

Ammonia emissions from a grazed field estimated by 1 miniDOAS measurements and inverse dispersion modelling 2

Michael Bell¹, Christophe Flechard¹, Yannick Fauvel¹, Christoph Häni², Jörg Sintermann^{3a}, Markus Jocher³, Harald Menzi⁴, Arjan Hensen⁵, Albrecht Neftel^{3b} 3

4

5 ¹INRA, Agrocampus Ouest, UMR 1069 SAS, Rennes, France

²Bern University of Applied Sciences, School of Agricultural, Forest and Food Sciences, CH-3052 Zollikofen, 6 7 Switzerland

8 ³Agroscope - Institute for Sustainability Science, Zürich, Switzerland

⁴Federal Research Station Agroscope, Inst. For Livestock Sciences, 1725 Posieux, Switzerland 9

10 ⁵Energy research Centre of the Netherlands (ECN), Petten, The Netherlands

^anow at AWEL, Zürich, Switzerland 11

12 ^bnow at Neftel research Expertise, C -3033 Wohlen b. Bern, Switzerland

13

14 Correspondence to: Michael Bell (michael.bell@inra.fr)

16 Abstract

17 Ammonia (NH₃) fluxes were estimated from a field being grazed by dairy cattle during spring, by applying a 18 backward-Lagrangian Stochastic model (bLS) model combined with horizontal concentration gradients 19 measured across the field. Continuous concentration measurements at field boundaries were made by open-path 20 miniDOAS (differential optical absorption spectroscopy) instruments, during the cattle's presence and for 6 21 subsequent days. The deposition of emitted NH₃ to 'clean' patches on the field was also simulated, allowing 22 both 'net' and 'gross' emission estimates, where the dry deposition velocity (v_d) was predicted by a canopy 23 resistance (R_c) model developed from local NH₃ flux and meteorological measurements. Estimated emissions 24 peaked during grazing and decreased after the cattle had left the field, while control on emissions was observed 25 from covariance with temperature, wind speed and humidity/wetness measurements made on the field, revealing 26 a diurnal emission profile. Large concentration differences were observed between downwind receptors, due to 27 spatially heterogeneous emission patterns. This was caused by uneven cattle distribution and a low grazing 28 density, where 'hotspots' of emissions would arise as the cattle grouped in certain areas, such as around the 29 water trough. The spatial complexity was accounted for by separating the model source area into sub-sections, 30 and optimising individual source area coefficients to measured concentrations. The background concentration 31 was the greatest source of uncertainty, and based on a sensitivity/uncertainty analysis the overall uncertainty 32 associated with derived emission factors from this study is at least 30-40%.

33 Emission factors can be expressed as 6 ± 2 g NH₃ cow⁻¹ day⁻¹, or $9 \pm 3\%$ of excreted urine-N emitted as NH₃,

34 when deposition is not simulated, and 7 ± 2 g NH₃ cow⁻¹ day⁻¹, or $10 \pm 3\%$ excreted urine-N emitted as NH₃

35 when deposition is included in the gross emission model. The results suggest that around $14 \pm 4\%$ of emitted

36 NH₃ was deposited to patches within the field that were not affected by urine or dung.

37 1. Introduction

38 Over 90% of anthropogenic ammonia (NH₃) emissions in Europe have agricultural sources (Erisman et al., 39 2008; Reidy et al., 2008; Hertel et al., 2011), 70-90% of which have been estimated to be produced by livestock 40 (Pain et al., 1998; Hutchings et al., 2001). In addition to decreasing nitrogen efficiency for farming systems, the 41 volatilisation of NH₃ from agricultural areas is a principal factor in the formation of fine fraction secondary 42 aerosols due to its reactions with nitric and sulphuric acids in the atmosphere, and upon deposition is linked to 43 acidification and eutrophication of natural ecosystems (Sutton et al., 2011). Following the application of urine 44 and dung to the soil surface by grazing livestock, urea is microbially converted to NH₃ which is volatilised at 45 rates which vary extensively depending on soil and canopy layer properties, weather, and culture conditions (Laubach et al., 2013a). It has been estimated that 75-90% of the N ingested by a grazing cow is metabolised 46 47 inefficiently and returned by excreta to the grazing paddocks, of which over 70% is returned as urine 48 (Whitehead, 1995; Zaman et al., 2009). NH₃ emissions have been measured from cattle urine patches at the ratio 49 of 7-25.7% of excreted urine nitrogen (N) for grazed pastures (Jarvis et al., 1989; Ryden et al., 1987; Laubach et 50 al., 2012; 2013a), and measurements from sheep urine patches in summer-winter experiments have suggested emissions which represent 12.2-22.2% of excreted urine-N (Sherlock and Goh, 1984). 51 52 Methods for estimating emissions from grazed pastures include micrometeorological methods, where profiles of

53 concentration and wind speed are measured at one or more points downwind from the source, allowing fluxes to

be calculated using the theory of turbulent transport in the atmospheric surface layer (Laubach et al., 2012). Dynamic chambers or movable wind tunnels may be used to estimate emissions from simulated grazing in the laboratory or the field (Sommer et al., 2001). However enclosure measurements may not always be representative of emissions at the field scale (Genermont and Cellier, 1997; Sintermann et al., 2012). The inverse dispersion method concerns the inferring of the atmospheric emission rate (Q) of localised gas sources from the excess concentration (ΔC) they cause above background, by modelling the $\Delta C/Q$ relationship for a given measurement setup under the existing meteorological state (Flesch et al., 2004; Flesch et al., 2014).

61 The local dry deposition of NH₃ within the grazed field is an important consideration to make, as in contrast to 62 other pollutants a significant proportion may be deposited locally (e.g. Loubet et al., 2009). The proportion of 63 deposited NH₃ is sensitive to multiple parameters, including the source height, wind speed, atmospheric 64 stability, land cover type and the numerous specific surface parameters therein (e.g. Sutton et al. 1993). This 65 leads to modelling results that vary widely, with local recapture ranging from 2% to 60% within 2km from the source (Loubet et al., 2006, Asman et al., 1998). Accordingly, the modelling of NH₃ deposition can be a 66 67 challenging undertaking, with models ranging from simple steady-state canopy resistance models to dynamic, 68 bi-directional, multi-layer and multi-process chemical species schemes (Flechard et al., 2013). Local-scale deposition models may ignore the wet deposition process, as dry deposition is most likely the dominant $\sqrt{2}$ 69 70 deposition mechanism near sources (Loubet et al., 2009).

In this study, a to be applied to estimate the 71 72 NH₃ emissions from a field being grazed by dairy cows, using the horizontal concentration gradients measured 73 across the field by three open-path miniDOAS instruments (Sintermann et al., 2016; Volten et al., 2012). The 74 open-path measurement system is to considerable benefit, as most techniques to measure atmospheric NH3 are 75 sampling techniques and therefore involve inlet contact with the highly adhesive NH₃, which may slow response 76 times and lead to interaction with water molecules and interference by ammonium aerosols dissociating on tubes 77 or filters (e.g. von Bobrutzki et al., 2010). The miniDOAS system is a comparatively interference-free 78 measurement technique, since it utilises the wavelength-dependent UV-light absorption of NH₃ over an open 79 light path. The system also has capacity for long-term fast response continuous measurements, and a broad 80 measurement path which makes the miniDOAS well-suited concentration receptors for monitoring the 81 fluctuations in NH3 concentrations across field boundaries.

82 The objectives of our study were: (1) to evaluate the NH3 emissions from cattle grazing using the bLS 83 dispersion technique and contribute towards an emission factor, as there is a limited number of existing 84 measurements, (2) to simulate the degree of re-deposition that occurs within the field, and (3) evaluate the 85 application of the bLS technique and the miniDOAS measurement system to derive NH₃ fluxes from 86 agricultural diffuse sources such as grazing. The bLS model assumes a homogenous source area, therefore it 87 was assumed that emission estimates would be insensitive to irregular cattle distribution and excretion patterns. 88 The measurement of concentration gradients across grazed fields is challenging, as downwind concentration 89 levels may not rise far above background as is the case with stronger sources, such as applied slurry. Therefore 90 this is an exercise which requires precise and continuous measurements from two or more sensors to evaluate 91 (ΔC) . However the method is also nonintrusive and is not labour intensive, and can provide continuous emission 92 estimates over long or short time periods if the conditions and experimental design are in agreement.

93 2. Methods

94 2.1 Site description and experimental design

The experiments were conducted from 18-29 May 2015, on a rectangular grazing pasture of about two hectares 95 at the INRA-Méjusseaume dairy research experimental farm in NW France (48.11 مسلا 1.79736). The site was 96 97 flat and benefited from a lack of wind-disturbing elements within 100m of the field boundaries (e.g. trees, 98 buildings or other protruding elements). The cattle were not given additional feed to supplement grazing (mixed 99 grass sward rich in Lolium perenne). The field had been previously grazed one month prior (16-27 May 2015) to 100 the beginning of the experiment, and mineral fertiliser had been applied on 31/03. During measurement Period 101 1, 25 cows were allowed to graze within the southwestern section of the field (Area D, Figure 1) from 08:00 102 18/05 - 15:00 20/05 UTC (28 hours grazing), with three sets of miniDOAS open-path sensors and placed along 103 the northern, western and eastern boundaries. The miniDOAS sensors were placed to optimise the measurement 104 of (ΔC) across the field after reviewing wind directions forecast for the week ahead. The miniDOAS sensors 105 have been given the names S1, S2 and S3, where the S2 sensor was placed upwind of the grazed field while the 106 S1 and S3 sensors were placed at downwind locations. During Period 2, the whole field (Areas A, B, C, D) was opened for 44 grazing cattle, with the cattle present on the field from 10:00 20/05 - 05:00 23/05 (60 hours 107 108 grazing), while the miniDOAS sensors were left in place to measure residual emissions from 23-29/05. The 109 cattle were removed from the field for milking during both periods for roughly one hour twice per day. As the 110 field area during Period 2 was much larger, the S2 and S3 miniDOAS sensors were moved to the north-western 111 and south-eastern field boundaries respectively, leaving the three miniDOAS paths in-line with a NW-SE 112 transect of the field (Figure 1). The grazing densities during Periods 1 and 2 were 44 and 22 cattle ha⁻¹, 113 respectively.

114 2.2 Ammonia measurements

115 The DOAS technique is based upon the wavelength dependent absorption of light over a specified light path. 116 The miniDOAS instruments offer greater portability and a lower cost relative to prior DOAS instruments 117 (Volten et al., 2012). The broadband and narrowband extinction of UV-light (=absorption + scattering) is measured across the light path, and the concentration of different trace gases is determined by their respective 118 119 absorption spectra (details in Sintermann et al., 2016). In the wavelength range used by the miniDOAS (204 – 120 230nm), narrowband-absorption is seen by NH₃, sulphur dioxide (SO₂), and nitrogen oxide (NO), while other 121 absorbers with broader absorption features are eliminated by high-pass-filtering. The systems were calibrated 122 using a flow-cell in the miniDOAS light path with a high-concentration NH₃ gas standard; in addition the cell's 123 outlet-flow was checked by wet chemical impinger samples (two in a row) and photometric NH₃ determination. 124 Details are presented by Sintermann et al., (2016). Reference spectra (I_{ref} , see Sintermann et al., 2016) were 125 determined for each instrument during an inter-comparison phase at the field site one week prior to the grazing experiment, where the three miniDOAS systems were configured to measure in parallel (measuring 126 127 concentrations across the same open-path). In order to provide the absolute concentration reference (c_{ref} , see 128 Sintermann et al., 2016) for the miniDOAS, a transect of three sets of ALPHA passive sampler triplicates (Tang 129 et al., 2001) were placed along the path length, giving a time-integrated c_{ref} measurement. The miniDOAS inter-130 comparison showed close agreement in the concentration levels between the three systems, where the coefficient

131 of variation was 3.4% (unpublished data). The calibration procedure applied by Sintermann et al. 132 (2016) led to an increase in the slope by 16^{44} , are to a gas standard correction in the conversion from ppm to μ g 133 m⁻³.

To measure horizontal concentration gradients across the field, three miniDOAS instruments were placed strategically (based on the forecasted wind direction) at field boundaries at heights 1.4m above the ground, on stands drilled into the ground for stability. Retro-reflectors were set 37m away from each light source at the same height. A sensor placed upwind of the field would measure the background concentration (C_b), which can be subtracted from the downwind concentration measurements (C) to determine the horizontal concentration gradient or excess in concentration caused by emissions (ΔC). The miniDOAS concentration measurements were recorded at 1-minute averaging intervals, and later averaged to 30 minute intervals for analysis.

141 2.3 Micrometeorological measurements

142 A three-dimensional ultrasonic anemometer (Gill Windmaster, Gill Instruments Limited, Lymington, UK) was 143 mounted on an instrument tower at 1.5m height above the ground within a fenced-off section in the centre of the field. The three orthogonal wind components $(u, v, w, m s^{-1})$ and a temperature measurement were logged at a 144 145 frequency of 20 Hz. Later the eddy covariance measurements were processed over 30 minute averages, and the 146 friction velocity (u *, m s⁻¹), surface roughness (z_0 , cm), Monin-Obukhov length (L, m), standard deviations of the rotated wind components $(\sigma_u, \sigma_v, \sigma_w)$, and resultant horizontal wind speed $(u, m s^{-1})$ and wind direction 147 148 (wd) were computed. Correction factors were applied to fix a 'bug' implicit within the Gill Windmaster 149 instrument, as recommended by the manufacturer (Gill Instruments, 2016). The applied correction was a multiplication factor of 1.166 applied to positive vertical w wind axis measurements, and a factor of 1.289 150 151 applied to negative w wind axis measurements.

Mounted on the instrument tower at 2m height was a HMP45C sensor (Campbell Scientific, Loughborough, UK) which provided temp (T, \mathbb{C}) and relative humidity (*RH*, %) measurements. Leaf wetness (*LW*, % time wet) at canopy level was measured by a specialised conductivity sensor (Campbell Scientific, Loughborough, UK) placed 10 cm above the ground.

156 **2.4 Dispersion modelling**

The backward Lagrangian Stoch (bLS) type dispersion model is frequently applied for the computation of 157 158 the inverse dispersion method (Flesch et al., 2004). Driven by measurements of the prevailing wind conditions, 159 and with knowledge of the rise in concentration above background (ΔC) caused by an emitting source, the 160 model can be applied to estimate the emission rate that best fits the measured concentration data. During bLS 161 simulation the trajectories of thousands of fluid particles are calculated backwards in time from a reference point 162 (concentration receptor) under the prevailing wind conditions. The locations where the trajectories intersect the ground ("touchdowns") and proportion of these which fall within the source area (N_{source}) are used to calculate 163 164 $(\Delta C/Q)$, along with the associated vertical velocity (w_0) of each touchdown (Flesch et al., 2005).

165 The bLS-R model (Häni, 2016), is an inverse dispersion model that is based upon the backward Lagrangian

166 stochastic dispersion theory described by Flesch et al., (1995; 2004); however bLS-R has an additional function

- 167 which computes the effect of dry deposition on gas concentrations. The bLS-R package provides functions to set
- 168 up and execute the model within the R statistical software (R Core Team, 2015). The model calculates the

dispersion coefficient *D* (s m⁻¹), used to derive the flux emitted from the source (Q, μ g m⁻² s⁻¹), by the measured

170 rise in concentration above background (ΔC) (Eq. 1).

$$Q = (\Delta C) * D^{-1} \tag{1}$$

- 172 where D is retrieved by the model from the number of source area interactions (N_{source}) and the thousands of
- 173 trajectories (*N*) released backwards in time from the receptor locations (Eq. 2).
- 174

171

The following input data were applied in the bLS-R model as 30 minute averages: wind direction, friction velocity (u *) the standard deviations of the rotated wind vector components ($\sigma_u, \sigma_v, \sigma_v$) and surface roughness

177 (z_0) . The spatial dimensions of the grazed field source area and the miniDOAS receptors were also specified.

- 178 Independent concentration measurements and emission estimates were derived using the two downwind 179 miniDOAS receptors (S1 and S3), which are compared throughout the paper, e.g. *C*S1, *C*S3 and *Q*S1, *Q*S3. All
- 180 concentrations and fluxes are expressed in units of NH₃, e.g. μ g NH₃ m⁻³ and μ g NH₃ m⁻² s⁻¹.

181 2.5 Data filtering

The miniDOAS NH₃ measurements were filtered to remove periods of high uncertainty, indicated by the standard error (SE) of the measurements. This filter only affected the S1 miniDOAS sensor, which was not fitted with an automatic alignment system to correct minor shifts in the light path between lamp and reflector. After applying this filter 92 out of 430 half hourly measurements were removed from the Period 2 S1 measurements (Period 1 measurements were unaffected).

187 Previous studies (Flesch et al., 2004; Harper et al., 2011) have applied u * and Monin-Obukhov length (L) 188 filtering to remove emission estimates that do not meet given criteria ($u \approx 0.15$ ms⁻¹ and L > 10m). These 189 criteria were established on the basis of an observed reduction in the accuracy of model predictions as u * and L190 decrease (e.g., Flesch et al., 2004; Gao et al., 2009). However filtering out periods with low wind speeds and 191 unstable stratification can be detrimental to emission estimates, often creating a bias to characterise certain 192 sources under specific daytime or night-time conditions, whilst ignoring potentially valuable data that do not 193 meet the criteria. This is a major limitation as we calculate average emissions from grazing cattle, where strong 194 diurnal cycling is expected to occur (e.g. Laubach et al., 2013a). Flesch et al., (2014) developed alternate criteria for bLS data filtering, finding that (for their particular experiment) the u * threshold could be reduced to 0.05 m 195 196 s^{-1} , and after finding no improvement after imposing a stability (L) filter, introduced a supplementary vertical 197 temperature gradient filter.

A filtering procedure was developed after assessing the standard error (SE) of emission estimates ($\sigma_{0/0}$), which 198 describes period-to-period fidelity and identifies "spiking" in model predictions caused by unsuitable input 199 conditions, which do not confirm to an underlying assumption of a horizontally homogenous surface layer 200 (Flesch et al., 2014). It was found that a u * threshold of 0.1 m s⁻¹ was sufficient to remove the significant 201 202 outliers, while retaining acceptable data coverage, although this filter was at times limiting for nocturnal (low 203 wind) periods. A wind direction filter was applied to remove periods where miniDOAS sensors S1 and S3 were 204 not downwind of the field area. This filter only affected sensor S3 during Period 2, where estimates were 205 ignored if *wd* > 30 & *wd* < 270.

206 **2.6 Modelling of dry deposition within the source area**

207 Downwind from a source of NH₃, local recapture will remove a certain fraction of emitted NH₃ from the air. 208 Therefore the measured rise in concentration above background (ΔC) is a function of the source emission rate, 209 atmospheric dispersion, and the fraction that has been deposited. Within a field being grazed by dairy cattle, 210 emissions of NH₃ are expected from urine and dung patches, while deposition will occur to clean surfaces 211 within and beyond the field. Therefore, as we apply the bLS method to estimate emissions from the measure 212 concentration gradient across the field (ΔC), we calculate the "net" flux constituting emissions from the field 213 minus the fraction that has been deposited. However, if dry deposition is simulated in the dispersion model the 214 lost fraction of emissions due to deposition can be quantified, providing an estimate for the "gross" emissions 215 from excretions during grazing.

The bLS-R model has a post-processing routine to take into account the effect of the dry deposition of NH₃ on flux predictions. The exchange or deposition velocity (v_d) is based upon a uni-directional resistance model approach, defined as the inverse of a sum of a series of resistances to deposition (Eq. 3, left side).

219
$$v_d = \frac{1}{R_a + R_b + R_c} = \frac{-F}{C}$$
(3)

where R_a is the aerodynamic resistance to transfer through the turbulent surface layer for a certain reference height, R_b is the boundary layer resistance associated with the viscous quasi-laminar sublayer adjacent to the deposited surface, and R_c is the canopy resistance representing the combined surface resistance accounting for stomatal and non-stomatal pathways to deposition (Flechard et al. 2013). It should be noted that R_a is implicit within the bLS-R calculations and does not need to be input to the model as a variable.

225 The resistances to deposition R_{q} and R_{b} can be calculated using ultrasonic anemometer measurements and well-226 established models (Asman, 1998), while R_c is a composite term representing numerous physical barriers to 227 deposition at the surface. To obtain local, field-scale estimates of R_c , Two COTAG systems (conditional time-228 averaged gradient systems, Famulari et al., 2010) were operated at the centre of the grazed field for 1.5 years, allowing R_c to be estimated from calculations of R_a and R_b and time-integrated measurements of NH₃ 229 concentration (C), flux (-F) and v_d (Eq. 3). The COTAG measurements were filtered to remove grazing 230 231 periods and periods up to two weeks after grazing had ended, to ensure 'clean' background conditions. Clear 232 correlation was then observed between the time-integrated R_c estimates with the variables T and RH, thus a 233 double exponential equation was parameterised as follows to fit the data (Eq. 4, Figure 2), with similar form to Flechard et al., (2010): 234

235 $R_{c} = R_{c,min} \times exp^{\alpha \times (100-RH)} \times exp^{\beta \times Abs(T)}$ 236 A curve fitting procedure provided estimates of the parameters α , β and $R_{c,min}$ as 0.013 and 0. If 10 sm^{-1} ,

237 respectively.

The deposition component of bLS-R operates on the assumption that the whole grazed field is acting as a homogenous surface for deposition, however in reality urine and dung patches on the field are obviously hotspots of emissions, and not NH_3 sinks. The ratio of 'clean canopy' where deposition may occur to 'soiled canopy' is not known, thus it is difficult to provide a true emission estimate including the effect of deposition. We can expect that the emission estimate without deposition (*Q*) represents a 'net' emission rate from the field, while if we assume that the whole field behaves as homogenous sink, the emission rate including deposition will

represent an upper limit of the gross emission estimate. The actual emission rate for a soiled field can be expected to fall somewhere in between the net and upper gross estimates.

246 A means of addressing this issue with the heterogeneous canopy surface may be found in reviewing the R_c 247 timeseries derived from the time-integrated COTAG concentration and flux measurements on the field, as v_d 248 acts on the local vertical concentration gradient between surface and reference height, i.e. the flux is concentration-gradient driven. At certain periods over the course of the year cattle were brought onto the field 249 250 for grazing, and shortly after the grazing periods had ended the NH3 flux would return back to the negative (deposition), and therefore R_c could be calculated. Averaging all of the COTAG R_c calculations within one 251 252 month following each grazing period gives an R_c value of 260 s m⁻¹, and comparing this value with the average R_c where there had been no grazing on the field for at least one month (130 s m⁻¹). Therefore fertilisation of the 253 field surface through grazing appears to have caused an increase in R_c of 130 s m⁻¹. This measured increase 254 255 caused by excreted N to the field surface has been applied as an offset to the modelled R_c estimated by Eq. 4, 256 and has been input to bLS-R. The bLS emission estimates without including deposition are referred to as Q, 257 while the estimates including deposition and the R_c offset are referred to as Q_{dep} . Emission estimates including deposition but without the R_c offset are referred to as Q_{depmax} 258

259 2.7 N excretion model

260To contribute towards an emission factor for cattle grazing and to compare with literature values, it was 261 necessary to express the emission estimates as a fraction of excreted N or urine-N. A nitrogen excretion model 262 based on the Swiss feeding recommendations for dairy cows (Menzi et al. 2015; Muenger personal communication) was applied to quantify the total N and urine-N excreted to the field during both grazing 263 264 periods, from the following set of inputs: (1) milk yield, (2) animal numbers, average weight and date after 265 calving, (3) the net energy for lactation (NEL) and crude protein (CP) content of the grass, (4) the number of 266 animals grazed and the duration of grazing on the experimental plot. The excretions per day were calculated as consumption minus retention in milk and animal growth. The share of N excreted in faeces and urine was 267 268 calculated using regressions of fecal N digestibility derived from N balance studies (Bracher et al. 2011, 2012).

269 3. Results

270 3.1 Period 1 (18-20/05): grazing on SW paddock only

271 **3.1.1 Concentration measurements**

The wind direction during Period 1 was consistently W-WSW (Figure 3). Therefore DOAS S2 was located upwind of the grazed SW paddock while S1 and S3 were situated downwind to the eastern and northeastern boundaries of the field respectively. Concentrations across the S2 path length would be expected to be low and near background, except during periods of very low wind speed, while any rise in concentration measured by S1 and S3 above S2 would show the influence of emissions from the field.

- 277 The upwind S2 concentration measurements reveal background concentrations of 2-3 µg m⁻³ during times of
- 278 steady W/SW winds, increasing slightly when wind speed was low. Concentration polar plots (Figure 3) show
- 279 the average concentrations measured as a function of wind speed and direction, where the influence of emissions

280 from the grazed field is illustrated by the increase in measured concentrations at downwind receptors S1 and S3

281 relative to S2 (C_b).

282 Power failure led to a partial loss of measurements from miniDOAS S2, which are required to specify C_b for

283 estimating emissions through bLS modelling. A significant linear regression was found between the measured

background S2 concentration and wind speed (*u*), temperature (*T*) and relative humidity (*RH*):

285 $C_b = 4.26 - 0.59u + 0.06T - 0.017RH$, $r^2 = 0$ (5) 286 The wind direction remained consistent after the S2 power failed on 19/05, therefore the empirical relationship 287 (Eq. 5) was found to be suitable and was applied to estimate and extend S2 concentrations, as a proxy for C_b . 288 The predicted S2 concentrations follow the measured S2 concentrations closely until the point of data loss on

289 19/05 (Figure 4, \bigcirc panel). This lends confidence to the rest of the C_b predictions used to fill the gap in the 290 measurements, even though there is increased uncertainty associated with the last 15 hours of emission

estimates calculated from the predicted C_b , relative to periods where C_b was measured by the S2 sensor.

292 3.1.2 Field-scale emissions estimates

293 Overall there is very good agreement between the emission calculations from both downwind concentration datasets. The average emission rate calculated by bLS-R for the S3 measurements ($\sqrt{52}$ s 0.29 µg m⁻² s⁻¹, 294 while the QS1 average is 0.27 μ g m⁻² s⁻¹. The modelled emission of NH₃ is low (generally below 0.2 μ g m⁻² s⁻¹) 295 296 during the first 24 hours, as the measured concentration gradient across the field was less than 1 μ g m⁻³. As the 297 cattle were introduced to the field on the first morning (18/05) it likely took some time for NH₃ to 'build up' from hydrolysis of excreted urea before significant emissions occurred. Downwind concentrations (CS1 and 298 299 CS3) peaked during the next day (19/05), with peak emissions occurring at midday when there was a 5-6 μ g m⁻³ 300 horizontal concentration gradient (ΔC) measured between the upwind and downwind receptors. The peak 301 emission rate at this time was around 1.1 µg m⁻² s⁻¹ for both downwind receptors. A decrease in the measured downwind concentrations occurred at 15:00, and an associated decrease in emissions is logically estimated for 302 303 this time period. The decline in emissions follows 4.4 mm of rain during the day of 19/08, where the rainfall 304 intensity peaked shortly after midday. In addition, the cattle were removed from the field at 15:00; therefore the 305 suspension of excretions to the field and the wet conditions are most likely the dominant factors driving the 306 declining emissions. The LW sensor indicated that the canopy was wet (conductivity reading above baseline) for 307 84% of Period 1 (Table 2).

Coinciding with the daytime peak in emissions and downwind concentrations were peaks in *T* and *u*, while *RH* reached a minimum (Figure 4). During the night emissions decreased to near 0, where *RH* reaches a maximum and *T* and *u* reach a minimum. The average Q_{dep} gross emission estimates are greater than the *Q* net emission estimates by 13-16%.

312 **3.2 Period 2 (20-29/05): grazing on whole field**

313 **3.2.1 Concentration measurements**

Concentration measurements during Period 2 (20-29/05) revealed considerable differences between downwind receptors, where the average *CS*1 at the center of the field was much greater than the average *CS*3 at the SE corner (Figure 5), with period averages of 5.6 μ g m⁻³ and 3.9 μ g m⁻³, respectively. This may be partially

(6)

317 explained by the location of the receptors relative to the grazed field under the prevailing wind conditions. Sensor S1 was located in the center of the field, with an upwind fetch of grazed field across a wider band of 318 319 wind directions. Sensor S3 on the other hand is located at the SE field boundary, and was more limited as a 320 receptor for emissions under the prevailing northerly wind conditions. However, during NW wind directions 321 where all sensors in-line across a diagonal fetch of the field one would expect the S3 sensor to be measuring 322 similar or higher concentrations relative to S1 at the center (assuming homogenous emissions across the field), which is not the case. It is also important to note that the grazing density was about 50% lower during Period 2 323 324 as the field was much larger. 325 Power failure led to significant data gaps from the S2 sensor and hence a loss of C_h measurements (Figure 6).

326 To fill the gaps a linear regression applied between the measured S2 concentration and temperature (T), wind

speed (u) and relative humidity (RH), however there was considerable scatter in the data and the C_b prediction 327

- 328 was much more uncertain than during Period 1.
- 329

330

3.2.2 Field-scale emissions estimates

The average net emission rate (Q) from the grazed field estimated using the S1 measurements was 0.27 μ g m⁻² s⁻ 331 ¹ while much lower emissions were estimated from the S3 measurements (0.12 μ g m⁻² s⁻¹). Both estimates show 332 333 a generally diurnal trend of peak emissions during the afternoon, similar to the trend observed during Period 1. However there are gaps in QS1 and QS3 overnight due to data filtering as u * drops below the defined threshold 334 (0.1 m s⁻¹). Peak emissions occurred on 22/05 when the maximum concentration difference between upwind and 335 336 downwind receptors was measured. Grazing of the field ended and the cattle left the field at 15:00 GMT on 337 23/05. After this point a generally decreasing trend in emissions is derived from the decreasing concentrations measured by S1 and S3. There is greater uncertainty attributed to the periods without active C_h measurements 338 339 marked on Figure 6.

340 Emission estimates from the bLS-R model were initially made on the assumption that emissions from the grazed 341 field are spread equally (thus randomly) across a homogeneous field. However a herd of cattle can be expected to move and disperse across the field in a generally non - random way, grouping together as they graze across 342 343 the field rather than acting individually. Systematic effects of uneven cattle distribution within grazed pastures 344 have been reported previously, impacting on bLS-derived mean gaseous emissions from grazing cattle (Laubach et al., 2013b). Our measurements during Period 2 certainly support spatial heterogeneity in emissions, with 345 346 higher concentrations at the centre of the field (CS1) than at the SE corner (CS3) during periods where the wind direction was from the NW. Had emissions from the field been homogenous, an increase in NH3 concentration 347 would have been measured across the NW - SE transect of the field 348 349 A second set of emission estimates (Figure 6 Panel 3) were produced after optimising the emission rates from 4 350 separate areas (A, B, C & D, Figure 1) within the field to reproduce the observed concentrations at S1 and S3 on each measurement day. An excellent fit between QS1 and QS3 was achieved after running a numerical solver to 351 352 minimise the squared error (e^2) between them. The coefficients given in Table 1 are the result of the solver,

353 describing the spatial changes in relative emission strength over time. The solver was executed with the following conditions: (1) the sum of the area coefficients must equal 1; and (2) no area coefficient can be below 354

emissions, where in this case it was assumed that each source area must contribute at least 30% of the original(homogenous) value.

358 Henceforth the initial emission estimates calculated without applying emission area coefficients are referred to 359 as Scenario 1 estimates, while the calculations involving heterogeneous emission area coefficients are referred 360 to as Scenario 2 estimates. It is important to note that there can be more than one combination of coefficients to 361 reconcile the QS1 and QS3 estimates, thus these coefficients should not be taken as definite emission strengths 362 for each area of the field. However they do offer a rough guide to which sections had greater emissions relative 363 to the others, and confirm that emissions from the field were certainly not homogeneous over the course of the 364 grazing period. The large difference in Scenario 1 QS1 and QS3 estimates may therefore be attributed to strong 365 emissions in areas A and D, relative to C and B (Figure 1, Table 1), which explains the high measured concentrations at sensor S1 relative to S3. Emission area D represents the SW field which was grazed during 366 367 Period 1, thus high emissions from this area may have been a legacy effect left by continuing emissions from 368 cattle excretions during Period 1. Emission area D also contained a water trough which was only 15-20m away 369 from the S1 receptor, where cattle grouping was observed. Due to the combined effects of prior grazing within 370 the SW field and grouping around the water trough, we can expect enhanced emissions within area D. The Scenario 2 (optimised) QS1 and QS3 estimates are similar (0.19 and 0.16 µg m⁻² s⁻¹ respectively), and are 371 believed to give a more realistic estimate of the true field-scale emission rates after accounting for spatial 372 373 complexity. The data coverage for QS3 (64%) is greater than the QS1 data coverage (59%), hence some 374 differences between QS1 and QS3 can be expected even with perfect agreement. The Q estimates can be 375 regarded as net emission rates for the grazed field, made without consideration of deposition to clean patches 376 within the source area. The Q_{dep} estimates including the effect of deposition are 16% higher (0.22 and 0.19 µg m⁻² s⁻¹ for the Scenario 2 S1 and S3 estimates respectively). 377

378 3.3 Derived emission factors

379 Grazing Period 1 took place within a SW section of the field with a smaller area (5600 m²) than the whole field 380 opened up for grazing Period 2 (19800 m^2). Although there were fewer cattle grazing during Period 1 (25) the 381 grazing density was twice as high relative to Period 2. Therefore the higher grazing density during Period 1 is 382 consistent with the stronger emission estimates per unit area (Table 2). Emission factors (EFs) are given in Table 3 for Periods 1 and 2. For both measurement periods, the S3 sensor had greater data coverage than the S1 383 384 sensor. Therefore, the S3 emission estimates are more representative and are selected to derive EFs. Both 385 grazing periods have produced similar emission factors of the order of 6-7 g NH₃ cow⁻¹ d⁻¹, though there are considerable differences between the two periods in terms of weather conditions and grazing timeline. Period 1 386 387 was shorter in length, and was characterised by steady SW/W winds, lower temperatures and wetter conditions 388 relative to Period 2 (Table 2). Therefore, the lower temperatures and wetter conditions likely limited emissions (e.g. Flechard et al., 1999; Laubach et al., 2012; Móring et al., 2016). 389

The duration of Period 1 was too short to fully capture tailing emissions, while excretions to the field during Period 1 will have continued to emit NH_3 during Period 2. Flux estimates are continued for 6 days after the cattle had left the field during Period 2, capturing residual emissions after grazing. The combined influences of weather conditions and experimental design and duration may therefore explain why a smaller fraction of excreted N and urine-N was emitted as NH_3 during Period 1 relative to Period 2. The EFs derived from Period 2

395 fluxes may for these reasons be considered to be more representative of the total emissions from grazing, where

396 emissions are estimated to be 6 and 7 g NH₃ cow⁻¹ d⁻¹, and 9 and 10% excreted urine-N emitted as NH₃ for the Q

397 and Q_{dep} scenarios respectively. However, the greater uncertainty in Period 2 associated with missing C_b

398 measurements and heterogeneous emission patterns should be considered.

399 4. Discussion

400 4.1 Experimental design

401 Previous experiments to deduce surface-air fluxes by the bLS method have deployed sufficient measurement 402 systems so that the problem to determine C and C_b was mathematically over-determined, and the experiment 403 was not dependent on a specific range of wind directions (e.g. Flesch et al., 2014). The configuration of the 404 three miniDOAS sensors and the grazed field during Period 2 led to certain wind directions being unsuitable for 405 emission estimates, while additional miniDOAS sensors placed at field boundaries would have been beneficial. 406 However, the configuration of the miniDOAS sensors was optimised by using the weather forecast to predict the 407 wind direction prior to the grazing experiment and placing the miniDOAS sensors accordingly.

408 It was originally hypothesised that the model could treat the field area as a spatially homogenous source, where 409 emission estimates would show insensitivity to cattle grouping and excretion patterns within the field. This assumption seemed valid for the Period 1 emission estimates, where very good agreement was achieved in C 410 411 and Q between the downwind receptors. The SW field grazed during Period 1 was smaller than the whole field 412 grazed during Period 2, and the wind direction was more consistent. This allowed the downwind and upwind 413 receptors to capture the inflow and outflow concentrations and produce reliable emission estimates, while the 414 grazing density was higher. During Period 2 the field was larger and the grazing density was 50% lower, which 415 led to some spatial and temporal emission 'hotspots' caused by cattle grouping and/or excretions within certain 416 areas, such as around the water trough. The S1 sensor was located very close to a particular 'hotspot' of 417 emissions at the centre and SW section of the field, while the S3 sensor was located next to an area (SE corner) 418 which appears to have seen relatively little emissions. Because of this the model could not treat the field as a 419 homogenous source area and reconcile emission estimates between downwind receptors, and source-area 420 differentiation (Table 1) was required. Therefore there is a limitation in the application of the standard bLS 421 method to estimate emissions from area sources which may not be treated as homogenous, such as pastures with 422 a low grazing density. However as the Period 2/Scenario 2 emission estimates demonstrate it may also be 423 possible to account for this heterogeneity if more than one downwind concentration receptor is used and they are 424 suitably located. Insensitivity to heterogeneous emissions has been demonstrated if concentration measurements 425 are made at least twice as far downwind as the maximum distance between potential sources (Flesch et al., 426 2005). Therefore had the miniDOAS sensors been placed differently to satisfy this criterion it is possible that no 427 source area optimisation would have been necessary to reconcile bLS emission estimates. However, as emissions from excretions to the grazed pasture were relatively weak, at a greater distance downwind from the 428 429 field the concentration rise above background may not be significant enough to evaluate the emissions. 430 Felber et al., (2015) applied corralling of grazing cattle into paddocks over a rotational grazing cycle to increase

430 Felder et al., (2015) applied corrating of grazing cattle into paddocks over a rotational grazing cycle to increase
431 grazing density, and placed GPS trackers on individual cattle to attribute eddy covariance methane fluxes using
432 a footprint model. The Period 1 emission estimates demonstrate that a smaller paddock and higher grazing

density can be a solution to the heterogeneous emissions problem, however NH₃ emissions from grazing cattle
arise from excretions to the field surface and are not enteric, hence GPS trackers on cattle may not track the NH₃
emissions directly as they do for methane. In order to accurately attribute fluxes from grazed pastures there is
call to develop a method to track excretions spatially and temporally across a grazed field, potentially using
visual observations or cameras and animal detection software. We did carry out visual observations of urination
events during Period 1 (day time only), which described a fairly homogenous distribution (data not shown, Andi
Móring, personal communication). However observations were not carried out during Period 2.

440 4.2 Uncertainty in field-scale emission estimates

441 4.2.1 Uncertainty in miniDOAS concentration measurements and dispersion model

The instrumental uncertainty associated with the miniDOAS concentration measurements was evaluated during the initial inter-comparison phase, where the systems were configured to measure in parallel. Very good agreement was observed between the analysers, with a slope of one and an intercept close to zero. Deviations between the S1, S2 and S3 analysers were minor, and the coefficient of variation between them was determined to be 3.4% (unpublished data). Sintermann et al. (2016) have described this inter-comparison phase and the miniDOAS performance in detail.

Since the input data had been filtered to remove conditions which do not meet the established criteria (u * < 0.1m s⁻¹), and instrumental uncertainty associated with the concentration measurements is very low, the principal uncertainties are associated with the modelled results, principally the input variables which could not be measured directly, such as R_c , and the predicted background concentration C_b used for gap-filling.

The bLS dispersion model theory has been well validated in past experiments (e.g. Flesch et al., 2004; McGinn et al. 2009), however we can assume a general overall uncertainty based on evaluated performance by an ensemble of published trace gas release experiments. A review of 24 bLS tracer release assessments (Häni et al., 2016) found that the uncertainty is generally between 10 and 20% for the bLS method.

456 4.2.2 Uncertainty in background concentration

457 The background concentration (C_b) had to be predicted to "fill in" the gaps in the C_b measurements upwind of 458 the field measured by miniDOAS sensor S2. Multiple regression equations (Eq. 5; 6) were based on previous 459 observations that background NH₃ is dependent on wind speed, temperature and relative humidity (Flechard and 460 Fowler, 1998), but nonetheless error is introduced due to differences between the predicted C_b and the actual C_b . 461 The mean absolute error (MAE) between the measured and predicted C_b for Periods 1 and 2 have been applied 462 to offset to the predicted C_b timeseries input to the model, to determine the limits (upper and lower) of emission estimates caused by this uncertainty. The MAE between the observed and predicted background concentrations 463 during Period 1 was 0.33 μ g m⁻³, while the percentage of data coverage (observed C_b measurements) was 67%. 464 Measurement Period 2 had a greater MAE between observed and predicted C_b (0.56 µg m⁻³) (Table 4), as the 465 multiple regression equation used to fill (C_b) measurement gaps did not give very accurate predictions (Eq. 6). 466 Furthermore, the upwind sensor S2 was only active during 44% of the measurement period; therefore the Period 467 468 2 emission estimates are more sensitive to this uncertainty. The % change in Q_{dep} to predicted $C_b \pm MAE$ was 469 much greater during Period 2 (\pm 31%) than Period 1 (\pm 5%).

470 4.2.3 Uncertainty in local dry deposition of field-emitted NH₃

471 The inclusion of dry deposition within the bLS-R model is intended to simulate the deposition of NH₃ to the 472 surface of 'clean' grass patches within the grazed field. This process is described by a resistance model, and 473 while the R_a and R_b components may be derived directly from eddy covariance measurements, as well as well-474 established models, the R_c component is empirical. In this case, the empirical R_c model (Eq. 4) was derived 475 from a curve fitting exercise of time-integrated COTAG flux measurement to meteorological variables T and 476 RH. The R_c model is based on a long (1.5 years) series of measurements taken from the field (deposition periods 477 only), while the effect of soiled grass areas on R_c during grazing is also approximated using the 130 s m⁻¹ R_c 478 offset within the Q_{dep} scenario. It is conceivable that there is significant error (up to 50%) in estimating R_c by 479 this method. The sensitivity of the bLS-R model to potential uncertainty within the R_c estimates has been evaluated, where the R_c timeseries has been varied by factors of plus and minus 50%. The results of this 480 481 sensitivity test are given in Table 4. The % change in Q_{dep} after varying R_c by \pm 50% was -4% and +12% for 482 Period 1 and \pm 5% for Period 2.

While impact of this uncertainty on the absolute value for Q_{dep} is not very large, the change in Q_{dep} relative to Q is significant. The Period 2 Q_{dep} uncertainty due to predicted R_c is \pm 5%; therefore including deposition in the model has increased Q_{dep} above Q by 16 \pm 6%. Alternatively, we can say that 14 \pm 4% of NH₃ emitted from excretions had been re-deposited to clean patches on the field.

487 4.2.4 Uncertainty associated with heterogeneous emission patterns

488 To address the resulting disparity between emission estimates from the downwind concentration receptors 489 during Period 2, the emission area coefficients (Table 1) were applied to reconcile the independent emission 490 estimates. This is a valid approach to describe emissions from the field as a whole, as sensor S1 was placed at 491 the center of the field near the strongest area of emissions, causing emissions to be overestimated as a whole, 492 while the field area around sensor S3 at the SE corner seems to have contributing very little emissions, hence 493 causing an underestimation. However, as mentioned previously there are multiple configurations of source area 494 coefficients which can reconcile QS1 and QS3. Therefore a sensitivity test has been carried out to evaluate the 495 potential error in this method. The numerical solver which derives the source area coefficients contains a 496 parameter assuming the maximum degree of heterogeneity for the field, where each source area cannot contribute less than a defined percentage to the overall emissions. This parameter (AC_{min}) was varied to provide 497 differing sets of source area coefficients, yet still reconciling the QS1 and $\frac{2}{\sqrt{3}}$ mission estimates which was a 498 necessary precondition for the sensitivity test. ACmin was initially assumed be 0.075, 30% of the value for a 499 500 homogenous field (0.25), and this value was varied by \pm 67% (to 50% and 10% of the homogenous value). The 501 results of this sensitivity test are given in Table 4, where the percentage change in Q_{dep} after varying the 502 parameter by +67% and -67% was 9 and 1, respectively. The percentage change is greater after increasing 503 AC_{min} because QS1 and QS3 cannot be reconciled as closely, whereas decreasing AC_{min} from 0.075 leads to 504 very little change as the numerical solver can find very close agreement. This suggests that emissions from 505 excretions to the field are too heterogeneous to assume an AC_{min} value of 0.125 (50% of homogeneous value), and that the 1% change in Q_{dep} after reducing AC_{min} to 0.025 (10% of homogeneous value) is more indicative 506 507 of the uncertainty in the source area optimisation method.

508 The % change in emission estimates was much more sensitive to uncertainty in predicted C_b than to uncertainty 509 in R_c or AC_{min} . Therefore we expect predicted C_b to be the greatest source of error in derived fluxes from the 510 grazed field.

511 4.3 Temporal variability in estimated emissions

The estimated emissions show significant temporal variability during both measurement periods, typically with peak emissions occurring during the day with little emissions occurring overnight. Similar diurnal profiles have been observed in NH₃ emissions from cattle urine and dung patches (Laubach et al., 2012; 2013a), and from urine patch emission models (Móring et al., 2016). Mechanisms which limit nocturnal emissions can be summarised as: (1) low wind speeds and stable conditions, which increases the aerodynamic transfer resistances between the soil/canopy layer and the atmosphere, (2) low temperatures which limit the hydrolysis of urea, and affect NH₃/NH₄⁺ partitioning in solutions, (3) dew formation on leaf surfaces which act as sinks for NH₃.

519 A longer temporal trend in emissions is observed during Period 1; with very little emissions occurring on the 520 first day the cattle were introduced to the field, and peak emissions occurring during the afternoon of the second 521 day. After 44 cattle had begun to graze the whole field during Period 2, peak emission rates occurred from 22-522 23/05, 2-3 days after the cattle had been introduced. A decreasing trend in emissions occurred after the cattle 523 were removed from the field on 23/05 until the end of the measurement period. This is in-line with the reported 524 emissions from urine and dung patches by Laubach et al., (2013a), where emissions peaked during the third and 525 fourth days after grazing had begun, and a following decreasing trend in emissions after the cattle had been 526 removed from the field on the third day.

The peak in emissions which occurred during grazing can be attributed to the hydrolysis of urea within the urine patches, which leads to a rapid rise in pH and the formation of NH_4^+ , and a high rate of NH_3 volatilisation (Sherlock and, Goh 1985). As volatilisation proceeds, a subsequent chemical reduction in surface pH occurs with an accompanying release of a proton to the transformation of NH_4^+ to NH_3 (Laubach et al., 2012; Sherlock and Goh, 1985, Móring, et al. 2016), which prevents further volatilisation and can explain the declining emission rate after the cattle had left the field on 23/05.

533 **4.4 Emission factors from the grazing experiment**

Emission factors from the grazing experiment have been evaluated as 6 ± 2 and 7 ± 2 g NH₃ cow⁻¹ d⁻¹, and $9 \pm$ 534 3% and 10 \pm 3% of excreted urine-N emitted as NH₃ for the Q and Q_{dep} scenarios respectively (average 535 536 emission factor \pm predicted C_b uncertainty). These emission factors were taken from the Period 2/Scenario 2 537 estimates as Period 1 was not long enough to fully capture emissions from excretions to the field. Previous 538 experiments have measured NH₃ emissions from cattle urine patches at ratios of 7-25.7% of excreted urine-N to 539 grazed pastures (Jarvis et al., 1989; Ryden et al., 1987; Laubach et al., 2012; 2013a). Our estimates for 540 emissions from grazing are towards the lower end of the range of published emission factors. Differences 541 between reported emission factors may be related to differing weather conditions affecting the hydrolysis of 542 urea, or differences in soil properties, where emissions can be limited due to urine percolation into porous soil 543 (Móring et al., 2016). It is also possible that significant emissions occurred after the miniDOAS instruments had 544 been removed from the field, which would lead to an underestimation of the proportion of excreted N or urine-N 545 emitted as NH₃. The period of significant emissions from urine patches generally lasts 4-8 days after urine

deposition (Sherlock and Goh, 1985; Laubach et al., 2012). However, a rainfall event after a dry period can lead to a delayed onset of NH_3 emissions by restarting urea hydrolysis (Móring et al., 2016). On the other hand, the Period 2 emission factors are also influenced to some degree by emissions from excretions during Period 1 on the SW field, which could cause an overestimation of emissions. Emission factors derived from Period 2 are also affected by u * filtering, which may slightly increase estimates due to a measurement bias towards turbulent daytime periods.

The emission estimates presented here show that the 'gross' emissions from the field (Q_{dep} scenario) are around 16 ± 6% higher than the 'net' emissions (Q scenario). Both of these estimates are potentially useful to contribute towards an emission factor for livestock grazing. For example, regional-scale atmospheric dispersion models may require source inputs as 'gross' emission factors due to deposition simulations implicit within the regionalscale model.

557 5. Conclusion

558 Fluxes of NH₃ were estimated through measurement of atmospheric concentrations upwind and downwind of a 559 grazed field, and applying a bLS dispersion model to simulate the emission rate on a half hourly basis from the 560 observed horizontal concentration gradient and wind/turbulence measurements. The miniDOAS systems were well-suited to the task, providing continuous high-time resolution concentration measurements at field 561 boundaries across the field. Horizontal concentration gradients of ~0-9 μ g m⁻³ were measured between upwind 562 and downwind receptors. Control on emissions was observed from covariance with temperature, wind speed and 563 564 humidity/wetness measurements made on the field, revealing a diurnal emission profile. Two separate 565 experiments to evaluate emissions were carried out; a Period 1 experiment (2 days) which took place on a small field with a grazing density of 44 cows ha⁻¹, and a Period 2 experiment (10 days) on a larger field with a 566 567 grazing density of 22 cows ha⁻¹. Spatial heterogeneity in emissions across the field was apparent during Period 2, as a result of uneven cattle distribution and a low grazing density, adversely affecting the accuracy of the bLS 568 569 model estimates. However, after treating the larger field as a grid of discrete source areas the spatial 570 heterogeneity of emissions was accounted for, by optimising source area coefficients to the measured concentrations and reconciling emission estimates between downwind receptors. 571

572 Data gaps in the C_b measurements were filled by applying linear regression equations with u, T and RH, which

573 introduced significant uncertainty into the emission estimates. The evaluated uncertainty in derived emissions

574 due to C_b gap-filling was 5% during Period 1 and 31% during Period 2.

In contrast to the standard bLS approach, we simulated the effect of re-deposition to unsoled field patches, where the canopy resistance (R_c) component was estimated by an empirical model derived from local flux and R_c measurements with *T* and *RH*. Including deposition in the model increased emissions by 16 ± 6%. The results present both 'gross' and 'net' emissions from the field, and show that deposition of NH₃ is an important consideration when deriving NH₃ emission factors.

580 Acknowledgements

581 This study was undertaken as part of the French BtEP project (Emissions gazeuses au Bâtiment, sTockage,

582 Epandage et Pâturage des systèmes bovins laitiers), convention n° 1360C0032, with funding provided by

- 583 ADEME (Agence de l'environnement et de la maîtrise de l'énergie). We wish to thank David Sidaner, Jacques
- 584 Lassalas and all of the staff at the INRA-Méjusseaume dairy experimental farm. We wish to thank Andi Móring
- 585 for assistance during the measurement campaign. We wish to thank Thomas Kupper for organising the setup of
- 586 the N excretion model.

587 Competing interests

588 The authors declare that they have no conflict of interest.

589 References

- Asman, W. A. H.: Factors influencing local dry deposition of gases with special reference to ammonia,
 Atmospheric Environment, 32, 415-421, Doi 10.1016/S1352-2310(97)00166-0, 1998.
- Asman, W. A. H., Sutton, M. A., and Schjorring, J. K.: Ammonia: emission, atmospheric transport and deposition, New Phytol, 139, 27-48, DOI 10.1046/j.1469-8137.1998.00180.x, 1998.
- 594 Bracher A., Schlegel P., Münger A., Stoll W., Menzi H., 2011. Möglichkeiten zur Reduktion von
- 595 Ammoniakemissionen durch Fütterungsmassnahmen beim Rindvieh (Milchkuh). Project report Schweizerische
- 596 Hochschule für Landwirtschaft and Agroscope Liebefeld-Posieux for the Swiss Federal Office of Agriculture,
- 597 pp. 128, available at: <u>https://www.blw.admin.ch/blw/de/home/instrumente/ressourcen--und-</u>
 598 gewaesserschutzprogramm/ressourcenprogramm.html, last access: 4 October 2016.
- 599 Bracher A., Spring P., Münger A., Schlegel P., Stoll W., Menzi H., 2012. Feeding measures to reduce ammonia

emissions. Hassouna M. et al. (Eds), Proc. International Symposium on Emissions of Gas and Dust from
Livestock (EMILI), Saint-Malo 11-13.6.2012, p. 39.

- 602 Carslaw, D. C., and Ropkins, K.: openair An R package for air quality data analysis, Environ Modell Softw,
- 603 27-28, 52-61, 10.1016/j.envsoft.2011.09.008, 2012.
- Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., and Winiwarter, W.: How a century of ammonia
 synthesis changed the world, Nat Geosci, 1, 636-639, 10.1038/ngeo325, 2008.
- 606 Famulari, D., Fowler, D., Nemitz, E., Hargreaves, K. J., Storeton-West, R. L., Rutherford, G., Tang, Y. S.,
- 607 Sutton, M. A., and Weston, K. J.: Development of a low-cost system for measuring conditional time-averaged
- gradients of SO2 and NH3, Environmental Monitoring and Assessment, 161, 11-27, 10.1007/s10661-008-0723-
- 609 6, 2010.
- Felber, R., Munger, A., Neftel, A., and Ammann, C.: Eddy covariance methane flux measurements over a
 grazed pasture: effect of cows as moving point sources, Biogeosciences, 12, 3925-3940, 10.5194/bg-12-39252015, 2015.
- 613 Flechard, C. R., and Fowler, D.: Atmospheric ammonia at a moorland site. I: The meteorological control of
- 614 ambient ammonia concentrations and the influence of local sources, Q J Roy Meteor Soc, 124, 733-757, DOI
- 615 10.1002/qj.49712454705, 1998.
- 616 Flechard, C. R., Fowler, D., Sutton, M. A., and Cape, J. N.: A dynamic chemical model of bi-directional
- 617 ammonia exchange between semi-natural vegetation and the atmosphere, Q J Roy Meteor Soc, 125, 2611-2641,
- 618 DOI 10.1002/qj.49712555914, 1999.

- 619 Flechard, C. R., Spirig, C., Neftel, A., and Ammann, C.: The annual ammonia budget of fertilised cut grassland
- 620 Part 2: Seasonal variations and compensation point modeling, Biogeosciences, 7, 537-556, 2010.
- 621 Flechard, C. R., Massad, R. S., Loubet, B., Personne, E., Simpson, D., Bash, J. O., Cooter, E. J., Nemitz, E., and
- 622 Sutton, M. A.: Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia
- 623 exchange, Biogeosciences, 10, 5183-5225, 10.5194/bg-10-5183-2013, 2013.
- Flesch, T. K., Wilson, J. D., and Yee, E.: Backward-Time Lagrangian Stochastic Dispersion Models and Their
- 625 Application to Estimate Gaseous Emissions, J Appl Meteorol, 34, 1320-1332, Doi 10.1175/1520-
- 626 0450(1995)034<1320:Btlsdm>2.0.Co;2, 1995.
- 627 Flesch, T. K., Wilson, J. D., Harper, L. A., Crenna, B. P., and Sharpe, R. R.: Deducing ground-to-air emissions
- 628 from observed trace gas concentrations: A field trial, J Appl Meteorol, 43, 487-502, Doi 10.1175/1520-
- 629 0450(2004)043<0487:Dgefot>2.0.Co;2, 2004.
- Flesch, T. K., Wilson, J. D., Harper, L. A., and Crenna, B. P.: Estimating gas emissions from a farm with an
 inverse-dispersion technique, Atmospheric Environment, 39, 4863-4874, 10.1016/j.atmosenv.2005.04.032,
 2005.
- Flesch, T. K., McGinn, S. M., Chen, D., Wilson, J. D., and Desjardins, R. L.: Data filtering for inverse
 dispersion emission calculations, Agr Forest Meteorol, 198, 1-6, 10.1016/j.agrformet.2014.07.010, 2014.
- 635 Gao, Z. L., Mauder, M., Desjardins, R. L., Flesch, T. K., and van Haarlem, R. P.: Assessment of the backward
- 636 Lagrangian Stochastic dispersion technique for continuous measurements of CH4 emissions, Agr Forest
- 637 Meteorol, 149, 1516-1523, 10.1016/j.agrformet.2009.04.004, 2009.
- Genermont, S., and Cellier, P.: A mechanistic model for estimating ammonia volatilization from slurry applied
 to bare soil, Agr Forest Meteorol, 88, 145-167, Doi 10.1016/S0168-1923(97)00044-0, 1997.
- 640Gill Instruments: Technical key note KN1509v3* software bug affecting 'w' wind component notice and641availableoptionstocustomers-February2016,availableat:
- 642 <u>http://gillinstruments.com/data/manuals/KN1509_WindMaster_WBug_info.pdf</u>, last access: 4 October 2016.
- Häni, C.: bLSmodelR An atmospheric dispersion model in R. R package version 2.4.1. URL:
 http://www.agrammon.ch/documents-to-download/blsmodelr/, last access: 22 September 2016.
- 645 Häni, C., Sintermann, J., Jocher, M., Neftel, A.: Ammonia emissions after application of slurry. pp. 168.
- 646 Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften, HAFL, Agroscope Institut für
 647 Nachhaltigkeitswissenschaften INH, available at:
- 648 <u>http://www.agrammon.ch/assets/Downloads/SchlussberichtInklAnh20160728subm.pdf</u>, last access: 4 October
- 649 2016.
- 650 Harper, L. A., Denmead, O. T., and Flesch, T. K.: Micrometeorological techniques for measurement of enteric
- greenhouse gas emissions, Anim Feed Sci Tech, 166-67, 227-239, 10.1016/j.anifeedsci.2011.04.013, 2011.
- 652 Hertel, O., Reis, S., Skjøth, C. A., Bleeker, A., Harrison, R., Cape, J. N., Fowler, D., Skiba, U., Simpson, D.,
- 553 Jickells, T., Baker, A., Kulmala, M., Gyldenkaerne, S., Sørensen, L. L., and Erisman, J. W.:, 2011. Nitrogen
- 654 processes in the atmosphere, in: The European Nitrogen Assessment Sources, Effects and Policy Perspectives,
- edited by Sutton, M. A., Howard, C. M., Erisman, J. W., Billen, G., Grennfelt, P., van Grinsven, H., and
- 656 Grizzetti, B., 177–207, Cambridge University Press, Cambridge, UK, 2011..
- 657 Hutchings, N. J., Sommer, S. G., Andersen, J. M., and Asman, W. A. H.: A detailed ammonia emission
- 658 inventory for Denmark, Atmospheric Environment, 35, 1959-1968, Doi 10.1016/S1352-2310(00)00542-2, 2001.

- 659 Jarvis, S. C., Hatch, D. J., and Roberts, D. H.: The Effects of Grassland Management on Nitrogen Losses from
- Grazed Swards through Ammonia Volatilization the Relationship to Excretal-N Returns from Cattle, J Agr Sci,
 112, 205-216, 1989.
- 662 Laubach, J., Taghizadeh-Toosi, A., Sherlock, R. R., and Kelliher, F. M.: Measuring and modelling ammonia
- emissions from a regular pattern of cattle urine patches, Agr Forest Meteorol, 156, 1-17,
 10.1016/j.agrformet.2011.12.007, 2012.
- Laubach, J., Taghizadeh-Toosi, A., Gibbs, S. J., Sherlock, R. R., Kelliher, F. M., and Grover, S. P. P.: Ammonia
 emissions from cattle urine and dung excreted on pasture, Biogeosciences, 10, 327-338, 10.5194/bg-10-327-
- 667 2013, 2013a.
- 668 Laubach, J., Bai, M., Pinares-Patino, C. S., Phillips, F. A., Naylor, T. A., Molano, G., Rocha, E. A. C., and
- 669 Griffith, D. W. T.: Accuracy of micrometeorological techniques for detecting a change in methane emissions
- 670 from a herd of cattle, Agr Forest Meteorol, 176, 50-63, 10.1016/j.agrformet.2013.03.006, 2013b.
- 671 Loubet, B., Cellier, P., Milford, C., and Sutton, M. A.: A coupled dispersion and exchange model for short-
- range dry deposition of atmospheric ammonia, Q J Roy Meteor Soc, 132, 1733-1763, 10.1256/qj.05.73, 2006.
- 673 Loubet, B., Asman, W. A. H., Theobald, M. R., Hertel, O., Tang, Y. S., Robin, P., Hassouna, M., Dammgen, U.,
- 674 Genermont, S., Cellier, P., and Sutton, M. A.: Ammonia Deposition Near Hot Spots: Processes, Models and
- 675 Monitoring Methods, Atmospheric Ammonia, 205-267, Doi 10.1007/978-1-4020-9121-6_15, 2009.
- McGinn, S. M., Beauchemin, K. A., Flesch, T. K., and Coates, T.: Performance of a Dispersion Model to
 Estimate Methane Loss from Cattle in Pens, J Environ Qual, 38, 1796-1802, 10.2134/jeq2008.0531, 2009.
- 678 Menzi H., Huguenin O., Muenger A., Schlegel P. Procedure for defining new Swiss standard values for the
- nutrient excretions of dairy cows. In Koerner I. et al. (Eds.), Proc. 16th RAMIRAN Conference, Hamburg
 Harburg September 8-10 2015, Book of Abstracts, p. 52, 2015.
- 681 Móring, A., Vieno, M., Doherty, R. M., Laubach, J., Taghizadeh-Toosi, A., and Sutton, M. A.: A process-based
- 682 model for ammonia emission from urine patches, GAG (Generation of Ammonia from Grazing): description and
- 683 sensitivity analysis, Biogeosciences, 13, 1837-1861, 10.5194/bg-13-1837-2016, 2016.
- Pain, B. F., Van der Weerden, T. J., Chambers, B. J., Phillips, V. R., and Jarvis, S. C.: A new inventory for
 ammonia emissions from UK agriculture, Atmospheric Environment, 32, 309-313, Doi 10.1016/S1352-
- 686 2310(96)00352-4, 1998.
- R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical
 Computing, Vienna, Austria, available at: <u>https://www.R-project.org/</u>, last access: 04 October 2016.
- 689 Reidy, B., Dammgen, U., Dohler, H., Eurich-Menden, B., van Evert, F. K., Hutchings, N. J., Luesink, H. H.,
- 690 Menzi, H., Misselbrook, T. H., Monteny, G. J., and Webb, J.: Comparison of models used for national
- agricultural ammonia emission inventories in Europe: Liquid manure systems, Atmospheric Environment, 42,
- 692 3452-3464, 10.1016/j.atmosenv.2007.04.009, 2008.
- Ryden, J. C., Whitehead, D. C., Lockyer, D. R., Thompson, R. B., Skinner, J. H., and Garwood, E. A.:
- Ammonia Emission from Grassland and Livestock Production Systems in the Uk, Environ. Pollut., 48, 173-184,
- 695 Doi 10.1016/0269-7491(87)90032-7, 1987.
- 696 Sherlock, R. R., and Goh, K. M.: Dynamics of Ammonia Volatilization from Simulated Urine Patches and
- 697 Aqueous Urea Applied to Pasture .1. Field Experiments, Fert Res, 5, 181-195, Doi 10.1007/Bf01052715, 1984.

- 698 Sherlock, R. R., and Goh, K. M.: Dynamics of Ammonia Volatilization from Simulated Urine Patches and
- Aqueous Urea Applied to Pasture .2. Theoretical Derivation of a Simplified Model, Fert Res, 6, 3-22, Doi 10.1007/Bf01058161, 1985.
- 701 Sintermann, J., Neftel, A., Ammann, C., Hani, C., Hensen, A., Loubet, B., and Flechard, C. R.: Are ammonia
- emissions from field-applied slurry substantially over-estimated in European emission inventories?,
 Biogeosciences, 9, 1611-1632, 10.5194/bg-9-1611-2012, 2012.
- 704 Sintermann, J., Dietrich, K., Hani, C., Bell, M., Jocher, M., and Neftel, A.: A miniDOAS instrument optimised
- 705 for ammonia field measurements, Atmos Meas Tech, 9, 2721-2734, 10.5194/amt-9-2721-2016, 2016.
- 706 Sommer, S. G., Sogaard, H. T., Moller, H. B., and Morsing, S.: Ammonia volatilization from sows on grassland,
- 707 Atmospheric Environment, 35, 2023-2032, Doi 10.1016/S1352-2310(00)00428-3, 2001.
- 708 Sutton, M. A., Fowler, D., and Moncrieff, J. B.: The Exchange of Atmospheric Ammonia with Vegetated
- Surfaces .1. Unfertilized Vegetation, Q J Roy Meteor Soc, 119, 1023-1045, DOI 10.1002/qj.49711951309,
 1993.
- 711 Sutton, M. A., Howard, C. M., Erisman, J.W., Bealey, W. J., Billen, G., Bleeker, A., Bouwman, A. F., Grennfelt,
- 712 P., van Grinsven, H. and Grizzetti, B.: The challenge to integrate nitrogen science and policies: the European
- 713 Nitrogen Assessment approach, in: The European Nitrogen Assessment: Sources, Effects and Policy
- 714 Perspectives, edited by: Sutton, M. A., Howard, C. M., Erisman, J. W., Billen, G., Bleeker, A., Grennfelt, P.,
- van Grinsven, H., and Grizzetti, B., Cambridge University Press, Cambridge, ISBN 978-1-107-00612-6, 82-96,
 2011.
- Tang, Y. S., Cape, J. N. and Sutton, M. A.: Development and Types of Passive Samplers for 570 Monitoring
 Atmospheric NO2 and NH3 Concentrations, Sci. World, 1, 513–529, Doi:10.1100/tsw.2001.82, 2001.
- 719 Volten, H., Bergwerff, J. B., Haaima, M., Lolkema, D. E., Berkhout, A. J. C., van der Hoff, G. R., Potma, C. J.
- 720 M., Kruit, R. J. W., van Pul, W. A. J., and Swart, D. P. J.: Two instruments based on differential optical
- absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere, Atmos Meas
 Tech, 5, 413-427, 10.5194/amt-5-413-2012, 2012.
- von Bobrutzki, K., Braban, C. F., Famulari, D., Jones, S. K., Blackall, T., Smith, T. E. L., Blom, M., Coe, H.,
- 724 Gallagher, M., Ghalaieny, M., McGillen, M. R., Percival, C. J., Whitehead, J. D., Ellis, R., Murphy, J., Mohacsi,
- A., Pogany, A., Junninen, H., Rantanen, S., Sutton, M. A., and Nemitz, E.: Field inter-comparison of eleven
- atmospheric ammonia measurement techniques, Atmos Meas Tech, 3, 91-112, 10.5194/amt-3-91-2010, 2010.
- 727 Whitehead, D. C.: Grassland Nitrogen. CAB International, Wallingford, UK, 1995.
- 728 Zaman, M., Saggar, S., Blennerhassett, J. D., and Singh, J.: Effect of urease and nitrification inhibitors on N
- 729 transformation, gaseous emissions of ammonia and nitrous oxide, pasture yield and N uptake in grazed pasture
- 730 system, Soil Biol Biochem, 41, 1270-1280, 10.1016/j.soilbio.2009.03.011, 2009.

733 Tables

734 Table 1: Series of emission coefficients obtained by numerical solving of the difference between QS1 and QS3,

rable 1. Series of emission coefficients obtained by inducted solving of the unterfere between QS1 and QS3, applied to individual emission areas to fit the bLS-R model to concentration measurements on each day. For a grazed field with homogeneous emissions the emission coefficients for each area would be 0.25. Therefore the emission

coefficients offset the bias in emission estimates between the sensors S1 and S3 by adjusting to the heterogeneity in
 emissions across the field area.

Emission	20/05	21/05	22/05	23/05	24/05	25/05	26/05	27/05	28/05	29/05
area	20/03	21/05	22/03	25/05	24/03	25/05	20/03	21105	20/03	27/05
А	0.56	0.31	0.28	0.56	0.36	0.42	0.26	0.21	0.25	0.17
В	0.08	0.14	0.13	0.17	0.18	0.17	0.25	0.25	0.23	0.25
С	0.07	0.07	0.20	0.09	0.19	0.11	0.23	0.28	0.21	0.27
D	0.29	0.47	0.40	0.18	0.26	0.30	0.27	0.26	0.31	0.31

768 Table 2: Summary table of measurement and modelling results.

	Period 1			Period 2			
	Scenario ¹	S 1	S3	Scenario	S 1	S 3	
$C - C_b$ (µg NH ₃ m ⁻³)		1.4	2.1		2.9	1.2	
Q		0.07		1	0.27	0.12	
$(\mu g NH_3 m^{-2} s^{-1})$		0.27	0.29	2	0.19	0.16	
Q_{dep}				1	0.31	0.14	
$(\mu g NH_3 m^{-2} s^{-1})$		0.31	0.34	2	0.22	0.19	
Q_{depmax}				1	0.33	0.14	
$(\mu g NH_3 m^{-2} s^{-1})$		0.33		2	0.24	0.2	
Т							
(°C)		10			14		
u					1.2		
$(m s^{-1})$		2			1.2		
RH					_		
(%)		77			76		
Total Rain (mm)		4.4			0		
<i>LW</i> (% time wet)		84			40		
R _c	Q_{depmax}	145		Q_{depmax}	208		
(s m ⁻¹)	Q_{dep}	275		Q_{dep}	338		
v_d	Q_{depmax}	4.4		Q_{depmax}	3.2		
$(mm s^{-1})$	Q_{dep}	2.8		Q_{dep}	2.2		
¹ Description of model scenarios: Q_{dep} is the bLS-R emission estimate including dry deposition, with							
an offset of 130 s m ⁻¹ applied to the R_c timeseries to account for the limiting of excreted NH ₃ to							
deposition. Q_{depmax} is the emission estimate without the offset applied to the R_c timeseries, and is							
hence a maximum prediction of the gross emissions from the field. Period 2 emission estimates							

contain both the original Scenario 1 emission estimates assuming a homogenous field, and the

optimised Scenario 2 emission estimates using the area coefficients given in Table 1.

- 775
- 776
- 777

778

779 Table 3: N excretion model inputs, results, and derived emission factors

Madal Insut	Value		Model Output or Emission	C i_2	Value	
Model Input	Period 1	Period 2	Factor ¹	Scenario	Period 1	Period 2
Animal Numbers	25	44	N excretion total (kg)		11	40
Animal weight (kg)	650	650	N excretion urine (kg)		8	28
Days since calving	180	183	N excretion faeces (kg)		3	12
Milk yield (kg cow ⁻¹ day ⁻	21	21 22	EF (% total excreted N	Q	2.5	5.2
1)	21		emitted as NH ₃)	Q _{dep}	2.9	6
Grass sward: net energy		6.4	EF (% total excreted urine-	Q	2.9	8.9
for lactation (MJ kg DM ⁻ 1)	6.4		N emitted as NH ₃)	Q_{dep}	4.2	10.4
Grass sward: crude				Q	5.7	6.2
protein content (g kg DM ⁻¹)	protein content (g kg 168 DM ⁻¹)		$\mathrm{EF}(\mathrm{g}\mathrm{NH}_3\mathrm{cow}^{-1}\mathrm{d}^{-1})$	Q_{dep}	6.5	7.2
Animal weight (kg) Days since calving Milk yield (kg cow ⁻¹ day ⁻¹) Grass sward: net energy for lactation (MJ kg DM ⁻¹) Grass sward: crude protein content (g kg DM ⁻¹)	650 180 21 6.4 168	650 183 22 6.4 168	N excretion urine (kg) N excretion faces (kg) EF (% total excreted N emitted as NH ₃) EF (% total excreted urine- N emitted as NH ₃) EF (g NH ₃ cow ⁻¹ d ⁻¹)	Q Q _{dep} Q Q _{dep} Q Q _{dep}	8 3 2.5 2.9 2.9 4.2 5.7 6.5	28 12 5 6 8.9 10 6.2 7.2

¹N excretion calculations are given as the herd total for each measurement period.

 ${}^{2}Q$ is the net emission rate derived without including deposition in the bLS-R simulation, Q_{dep} is the gross bLS-R emission estimate including dry deposition, with an R_c offset of 130 s m⁻¹. EFs are derived from the S3 flux estimates due to better data coverage during both measurement periods, and Period 2 fluxes are derived from Scenario 2 estimates.

780

781Table 4: Sensitivity analysis of the percentage change of the bLS-R gross emission estimates (Q_{dep}) to variation in782predicted C_b and R_c , and the source area coefficient parameter AC_{min} .

	Period 1	Period 2				
C_b data coverage (%)	67	44				
C_b MAE (µg m ⁻³)	0.33	0.56				
% Change $C_b \pm MAE^1$	-5% +5%	-31% +31%				
% Change $R_c \pm 20\%$	-2% +3%	-3% +3%				
% Change $R_c \pm 50\%$	-4% +12%	-5% +5%				
% Change $AC_{min} \pm 67\%^2$	-	-9% -1%				
¹ The predicted C_b timeseries input to the bLS-R model is varied by the Mean Absolute Error						
(MAE) between the measured and predicted C_b . The first value in all cases the % change +						
variation and the second the % change - variation.						
2 The percentage change in Q_{dep} is given after varying the source area coefficient parameter						
AC_{min} by 67% (0.075 \pm 0.05).						

784

785 Figures

786 787

Figure 1: Map of the grazed field showing positions of the three miniDOAS open-path measurement systems. During Period 1 (18-20/05) 25 cattle were fenced within the SW field section (area D). During Period 2 (20-29/05) the internal field boundaries were removed so that the cattle could graze the whole field. Later, for the attribution of emissions across the field, emission area quadrants have been allocated, marked A-D. There were no physical barriers between the emission areas during Period 2.

792

795Figure 2: Timeseries of time-integrated COTAG R_c measurements and Equation 4 R_c estimates. The blue line796represents continuous R_c estimates calculated from the daily mean T and RH measurements at the field site. Black797points are the measured R_c values from the COTAG systems, and the red points are the modelled R_c from the same798time-integrated data.

799

Figure 3: Polar plots showing averaged NH₃ concentrations (colour axis) as a function of wind speed (radial axis) and
 wind direction (cardinal direction) for each miniDOAS system, and a windrose showing the prevailing wind
 direction, Period 1 (18-20/05). The concentration Polar plots were produced using the OpenAir R package (Carslaw
 et al., 2014).

815

819 visualise changes over time.

820

821 822 Figure 5: Polar plots showing averaged NH₃ concentrations with wind speed and direction for each DOAS system,

with a windrose showing the prevailing wind directions, Period 2 (20-29/05).

823

Figure 6: Timeseries of Period 2 DOAS concentration measurements (top panel) and bLS-R emission estimates (second and third panels, showing the Q (solid lines) and Q_{dep} (dashed lines) scenarios); with T, u, RH, and R_c (with 130 s m⁻¹ offset) shown in the panels below. The second panel shows the Scenario 1 (homogenous field) emission estimates, while the third panel contains the optimised Scenario 2 estimates using the heterogeneous source area coefficients given in Table 1. Periods with missing S2 background concentration measurements are annotated on the top panel to highlight the higher uncertainty of these periods for emission estimates. Wind direction arrows are set above the top panel to visualise changes over time. The dashed green lines on the top panels mark the 3-day time period where the cattle were grazing the field.