35 

uncertainties are incomplete and the overall uncertainties thus underestimated. 

In this paper we start with a brief summary on measurement principles in the laboratory (Section 2), followed by a review 

of the uncertainties of the UV ozone cross-section data (Section 3). In Section 4 the temperature dependence in the three 

major ozone cross-section datasets are discussed followed by Section 5, which summarises the Monte-Carlo simulation to 

obtain the overall uncertainty budgets of the major datasets.  Section 6 provides a summary and conclusion. 40 

2 Measurement technique 

Ozone absorption cross-sections are produced by performing spectroscopic measurements and subsequent analysis to 

convert the recorded spectra into absorption cross-sections in units of cm2/molecule. The absorption spectroscopy is based on 

the Beer-Lambert law, which describes the attenuation of the light intensity transmitted through the absorbing medium.  

For gaseous species the Beer-Lambert law can be written as: 45 

. (1) 

Here    is the light intensity in the absence of absorbing molecules (background),  is the absorbing gas number density, 

which is generally a function of temperature , pressure  , and the position  along the beam path,  is the total absorption 

path length and  [cm2/molecule] is the wavelength-dependent (and normally also temperature-dependent) absorption cross-

section. 

In a laboratory environment it is possible to control the experimental conditions with sufficient precision, so that the 50 

number density  [cm-3] is assumed to be homogeneously distributed along the absorption path of a known length  [cm]. 

From measurements of other parameters, such as  [K] and  [Pa], the value of    is calculated  assuming  the ideal gas  law  

( ,   Boltzmann constant). In this case Eq. 1 can be transformed to: 

 , (2) 

where A is the unitless absorbance. The unitless optical density (OD) is then expressed as 

 . (3)  
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Absolute cross-sections can be derived from the optical density if species concentration, temperature and absorption path 55 

length are known. Since ozone is a reactive and highly explosive gas, many measurements were done using a flow of 

oxygen/ozone mixture, where the partial pressure of ozone is unknown and values from other published absolute ozone 

cross-section measurements are used to find a scaling factor that converts the measured optical density into absorption cross-

section (e.g. Chehade et al., 2013a, b) 

Alternatively, measurements performed at selected wavelengths with a special attention to control of the experimental 60 

parameters are used to calibrate the relative cross-sections (optical densities). The latter was done for the BP data (Bass and 

Paur 1985, Paur and Bass, 1985) as all their relative spectra were scaled to the ozone absorption cross-section value at 

253.65 nm (mercury line) as reported by Hearn (1961). Thus the uncertainties in the reference data propagate into the 

calibrated spectra. 

Depending on the kind of spectrometer used for broadband (Fourier transform, grating) or single wavelength 65 

measurements, registered spectra are inevitably subject to multiple sources of uncertainties - stochastic intensity variations 

caused by detector noise, light source intensity fluctuations etc. (JCGM-100, 2008). Spectral random error can be 

characterized by the signal-to-noise ratio (SNR), and one of the ways to improve the quality of the measurements is 

acquisition of multiple spectra obtained under repeatable conditions (JCGM-100, 2008). Uncertainty of the resulting average 

value is represented by the standard deviation of the mean. 70 

Spectrometers are characterized by the spectral resolution and wavelength calibration to some reference values, which 

influences the wavelength uncertainty of the produced data. For example, dispersion-based instruments can be wavelength-

calibrated using isolated atomic emission lines of Hg or Cd lamps, and Fourier-transform spectrometers are auto-calibrated 

with the built-in stabilized He-Ne laser. 

Instrumental uncertainties of other measured quantities - temperature T, ozone (partial) pressure p, absorption path length 75 

L are also contributing to the total absorption cross-section uncertainty. For broadband laboratory measurements covering a 

large wavelength range, like the Hartley-Huggins band of ozone, cross-section values change by up to seven orders of 

magnitude, so that optical density spectra are recorded using different combination of cell lengths and partial pressures (e.g. 

Gorshelev et al. 2014, Serdyuchenko et al. 2014). The various spectra are then concatenated to cover the entire spectral 

range, which leads to additional uncertainties. 80 

3 Review of reported uncertainties 

3.1 Uncertainty budget of Hearn 
Dating back to 1961, Hearn reported on ozone absorption cross-sections at six selected wavelengths, of which the value at 

λ = 253.65 nm is of particular interest, since it has been measured in many studies and is considered a standard reference 

(see Viallon et al. (2015) and references therein).The following information of the laboratory measurements by Hearn (1961) 85 
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are known: 

 spectral resolution: 0.09 nm (Hg emission line width at 253.65 nm) 

 temperature: 295 K  

 temperature uncertainty: not reported (“Errors due to the variation of the temperature of the ozone-oxygen mixture 

during the experiment are quite negligible. The apparatus was housed in a cellar, the temperature of which was 90 

thermostatically controlled.”) 

 Absolute scaling: pressure observation of the pure O3 –> O2 decomposition 

Table 1 provides the original notation of uncertainty budget from Hearn (1961). The uncertainties are divided into type A 

and type B uncertainties (JCGM-100, 2008). Type A uncertainty means that it is derived from a statistical analysis and an 

observed frequency distribution. Type B uncertainties are not derived from a statistical analysis and it assumes a probability 95 

distribution that is based upon past experiences or is derived from external specifications. The breakdown of evaluation type 

of the uncertainties is color coded in Table 1. 

Table 1: Summary of uncertainties as reported by Hearn (1961). Light gray highlighting stands for type A, dark gray for type B 
uncertainties. 

“Random errors” 
Wavelength uncertainty at 

253.65 nm 
RMS deviation 

(mean of 6 observations) 
Absorption length 

(0.744 cm) 
Pressure Total SD 

(RMS) 
0.09 nm 1.05 % 0.54 % 0.81 % 1.4 % 
Type B Type A Type B 

“Systematic errors” 
Wavelength uncertainty 

at 253.65 nm 
Correction for stray light Correction for companion 

0.09 nm 0.0 - 
“Best estimates of the absorption coefficients” 

Wavelength uncertainty 
at 253.65 nm 

Molecular absorption cross-section 

0.09 nm 114.7 ± 2.4 10-19 cm2 
 100 

Little to no detail is provided on the accuracy of the instruments used during measurements. Given the reported ± 2.4x10-

19 cm2 interval around the 114.7x10-19 cm2 value of absorption cross-section and assuming rectangular distribution of possible 

values (JCGM-100, 2008), the relative standard measurement uncertainty of the ozone absorption cross-section is estimated 

at 1.4%. Adding up all uncertainties the Hearn value has a precision of 2%. It should be noted here that more recent 

measurements (Viallon et al., 2015, Jansson C. et al., Absolute ozone absorption cross section at 253.65 nm revisited, 105 

manuscript in preparation) indicate lower values for the mercury line that lies about 1.4 to 1.8% lower than Hearn’s value, 

but it is within the uncertainty of the Hearn’s experiment. Compared to all available measurements reported, Hearn’s value is 

close to the upper range of values (e.g. Sofen et al., 2015, WMO-GAW, 2015),  
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3.2 Uncertainty budget of BP 
The team of Bass and Paur (Bass and Paur 1985, Paur and Bass, 1985) provided cross-section data for a broad spectral range 110 

and at several temperatures. The following information is available from the BP data: 

 Wavelength range: 245 – 343 nm 
 Spectral resolution: 0.025 nm 
 Wavelength grid: 0.05 nm 
 Wavelength calibration: 23 points between 200 and 365 nm (Hg, Cd, Zn lines) 115 
 Temperatures: 203 K, 218 K, 228 K, 243 K, 273 K, 298 K 

Table 2 summarises the uncertainties of BP data, with a type A/B breakdown color-coded in different gray shadings. The 

relative standard measurement uncertainty of the BP ozone absorption cross-section is stated to be around ±1%. It seems to 

be an underestimation, since BP relative spectra were scaled to the Hearn value at 253.65 nm, which is reported with a 1.4% 

relative standard measurement uncertainty (see Section 3.1). 120 

 

Table 2: Absolute uncertainties reported by Bass and Paur (1985) and Paur and Bass (1985). Light gray highlighting stands for 
type A , dark gray for type B uncertainties. 

 
Uncertainty Values 

Wavelength uncertainty 0.025 nm 
Uncertainty in the transmittance 

determination 
2 in 105 (arising from counting statistics) 

Sample temperature stability better than 1 K 
Temperature uncertainty 0.25 K 

Pressure measurement uncertainty 1 mbar 
Absolute scaling using the value of Hearn at 253.65 nm 

 125 

3.3 Uncertainty budget of BDM 
Ozone absorption cross-sections provided by Brion et al. (1993), Daumont et al. (1992) and Malicet et al. (1995) further 

extend the wavelength coverage (into the visible) compared to BP. The following information is available on the 

experimental details for BDM data in the Hartley-Huggins ozone absorption band: 

 Wavelength range: 195 – 345 nm (except at 273 K: 300–345 nm) 130 

 Spectral resolution: 0.01 nm 

 Wavelength grid: in steps of 0.01 nm 

 Concatenation: 15 nm wide spectral cuts, 5 nm overlap 

 Number of spectra averaged: 10 

 Temperatures: 218 K, 228 K, 243 K, 273 K, 295 K 135 

 Temperature uncertainty: from 0.05 K @ 295 K to 0.3 K @ 218 K 
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 Light source reference spectra: recorded before and after the ozone spectra 

 Absolute scaling: measurements of total pressure 

Table 3 provides the original notation of the uncertainty budget of BDM data with Type A / Type B breakdown color-

coded in gray shadings. The information on the relative standard measurement uncertainty of the BDM ozone absorption 140 

cross-section is wavelength-dependent (see last row of Table 3). 

 

Table 3: Summary of uncertainties as reported by Brion et al. (1993), Daumont et al. (1992) and  Malicet et al. (1995). Light gray 
highlighting stands for type A, dark gray for type B uncertainties. 

 145 
Quantity Uncertainty 

Optical density 1 % (for λ < 335 nm) 
Optical path 0.05 % 

Ozone pressure 0.1 % 
Impurities < 0.1 % 

Temperature from 0.02 % @ 295 K 
up to 0.15 % @ 218 K 

Wavelength < 0.05 % (Hartley band 200 – 280 nm) 
< 0.8 % (Huggins band 280 – 340 nm) 

Total systematic error 
  

Random error RMS 

1.3 – 1.5 % (Hartley band 200 – 280 nm) 
1.3 – 3.5 % (Huggins band 280 – 340 nm) 

0.3 – 2.2 % (for λ< 340 nm) 
 

3.4 Uncertainty budget of SG 
Ozone absorption cross-sections reported by Serdyuchenko et al. (2014) were obtained for 11 temperatures in a wide spectral 

range using two spectrometers (Fourier-transform and Echelle-grating spectrometers). Tables 4 and 5 summarize the 

information on the experimental details and uncertainties for the SG cross-section data. 150 

In the 213-350 nm wavelength region the relative standard measurement uncertainty of the SG ozone absorption cross-

section is wavelength-dependent and ranges between 1 – 3 %. The dominating uncertainty source is the statistical 

repeatability of the spectral registration, influenced by stability of the light source and detector noise. These two factors have 

a greater impact when the intensities of the spectra contributing to the OD calculation either differ greatly (strong absorption, 

close to saturation) or are very close to each other. This effect is demonstrated in Figure 1, showing the concatenated OD 155 

spectrum and relative uncertainties of the corresponding constituent spectral cuts. The latter were calculated according to law 

of propagation of uncertainty using standard deviation (variances) and mean values of I and I0 spectra which determine the 

optical density OD (see Eq. 3).  

Table 6 summarises the uncertainties for all cross-sections datasets discussed here. 

 160 
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Table 4. Experimental details and statistical uncertainty of OD spectra for different wavelength regions for SG data 
(Serdyuchenko et al., 2014). 

 
Region, 

[nm] 
Spectrometer, 

detector 
Resolution 

[nm] 
Calibration Path, 

[cm] 
Lamp 

stability* 
[%] 

Optical 
density 

213 – 310 Echelle, ICCD 0.018 Relative 5 D2, 0.5 0.5 – 2 
310 – 335 FTS, GaP 0.01 Absolute 135 Xe, 2  0.1 – 2 
335 – 350 FTS, GaP  0.012 Relative 270 Xe, 1  0.1 – 1  
350 – 450  Echelle, ICCD  0.02 Relative ~2000 Xe, 1  0.05 – 1  
450 – 780 FTS, Si 0.02-0.06 Absolute 270 W, 0.2  0.05 – 2 
780 -1100 FTS, Si 0.12-0.24 Relative 270 W, 0.2  0.001 – 0.1 

* during the entire measurement  
D2, Xe - deuterium and xenon discharge lamps, W - tungsten filament lamp 

 165 

 

 

 

 

 170 

Table 5. Summary of absolute and relative measurement uncertainties for SG dataset. Light gray highlighting stands for type A, 
dark gray for type B uncertainties. 

 
Systematic  uncertainty (abs) (rel) [%] Statistical uncertainty (abs) (rel) [%] 

Ozone impurity: 
oxygen impurity leaks 

Pressure sensors (0.02 mb) 
Temp. sensors offset (1 K)  

Temp. non-uniformity (1 K)  
Cell length (0.1-1.0 mm) 

0.005 
< 0.1 
0.04 

0.3 – 0.5 
0.3 – 0.5 

0.04 – 0.07 

Ozone initial pressure  
Pressure fluctuations (< 0.04 mb) 
Temperature fluctuations (<0.3 K) 

Light source stability, relative to optical 
density OD = 1 (depending on spectral 

region) 

< 1 
< 0.08 
< 0.1 

0.2 – 2 

Combined standard relative uncertainty 
(excluding low absorption regions near 380nm and above 800nm) 

 0.4 – 0.7  1 – 2.2 
 

  175 
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Table 6. Uncertainties for Hearn, BP, BDM and SG ozone cross-sections. 

Dataset Scaling method Type A 
(Statistical) 

Type B Relative standard 
measurement 

uncertainty, [%] 
Hearn (253.65 nm) Absolute, pure ozone 1.05 – 1.4 

BP Using Hearn 1 2.1 > 2.1 
BDM Absolute, pure ozone 0.9 - 2.2 1.3 (Hartley) 

1.3 - 3.5  (Huggins) 
2 – 3 
2 – 4 

SG Absolute, pure ozone 1 – 2.2  0.4 - 1.7  1.1 – 3 
 180 

 

 

 
Figure 1. Upper panel: concatenated optical density spectrum. Lower panel: relative uncertainty of various OD 
spectra used for concatenation. Instruments: Echelle/FTS; number of averaged spectra: 2000 (Echelle)/100 (FTS); 
acquisition time: ~ 30 minutes; light sources: Xe and D2 lamps. From Serdyuchenko et al. (2014). 
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4 Temperature dependence and uncertainties 

In general the ozone cross-sections were determined at selected atmospherically relevant temperatures. BP and BDM 

data encompass six and five temperatures, respectively, while SG is available at eleven temperatures. The original data can 185 

be obtained from http://satellite.mpic.de/spectral_atlas/cross_sections/Ozone/O3.spc. Table 7 summarises the available 

temperatures for all three datasets. 

 

Table 7. Available temperatures for various ozone absorption cross-section data. Temperatures provided in brackets were not 
used to determine temperature coefficients since they did not cover the complete wavelength range of 290-340 nm. 
 

Ozone absorption  
cross-section 

Temperatures [K] Wavelength range [nm] 

BP (Paur & Bass, 1985) 203, 218, (228), 243, 273, 298 245 - 343 
BDM (Malicet et al., 1995) 218, 228, 243, (273), 295 195 - 345 
SG (Serdyuchenko et al., 2014) 193, 203, 213, 223, 233, 243, 253, 

263, 273, 283, 293 
213 - 1100 

 

 190 

The temperature dependence of the ozone absorption cross-sections is commonly described by the so-called Bass-Paur 

parameterisation (Paur and Bass, 1985), which is a quadratic polynomial: 

.  
(4) 

The temperature coefficients  are determined in a multivariate linear regression using the cross-section data  

measured at various temperatures . They were calculated in the wavelength range 290-360 nm (BP: up to about 338 nm), 

which is the spectral range with the highest temperature sensitivity (Huggins ozone band). The temperature t in Eq. 4 is 195 

given in degree Celsius (t=T-273.15 K). The uncertainty of the calculated cross-section at a given temperature is then given 

by 

.  (5) 

The 228 K temperature data of BP has been excluded from the polynomial fit as there is a gap between 295 and 304 nm. Liu 

et al. (2007) noted a systematic bias in the 273 K BDM data and reported better ozone retrieval fit results if this temperature 

is excluded. This temperature data also does not provide data below 300 nm. As noted by Orphal and Chance (2003) and 200 

Weber et al. (2013), there is a systematic wavelength shift between BP and BDM. Shifting the BP data by +0.029 nm leads 

to better agreement (to within 0.5%) between BDM and BP (Weber et al., 2013). The SG data wavelength scale agrees to 

within uncertainties with BDM (Gorshelev et al., 2014). 
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Figures 2 to 4 show the temperature coefficients including the 1-sigma uncertainties (see Eq. 5) for the BP, BDM, and 

SG data, respectively. As the SG data are somewhat noisy near 300 nm, in the July 2013 version of the SG data a fast 205 

Fourier transform filter was applied in the spectral range 213-317 nm.  

Figure 5 shows the uncertainty from the polynomial fit as a function of wavelength for T=193 K and 227 K. BP data 

uncertainties are getting fairly large above 330 nm reaching nearly 25% for some wavelengths at 220 K and more than 60% 

at 193 K. The uncertainty of the BDM data ranges between 0 and 2% up to 330 nm, while SG data show a fairly constant 

uncertainty of about 1% on average at T=227 K. The uncertainties are doubled at the lower temperature. The very low 210 

uncertainty for BP and BDM at some wavelength is mainly due to the very low number of available temperatures (4-5) that 

leads in some cases to overfitting of the data with a quadratic polynomial.    

The spectral resolution of the three datasets varies from 0.01 nm (BDM) to 0.05 nm (BP). The instrumental slit function 

can be easily applied to each of the temperature coefficients in order to match the spectral resolution of the cross-section data 

in form of Eq. 4 to any type of instruments. 215 

 

 

 
Figure 2. Temperature coefficients and their uncertainty (1-sigma) of the BP data. 
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Figure 3. Same as Fig. 2, but for BDM data. 

 
 

 
Figure 4. Same as Fig. 2, but for SG (July 2013 version) data. 

 220 
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Figure 5. Panels a and b: 1-sigma uncertainty of BP, BDM, and SG ozone cross-sections at T=193 K and 227 K, 
respectively, from the polynomial temperature fit (Eq. 5). Note the change in scale of the ordinate axes. Panels c and d: 
Measured ozone cross-sections (points) and polynomial fit (solid lines) for BP, BDM, and SG at 306 and 319.4 nm, 
respectively.   

5 Overall uncertainty: Monte – Carlo simulation 

The uncertainty given in Eq. 5 reflects only the uncertainty from the temperature parameterisation using a polynomial (if we 

assume that a quadratic dependence in temperature is true). In order to estimate the overall uncertainty including 

uncertainties from measurements (random and systematic), wavelength registration, and the temperature parameterisation, an 

extensive Monte-Carlo simulation (JCGM-101, 2008) was carried out.   225 

c 

a b

 

d
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Table 8 summarises the uncertainties simulated. The numbers are mainly based upon the uncertainty as reported in Table 

6. It was assumed that the probability density function (PDF) is Gaussian for all uncertainties. 

 

Table 8. Uncertainties accounted for in the Monte-Carlo simulation. 

 230 
Uncertainty type (290 nm – 370 nm) Value (1-sigma) 

Measurement at each T (random) 1% 
Measurement at each T (systematic) 1.3%* 

Wavelength registration at each T (random) 0.005 nm 
Wavelength registration at each T (systematic) 0 nm** 

Temperature T (random) 0.5 K 
Temperature T (systematic) 1 K 

Polynomial in T combined resampling residuals and wild boot strap 
(normal distributed) 

 2% for BP ozone cross-sections 
 it is assumed that wavelength shifts can be corrected in ozone retrievals (e.g. Coldewey-Egbers et al., 2015) 

 

 

The values used here are the minimum uncertainties (see Table 6), however, it should be noted that the (random) 235 

measurement uncertainties varies with wavelengths, but this is neglected here. Random uncertainties are simulated by 

randomizing for each temperature data in a given simulation, while systematic errors means an uncertainty drawn from the 

random generator being applied to all the temperature data simultaneously.  

In order to estimate the effect of the measurement errors on uncertainties from the T-polynomial a combination of the 

resampling residual and wild boot strap method was applied (Wu, 1986). The residual from the polynomial fit is given by  240 

, (6) 
where  is the fitted polynomial (see Eq. 4). In the Monte Carlo simulation the residual is distributed randomly to 

different temperatures as follows 

   (7)  
and the polynomial fit repeated.  is a normal distributed random number. The normally distributed random number 

generator used in the MC simulation is based upon the Box-Muller transform (Box and Muller 1958). The total sample size 

selected was 104, which provided a reasonable compromise between computation time and precision of the simulation. For 245 

each wavelength between 290 and 370 nm (BP: ~339 nm) in steps of 0.01 nm the Monte-Carlo simulation was carried out. 

Figures 6 and 7 show the results from the MC simulation of uncertainties for the three major ozone cross-section data at 

319.4 nm and 306 nm, respectively, as an example. These plots are corresponding to the data shown in panels c and d of 

Figure 5. The uncertainties are very similar for BDM and SG, except for the lowest temperatures (T < 215 K) where BDM 

uncertainties increase due to the extrapolation of the fitted polynomial.  The larger systematic measurement uncertainty of 250 
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the BP data (2%) leads to larger overall uncertainties in the BP data. At 319.4 nm there appears to be some issue, since the 

203 K BP measurements are much lower than SG leading to rather large polynomial fit errors as observed earlier. 

Figure 8 shows the uncertainties as a function of wavelengths for selected temperatures. At 227 K the overall 

uncertainties are about 1.5% for both BDM and SG, while BP uncertainties are about 2.1% (1-sigma). Above 330 nm the 

uncertainties increase for all datasets. At very low temperatures, e.g. 193 K, the BDM uncertainties increase to about 4% (1-255 

sigma), while SG remains at 2% (1-sigma). BP uncertainties are about 2.5% (1-sigma) and are also lower than BDM. Similar 

to 227 K, the uncertainties increase at the longest wavelengths. At temperatures above 215 K, the uncertainties of BDM and 

SG are very similar, at lower temperatures the BDM uncertainties significantly increases due to the lack of very low 

temperature measurements.   

6 Summary and conclusion 260 

Realistic and comparable uncertainty budgets were derived from three major ozone absorption cross-section datasets that 

are used in various remote sensing applications. First a review of the published literature on the uncertainty of the BP, BDM, 

and SG datasets was given. The uncertainties of these three datasets are summarized in Table 6 and are now directly 

comparable between the various datasets.  For remote sensing application, in particular in the Huggins ozone band, the 

temperature dependence of the ozone cross-sections have to be accounted for and this is typically done using a quadratic 265 

polynomial as a function of temperature. Using the updated uncertainty estimates from Table 6 and a residual boot strap 

method for estimating the uncertainties from the temperature polynomial, a Monte Carlo simulation was carried out. 

However, one should note that due to lack of information from the peer-review literature on the exact wavelength 

dependence of the uncertainties (see Table 6) this was neglected in our simulations.  

In the Huggins band the overall uncertainty of the temperature dependent ozone cross-section is about 1.5% (1-sigma) for 270 

BDM and SG and 2.1% (1-sigma) for BP up to about 330 nm.   At temperatures below about 215 K the uncertainty in the 

BDM data increase more strongly than for the others, as the lowest measured temperature for BDM is 218 K and the 

extrapolation of the polynomial leads to larger uncertainties. Above 330 nm the uncertainties increase significantly for all 

datasets. Ozone retrievals exploiting the UV spectral range usually focus on wavelengths below 335 nm.   

The temperature coefficients for the three major cross-section data with uncertainty estimates from the polynomial fit 275 

alone as well as from the MC simulations are available at http://www.iup.uni-bremen.de/~weber/ATMOZ.  
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Figure 6. Modelled uncertainties of the three major ozone 
absorption cross-sections (BP, SG, and BDM) at 319.4 nm 
based upon MC simulations. Red crosses are the measured 
data including temperature and measurement uncertainties 
(here expressed as the square sum of random and 
systematic errors). The green curve is the fitted polynomial 
and the black curves show the modelled ±2-sigma 
uncertainty. 
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Figure 7. Same as Fig. 6, but at 306 nm. 
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Figure 8. Uncertainty (1-sigma) of BP, BDM, and SG ozone cross-sections at T=193 K (left) and 227 K (right), respectively, 
from the MC simulation. Note the change in scale of the ordinate axes. 
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