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We thank Referee #1 for his / her very comprehensive and valuable comments. They give us the 

opportunity to solidify our different interpretations based on our results and to improve our manuscript. 

Below we address them one by one (Referee #1 comments in blue, author and co-authors in black). 

 

Review of An exploratory study on the aerosol height retrieval from OMI measurements of the 477 nm 

O2-O2 spectral band, using a neural network approach 

The authors present a study exploring the retrieval of an aerosol layer height parameter from OMI 

measurements of the O2-O2 band in the visual wavelength range. They follow basically the same 

approach as the OMI O2-O2 cloud algorithm but use a neural network to replace the traditional look-up 

table. Sensitivities of the retrieval to assumptions related to the aerosol optical properties and the surface 

albedo are investigated. The algorithm setup has been applied to three years of OMI data and seasonal 

averages are compared with MODIS aerosol optical thickness and climatological aerosol heights from the 

LIVAS CALIPSO climatology. 

In my opinion, the paper presents interesting and substantial work that in principle warrants publication 

in AMT. However, I feel that there are a number of major issues that should be addressed before I can 

commend publication. Major and minor comments are listed below. I would appreciate if these are 

addressed point-by-point and a diffversion of the manuscript is provided together with the replies. In 

addition, I struggled with the style and the structuring of the manuscript, which made it hard at times for 

me to quickly understand what the authors are trying to say. I give examples of this below. I realise that 

this is partly a matter of personal taste, but I strongly encourage the authors to use these comments to 

critically look at the entire manuscript. It would help the reader to better understand and appreciate the 

authors’ valuable work.  

We took into account all the comments and questions asked by Referee #1 below. We reformulated 

where necessary according to the remarks and question, in order to ensure a better clarification. More 

details on these reformulations are given below where appropriate. 

Major comments 

-A look-up table is generated and used to train a neural network, which is in turn used in the retrieval 

instead of the original look-up table. This lowers memory demands and increases computational speed. 

In my opinion this is a very good application of a neural network. However, in your extensive general 

discussion of neural networks you suggest that you use a neural network to resolve the ill-conditioning of 

the inverse problem. For example, p.7,l.30-p.8,l.2., particularly in p.8,l.16 and again in the conclusion on 

p.21,l.6. This is clearly not what you do. Your neural network is trained with simulated data, so all the 



physical relations between input and output contained in your neural network are already explicitly 

described in the RT model, and strong assumptions on the aerosol model, the vertical distribution of the 

aerosols and the ground surface are still a priori inputs for your retrieval. I think the text should be 

changed to really avoid giving the reader this wrong impression. Also, I don’t quite see why interpolation 

in a look-up table should be less accurate than ’interpolation’ in a look-up table with a neural network 

even in the case of non-linear data. 

We thank the reviewer for this comment! We verified what we wrote in these mentioned pages. And we 
only found the reference to “ill-conditioning of the inverse problem” on p.7, l.30 “The Multilayer 
Perceptron (MLP)  neural networks have been widely used and acknowledged for decades in the field of 
remote sensing (Atkinson and Tatnall, 1997). Indeed, most retrieval problems in this field are ill-posed 
and nonlinear”. On p.8,l.16 and p.21,l.6 we do not address the ill-conditioning problems through the NNs 
but compare the advantages of Neural networks (NN) with respect (w.r.t.) Optimal Estimation Method 
(OEM) in terms of high speed processing and optimized interpolation techniques: 

- “The choice of a NN approach relies on their advantages compared to more conventional 
methods such as linear regression, linear interpolation in a LUT or the Optimal Estimation 
Method (OEM). In particular, it enables 1) very fast computations with modern computers in 
spite of the number of required parameters, 2) optimized interpolation technique even in 
case of non linear problems as the NNs are better able to reproduce the curvature between 
the LUT nodes therefore lead to lower systematic biases compared to a linear interpolation, 
3) reduced memory use compared to a LUT with a very high sampling” (cf. p.8, l.14-19). 

- “In spite of the high computing time due to the learning database creation and the training 
of these algorithms, very fast operational processing is allowed. Such processing is much 
faster than approaches relying on the Optimal Estimation Method and employs more 
optimized interpolation techniques than a classical linear interpolation within a LUT” (cf. p.21, 
l.6). 
 

Based on the many references available and cited here, these aspects are correct.  
We do not mean that the use of a NN, like we did, explicitly resolve the ill-conditioning aspect of the 
inverse problem: “The Multilayer Perceptron (MLP) neural networks have been widely used and 
acknowledged for decades in the field of remote sensing (Atkinson and Tatnall, 1997). Indeed, most 
retrieval problems in this field are ill-posed and nonlinear, in particular the atmospheric ones. Thus, the 
associated inverse problems can only be addressed by including a priori information and relying on 
statistical analysis. Since aerosol retrieval from passive spectral measurements is well-known as a non-
linear inverse problem, the MLP technique represents then a powerful approach to design a retrieval 
algorithm in a fast and robust way.” (cf. from p.7, l.29 to p.8, l.2). However, at a high level, similarly to 
the OEM approach, it deals (or can deal) with this aspect by relying on prior information, either explicitly 
(i.e. prior input parameter given to the retrieval algorithm) or implicitly by assuming some assumptions:  
typically the choice of our NNs rely on our assumed Single Scattering Albedo (SSA) value, either 0.9 or 
0.95. Nevertheless, the way of how to deal with all these prior information differs depending on the 
numerical approach which is employed: For example, in the OEM, prior parameters are generally given 
with associated prior errors while these errors are not used by NN or Look-Up-Table (LUT) approaches. 
 
To be sure to avoid any confusion, we clarified this issue in our manuscript. 
 

A conventional interpolation within a LUT is strongly sensitive to: 1) the interpolation technique (e.g. 

linear interpolation, spline cubic interpolation), 2) the resolution or sampling of your LUT. Regarding 1), 

there is in general very little arguments to support the interpolation technique selection. In general, the 

linear interpolation is likely the fastest interpolation technique and least dependent on (arbitrary) 

specifications such as which dimensions are interpolated first and which last. Regarding point 2), for a 

given problem, a very coarse LUT can lead to substantial numerical biases independent of your 



interpolation technique, like with the previous version of the OMI cloud LUT [Chimot et al., 2016; 

Veefkind et al., 2016]. In principle, we would say that an infinite high resolution LUT could do as good as 

a Neural Network. But, such a LUT is impractical. If 1) the training database includes a high enough 

number of cases to learn (here OMI O2-O2 and aerosol spectra simulations), 2) it is representative 

enough of the most likely cases to be encountered by the retrieval system, 3) the number of cases is 

greater than the number of degrees of freedom of the problem and the variability characterized by the 

combination of all the cases, then a NN is expected to be more accurate than a coarse (or too limited 

resolution) LUT. 

Inverse problems with a LUT should, in general, demonstrate that the resolution specified in all the 

dimensions (and the combined dimensions altogether) is high enough for a given problem. This is, in 

general, very difficult to establish. 

- An important figure is Figure 16. You are showing the seasonal dependence of ALH for your OMI 

retrievals and as derived from many years of CALIPSO retrievals. The amplitude of the seasonal variability 

in the LIVAS ALHs is only about 0.5 km and I am wondering whether that seasonal variability is picked up 

by your OMI retrievals. After all, biases due to wrong assumptions on the aerosol model are of the same 

order of magnitude or even larger. What makes Figure 16 a bit deceptive in my view is that you plot four 

lines showing OMI ALP retrievals for slightly different settings. These lines are obviously dependent and 

therefore correlate. At first sight, the overall consistency between the collection of plot lines suggested to 

me that you are indeed picking up the seasonal variability. But when having a closer look, I am not 

sure... the apparent consistency may be visually driven by these OMI ALP lines. In practice, you would 

pick some optimal retrieval setting based on sensitivity studies, literature etc. and do the retrieval, or you 

would perhaps run the retrieval for several retrieval settings and then take the average. I really think that 

for a proper comparison of LIVAS ALHs with your OMI ALHs, a figure like Figure 16 should therefore 

basically contain one panel with only two lines: one for LIVAS ALP and one for your best OMI ALP. Can 

you change Figure 16 (the effect of temperature corrections is not a key point of your paper and the 

effect of surface albedo and SSA could then be moved to a separate plot)? I fear that the agreement 

between OMI ALH and LIVAS ALH will look less convincing with only four pairs of points, but it is more 

realistic. 

Thanks for your good remark here! This allows us to emphasize better the key points messages of this 

figure. 

We modified Figure 16 in such a way that the impact of the mentioned parameters (detailed below) are 

now more explicitly and easily visible. We only have 4 panels, each panel showing results: 

-  for 1 specific NN retrieval algorithm, either based on the OMI continuum reflectance (475 nm) Rc (cf. 

NN_Rc_NsO2-O2), or based on MODIS aerosol optical thickness, or ζ (550 nm), Dark Target Land as a 

prior information (cf. NN_ ζ_NsO2-O2). 

- for 1 specific prior surface albedo database: either OMLER, or the MODIS Black Albedo. 

Each of these panels only represents 1 line with 4 points associated with the Aerosol Layer Height (ALH) 

of LIVAS per season and, over it, the spread of our spatial-seasonal averaged OMI ALH retrievals 

between our 2 aerosol Single Scattering Albedo (SSA or ω0) assumptions: i.e a lower limit of 0.9, an 

upper limit of 0.95. This spread is coloured in grey, with the upper limit depicted in red while the lower 



limit is depicted in blue. All these panels depict retrievals where a temperature correction has been 

applied to the OMI O2-O2 slant column densities (SCD), named here after NsO2-O2 prior to the retrievals.  

 

To set up the best retrieval setting for each individual OMI O2-O2 observation is, at this stage, impossible 

as it requests to use an accurate aerosol model. By an accurate aerosol, we mean here the one 

describing accurately (in particular) the optical properties of the particles (e.g. ω0). However, 1) no 

accurate ω0 information is available for each OMI individual observation pixel, and 2) ω0 likely 

significantly varies spatially and temporally. Instead, we designed and trained one NN algorithm for each 

assumed ω0 value. And then, these algorithms are applied directly over all the OMI pixels. This is 

equivalent of assuming a constant ω0 value for the ensemble of all OMI O2-O2 observations. Note that 

the chosen ω0 values are based on literature mentioned in our manuscript. 

Assuming “only” two ω0 values is not representative enough to perform an average. Therefore, we think 

it is more appropriate to depict the gap of the spatial-seasonal OMI ALH average due to the 2 (lower-

upper) assumed ω0, and the location of the LIVAS black line within this gap. 

For these 4 panels, we can confirm all the following elements: 

- assumptions on the forward aerosol model (for the creation of the supervision database) lead to the 

highest impacts on the ALH retrievals. This is mostly related to the ability of the corresponding NN to 

interpret the combined scattering and absorption of aerosols affecting the NsO2-O2. Assuming OMLER 

surface albedo, differences between average ALH retrievals with ω0=0.95 and ω0=0.9 are in the range 

of 540-1200 m with NN_Rc_NsO2-O2, and 560-660 m with NN_ ζ_NsO2-O2. 

- assumptions on chosen surface albedo (OMLER vs. MODIS Black Sky Albedo) also change the spatial-

seasonal averaged ALH retrievals. Related differences in the retrievals are in the range of 0-730 m with 

NN_Rc_NsO2-O2, and 0-180 m with NN_ ζ_NsO2-O2. 

- Although not shown here anymore, we remarked that applying the temperature correction on NsO2-O2 

is crucial as it corrects the retrievals between 50 m and 300 m. 

In general, largest differences between the spatial-seasonal averaged ALH and LIVAS are found with ω0 

= 0.95, in the range of 650-1140 m with NN_Rc_NsO2-O2, and 260-800 m with NN_ ζ_NsO2-O2. With ω0 

= 0.9, differences are reduced to 180-310 m regardless the NN algorithm. 

Independently of the chosen NN configuration, the impacts due to assumptions on ω0 (and in general, 

the aerosol model) are the most crucial ones. They lead to the highest biases on the ALH retrievals. The 

use of two different surface albedo dataset (cf. OMLER and MODIS Black Sky), although not negligible, 

has somehow reduced impacts. 

Because of the reduced gaps between the ALH retrievals with ω0 = 0.9 or 0.95, the more reduced 

impacts related to the chosen surface albedo database, and the reduction of the encountered maximum 

differences with respect to (w.r.t.) LIVAS ALH, NN_ ζ_NsO2-O2 is actually the algorithm depicting the best 

ALH retrieval results. This is likely the case because this configuration uses more accurate prior aerosol 

ζ(550 nm) information (coming from MODIS ζ Dark Target land product). Please see more details about 

this specific point below (our answers to your point number 4). 



 

Figure 17: Comparison of the average of the OMI aerosol layer height (ALH) retrievals obtained over scenes with 
collocated MODIS  ζ(550 nm) > 1.0, with the LIVAS ALH climatology database. The retrievals are achieved over 

North-East Asia for cloud-free scenes, over 3 years 2005-2007, and for the 4 seasons. OMI and MODIS Black Sky 
surface albedos are considered alternatively. The 2 NN OMI ALH algorithms are used (see Sect. 5.1): NN_Rc_NsO2-
O2 based on OMI Rc(475 nm) and ) NN_ ζ_NsO2-O2 based on MODIS ζ (550 nm). A temperature correction is applied 
to the OMI NsO2-O2 prior to the retrievals (cf. Sect 6.1): (a) NN_Rc_NsO2-O2 algorithm and OMLER surface albedo, 

(b) NN_Rc_NsO2-O2 algorithm and MODIS Black Sky surface albedo, (c) NN_ ζ_NsO2-O2 algorithm, and OMLER 
surface albedo, (d) NN_ ζ_NsO2-O2 algorithm and MODIS Black Sky surface albedo. 

 

-In your analysis you assume that climatological CALIPSO profiles are the truth and you focus then on 

biases. I am willing to follow your assumption for the moment but I think presenting the story like this is 

too optimistic on the error in retrieved ALH for an individual pixel (which is what you would need for 

scatter corrections). (Again, I am making a point of this because you repeat bias values in the abstract, 

p.1.,l.9-10.) In the sensitivity analysis you identify several error sources that affect retrieved ALP (aerosol 

optical properties, surface albedo, neural network implementation). Together they form something more 

like a random error. When calculating biases as you do these random errors are averaged out. In my 

view, you should also report the root-mean-square and the standard deviation of the differences (as in: 

rms**2 = bias**2 + std**2). This gives a more complete estimate and breakdown of the ALH error as 

derived from the evaluation with LIVAS ALHs. In addition, a scatter plot of OMI ALH vs. LIVAS ALH would 

definitely help the reader a lot here. As a final note, I would need to do some more thinking on the 

implication of assuming climatological (i.e. averaged values) for your analysis. You make a strong point of 

ALH retrieval to support scatter corrections in trace gas retrievals. What would be needed then are ALH 

retrievals that capture exceptional events not represented by climatological averages, right? See point 

below.  



Because of the climatology nature of the LIVAS database and of our OMI ALH retrievals, their difference 

in terms of sampling (which leads then to additional representation errors) and their associated spatial-

seasonal average, we do not think it is very appropriate to depict a RMS as you are proposing. One of the 

reasons, as mentioned above, is that applying a constant ω0 value to the whole ensemble of OMI 

observations may create specific spatio-temporal patterns in the retrievals. Instead, by emphasizing more 

the spreads in our averaged ALH retrievals (as done above, cf. Figure 17), are likely more representative 

of the stability and overall quality of the ensemble of our retrievals. 

Furthermore, incorrect physical assumptions on surface albedo or aerosol properties would naturally lead 

to a systematic on an individual ALH retrieval (i.e. contrary to a random noise, the ALH error is 

reproducible). The integrated uncertainty related to the physical error sources and the instrument noise 

cannot be accurately estimated for each individual OMI pixel. Indeed, it depends on the cases, the real 

aerosol amounts and properties, their spatial patterns and temporal variability. The different academic 

cases done in Sec.5 allow to identify and quantify how each error source theoretically contributes to the 

retrieval error. The averaged real retrievals in Sec.6 and their comparison with LIVAS gives a first global 

idea of their consistency assuming then LIVAS is a reference. Overall, by combining the comparisons 

shown in Fig.17 above and the associated standard deviations in Fig.16 (below) allow to state that 

maximum differences are found on the seasonal and spatial averaged ALH with ω0 = 0.95, in the range 

of 260-800 m ± 1 km. Lower differences are in the range of 180-310 m, and similar variability, with ω0 = 

0.9. This is a global estimate over the considered region as we may not have enough knowledge, at this 

stage, an adequate estimate of the retrieval error of each individual OMI pixel. 

Figure 1 below shows, just as illustration here, how our OMI ALH retrievals spatially vary along the 

latitude for one day over North East China on 2006.10.02 while a strong aerosol pollution plume was 

present. We can see that the associated spatial variability is about 500 m on that day, with a maximum 

peak-to-peak of ~1 km. The accuracy of this synoptic variability is currently under analyses for another 

study. 

Since the mentioned differences can be due to retrieval errors on both sides as well as to spatial 

representativity errors, we realize that using the term bias is not exact. We therefore removed in our 

updated manuscript this term. We mentioned now only the “differences” and the diverse error sources 

that contribute. 

Please see our answers to your remarks on climatology vs. exceptional events below. 

 



 

Figure 1: OMI Aerosol layer Height (ALH) retrieved on 2006.10.02 over North-East Asia along a CALIPSO track. 

These retrievals are obtained from OMI cloud-free scenes, with collocated MODIS ζ(550 nm) > 0.75 and within a 

distance of 50 km of CALIPSO track. 

-It is a pity that you only show only seasonal three-year averages. The temporal variability in such an 

average is small (discussed in a previous point). Figure 14 suggest that the std in ALP across pixels can 

easily be 200 hPa or higher. It would help if you could provide ALP maps for some selected scenes that 

show that within a particular scene there is spatial consistency but that the variability emerges when 

comparing different scenes. Perhaps together with some MODIS RGB images or other info..? I have to 

admit that I am not convinced at this stage that your ALP retrievals have indeed sufficient sensitivity to 

show geophysical variability - then again, it is an exploratory study. Such an addition would really 

strengthen the paper, but I realise that this requires substantial work. This is a strong recommendation 

but I will eventually leave it to the authors to decide whether or not they follow it up. 

As extensively discussed in our manuscript, the possibility to derive an aerosol height from a satellite 

OMI-like O2-O2 visible absorption band is a quite challenging and important topic. In particular for the air 

quality retrieval community which has discussed and thought about it during the last 15 years (and 

perhaps even longer). If we leave aside the effective cloud parameters and their more or less sensitivity 

to the aerosol scattering effects and their altitude, at our knowledge, only Park et al., (2016) with a Look-

Up-Table (LUT) with about 10 case studies over ocean, and our manuscript with NNs over land in North-

East Asia have retrieved an explicit aerosol height parameter from the OMI O2-O2 477 nm band. 

Comprehensive and detailed investigations of the performances of our retrievals will require in-depth 

analyses combining different scales and strategies to fully understand our potential new OMI product. 

They would mix: global scale, long-time observation periods, focus on regional and/or local areas, day-to-

day or pixel-by-pixel variability, statistical analysis to characterize the general behaviour of the algorithms 

over an ensemble of data, careful investigations of each single observation over a well-know and 

characterized case study. 

In our view, addressing all these strategies together is out of the scope of this very first study and will 

require more than one manuscript. Instead, for our first paper presenting our algorithms, we chose to 

address an ensemble of 3-year OMI observations covering a somehow large industrialized land region 

(North-East Asia). This ensemble is analysed through a statistic strategy in order to characterize the 

general performance and main sensitivities of our product. Our general idea is that if a statistic analysis 



already shows a good global performance and seasonal patterns, then this would encourage to continue 

this work by focusing on smaller scales (regional, local, reference daily case studies) and further 

investigating the behaviour of individual OMI retrievals on a pixel basis. 

Overall, our manuscript on this topic shows first encouragements about the feasibility of retrieving 

aerosol height from OMI. Therefore, we are planning to publish follow-up studies on the same topic, but 

with complementary strategies. In fact, we can already say that we have started a study comparing OMI 

aerosol height retrievals over land, on some specific case studies (e.g. strong urban pollution & biomass 

burning events) with CALIPSO aerosol measurements along-track. We are planning to publish these 

results in the forthcoming months in a new journal paper. 

Regarding your remark about MODIS RGB images, we do not think this is applicable. These images can 

tell us where are aerosol plumes and, potentially, how thick they are. But they do not give any 

information about aerosol altitudes. 

-In the introduction you quite extensively discuss the uncertainty in DOAS trace gas retrievals due to 

aerosols. This is fine with me. But in the abstract you clearly state that the ’main motivation of this study 

is to evaluate the possibility of retrieving ALH for potential future improvements of trace gas retrievals’ 

(p.1.,l.4-5; repeated at the end of the intro and in conclusion). This is not what you do. Either statements 

concerning this claim should be softened (throughout) or a thorough and critical discussion of your 

results from the perspective of trace gas retrievals should be provided. The reason I make a point of this 

is the following: Figure 16 suggests that at least your seasonal average ALH is probably something like a 

boundary layer top height that perhaps follows the expected seasonal dependence. But for trace gas 

corrections you need ALHs on a pixel level. Given the large uncertainties on individual retrievals I doubt 

whether the OMI ALH will then be useful: 0.9 km +/- 1 km in winter and 1.4 km +/- 1 km in summer 

does not appear to me as a tighter constraint for trace gas retrievals than simply assuming climatological 

boundary layer heights or something similar. Of course, there is Figure 14 showing that individual ALHs 

show quite some variability, but the question is whether the ALH variability for AOT below about one is 

really geophysical variability or indicates a large retrieval error. And of course, you also retrieve AOT 

itself, which may be useful for the trace gas retrievals, but also the AOT seems to be very sensitive to the 

aerosol model you assume. 

Your remark about the need for an aerosol scattering correction in DOAS trace gas retrievals is very 

relevant. Analysing what we really need for that purpose (i.e. a climatology database of a daily pixel-by-

pixel ALH variability) and whether we can use the current ALH retrievals are clearly another study in 

itself, and therefore beyond the scope of this manuscript. 

We realize then, although our motivation statements are clear and correct, they are possibly more related 

to our long-term objectives than to the present manuscript. Therefore, we softened our statements as 

follow: 

In the abstract: 

” [ ...] This study presents a first step of this long-term objective which evaluates, from a statistic point-

of-view, an ensemble of OMI ALH retrievals over a long-time period of 3 years covering a large 

industrialized continental region. […] ” 

 



In the introduction: 

“ […] Since aerosol altitude, in addition to aerosol optical thickness ζ , is one of the key parameters 

affecting the computation of AMF for trace gases retrievals such as NO2 (Leitão et al., 2010; Chimot et 

al., 2016), our long-term motivation is to evaluate the capability of retrieving it from the satellite O2 −O2 

absorption band at 477 nm. This exploratory study is the first step and statistically analyses an ensemble 

of OMI observations over 3 year period (2005-2007) and covering a large industrialized continental region 

(i.e. North-East Asia). […] ” 

 

In the conclusion: 

“[…] The main objective of this work is first to evaluate the feasibility of a direct retrieval of this key 

aerosol parameter from a statistical point of view: i.e. over a long-time period and large industrialized 

continental area, and therefore a high number of observations. […] Our study indicates that it is 

worthwhile to design and evaluate aerosol height retrieval algorithm exploiting the satellites 477 nm O2 

−O2 absorption band. Our long-term motivation is to evaluate the feasibility of replacing the effective 

clouds by more explicit aerosol parameters in the computation of trace gas AMF. This is relevant not only 

for OMI but for most of the UV-Vis satellite missions devoted to air quality monitoring. For that purpose, 

further analyses must be performed by focusing on significant geophysical variability cases: e.g. pixel-by-

pixel variability over smaller regions. Furthermore, single OMI ALH retrievals should be compared with 

reference aerosol vertical profile measurements (ground-based and/or satellites) over some remarkable 

case studies.” 

 

Regarding the reviewer’s remark about the ALH variability, we added in the updated Figure 16 (ex Figure 

15) of our manuscript (see also below) the variability as extracted from the LIVAS database. The 

methodology for deriving LIVAS ALH and its variability are described further in this document, as 

response to one of the technical questions. On average, the spatial and climatology variability over North-

East Asia is about 700 m. Our spatially and seasonally averaged OMI ALH shows similar variability in 

winter and autumn, but more variability and hence higher standard deviation in spring and summer (from 

1100 to 1800 m). The OMI ALH variability is lower, and closer to LIVAS, when using the NN_ ζ_NsO2-O2 

algorithm with the MODIS ζ(550 nm) Dark target product. 

 



 

Figure 16: Standard deviation of the OMI aerosol layer height (ALH) retrievals obtained for the cloud-free scenes 

with MODIS τ (550nm) ≥ 1.0 over North-East Asia. The retrievals are done for cloud-free scene, over 3 years 2005-

2007. Aerosol single scattering albedo ω0 = 0.95 is assumed. OMLER and MODIS black sky surface albedo, and the 

NN configurations (N NRc,NsO2 −O2  and NNτ,NsO2 −O2 with MODIS τ (550 nm) as input) are alternatively 

considered (cf. Sect.6.1). 

-Finally, you state in the conclusion that accurate knowledge of AOT is needed for a good ALH retrieval. I 

am not yet convinced, because I think the comparison with LIVAS ALH is not conclusive in this respect 

(see comment above). The simulations however do seem to point in this direction (Figure 6). However, 

also MODIS AOT has an associated error which is well documented in the literature but not discussed at 

all. If you want to retain the conclusion that a retrieval setup with external AOT input is the way forward, 

then a discussion of the uncertainty in MODIS AOT should definitely be provided and also a small test on 

the sensitivity of your retrieved ALH to this AOT uncertainty should be added to section 4 (can be done 

fairly quickly I think).  

As discussed above and with our upgraded Figure 16, we confirm that we think our results derived with 

the NN_ ζ_NsO2-O2 algorithm using MODIS ζ(550 nm) Dark target land present overall the best quality. 

Because of all the uncertainties mentioned in our answers to your major comment #2, we do not think it 

is fully appropriate to look only at individual lines in Figure 16 (now Figure 17!). The apparent minor 

changes of the line associated with ω0 = 0.9 and OMLER surface albedo from NN_Rc_NsO2-O2 and to 

NN_ζ_NsO2-O2 cannot indicate a degradation. Instead, the spreads between the ALH retrievals due to 

aerosols and surface albedo assumptions and from a statistic point-of-view (i.e. spatial-seasonal average) 

are the main criteria evaluating the robustness of each NN algorithm. A second criterion is the 

comparison of the OMI ALH retrievals w.r.t. LIVAS ALH over the same region (see updated Figure 15 

above). Because these gaps strongly reduce and the OMI & LIVAS ALH variability are closer by employing 

NN_ζ_NsO2-O2 with MODIS ζ(550 nm), they confirm that an accurate knowledge of ζ is then necessary. 



Such infomration reduces the freedom of the system and thus the impact of inaccurate assumptions 

driving the OMI O2-O2 observations. 

In addition, we would like to highlight the following points: 

- The ALH retrieval results from the NN_ ζ_NsO2-O2 algorithm statistically show a higher quality 

only because the MODIS ζ(550 nm) product is used as input. Indeed, as explained in Section 

2.3, both ζ and ALH drive the NsO2-O2 magnitude. And these effects need to be 

distinguished. The use of the NN_ ζ_NsO2-O2 algorithm in itself does not guarantee a better 

performance than the NN_ Rc_NsO2-O2 algorithm. 

- Since Rc is mainly driven by ζ, using NN_ Rc_NsO2-O2 is at a first approximation equivalent to 

using NN_ ζ_NsO2-O2 with the OMI ζ(550 nm) product (instead of MODIS) retrieved prior to 

ALH retrieval. However, as shown in our study, large uncertainties remain on our OMI ζ(550 

nm) due to incorrect assumptions on aerosol model and surface albedo. Since these 

uncertainties are larger than MODIS ζ(550 nm) Dark target uncertainties, they impact the 

quality of our OMI ALH retrievals.  

- Because uncertainties for our OMI ζ(550 nm) product are larger than for MODIS ζ(550 nm) 

Dark target product, performance of the NN_ Rc_NsO2-O2 algorithm is more limited. To 

increase this performance, our capability to interpret Rc(475 nm) must be improved by 

separating the effects of aerosol ζ(550 nm), ω0 and surface albedo. In summary, OMI ζ(550 

nm) retrieval from the O2-O2 visible continuum must be further developed. 

 

We emphasized all these points in our manuscript where necessary. 

The MODIS ζ uncertainties are now discussed in the new Section 2.2 as follow: 

“The expected error of MODIS DT ζ is about +/- 0.05+15% over land (Levy et al., 2013). The "Deep 
Blue" retrieval algorithm has been developed to complement the DT algorithm by retrieving ζ over bright 
arid land surfaces (e.g. deserts). The typical associated uncertainties are about +/-0.03 on average 
(Sayer et al., 2013).”. 
 

Minor comments: 

-The use of a neural network trained by a look-up table has been done before. I am aware of the 

ROCINN cloud algorithm, but I guess there must be more references. Please add some references. 

By default, as mentioned by our references, a NN is always created based on an ensemble of training or 

supervision dataset. The term LUT is not really used on this topic for this specific need. We added some 

recent references related to the work of Crevoisier et al. on CH4 and CO2 retrievals from IASI using a NN 

approach, and Di Noia et al. for Ozone and aerosol retrievals, and the work of cloud retrievals with 

ROCINN. 

-Can you provide quantitative estimates of the increase in speed and the reduced memory needs 

compared to the original look-up table? 

An exercise comparison with a LUT would be sensitive to the LUT settings, in particular its resolution and 

sampling. We can state that a NN is a bit faster since using a LUT requires to identify the nodes, in each 



dimension, where to perform the interpolation for each single observation. On the contrary, a NN directly 

“interpolates” or perform its regularization on the given observation. 

Similarly, the memory consumption of a LUT depends on the number of dimensions and nodes within the 

LUT. Therefore, this is difficult to give a full estimate of increase speed and reduced memory. 

What we can say is that performing 3-year ALH + ζ retrievals over the North East Asia takes about 20 

min per season, by using only 1 single CPU. The memory is only consumed by the synaptic weights 

between each neuron (input - hidden layer number 1, hidden layer number 1 – hidden layer number 2, 

hidden layer number 2 – output layer). This takes between 100 and 300 Mo (a simple and rough 

estimate) when using 1 single NN algorithm. 

However, training times are more expensive, but this is of less importance for an operational use. 

-p.2,l.1: source (typo) 

Ok corrected 

-p.2,l.5: clouds –> cloud 

Done 

-p.2,l.5: Throughout the paper you often talk about fine particles, and it is not clear to me what you 

mean. Do you mean fine-mode particles? But also coarse-mode particles can act as CCNs? (throughout 

paper) 

In this paper, we numerically define the size of particles through the Angstrom parameter α. This 

parameter describes the spectral variation of the Aerosol Optical Thickness (AOT) ζ. The higher this 

value, the higher the dependence on the wavelength is the ζ. Typically, α < 1 suggests an optical of 

coarse particle type (such as dust). α > 1 suggests an optical dominance of fine particles (e.g. smoke). In 

our study, the entire supervision dataset used for training the neural networks contains simulations with 

α = 1.5 ( fine mode particles). The main reason is because of the assumed dominant presence of 

aerosols released by anthropogenic fossil-fuel based activities such as industries, power plants and 

traffic. Also, such a value is dominant in the MODIS aerosol product over the region of North-East Asia. 

-p.2,l.8: contributes to –> contributes 

We changed it as follows: “… are still the largest uncertainties of the total RF estimate …” (“are” instead 

of “contributes”). 

-p.2,l.18: vertical distribution –> the vertical distribution 

Ok 

-p.2,l.19: affects the computation of Air Mass Factor –> affects trace gas Air Mass Factors 

Ok 

-p.2,l.22-23: uncertainties in the computed tropospheric NO2 AMF for OMI are the dominant source of 

errors –> you mean: uncertainties associated with aerosols? 



Here, I mean that all the uncertainties in general included in the calculation of the tropospheric NO2 AMF 

are the dominant source of errors in the retrieval of the tropospheric NO2 Vertical Column Density. In 

addition, uncertainties related to the spectral fit of the slant column density also contribute to these 

retrieval errors. However, according to the mentioned literature, they are of lower magnitude than the 

errors associated with the AMF. 

Of course, aerosols play a big part in the tropospheric NO2 AMF errors. But, uncertainties related to the 

shape of the NO2 vertical profile, clouds and surface albedo are also significant. 

Overall, the magnitude of the error on the tropospheric NO2 column retrieval is over polluted areas mostly 
determined by the uncertainty of the air mass factor, and not by the uncertainty of the slant column fit 
(Boersma et al., 2007). We reformulated accordingly. 

 

-p.2,l.27: depending if –> depending on whether 

Ok 

-p.2,l.30: PBL –> throughout paper abbreviations are introduced several times (should be only first time), 

or abbreviations are introduced that are not further used (distracting); please check paper 

We carefully checked that all abbreviations are only introduced once through the whole paper. 

-p.2,l.35: O2-O2 spectral band –> O2-O2 absorption band? 

Ok 

-p.3,l.1: what are effective cloud parameters? 

The OMI effective cloud parameters are the OMI cloud products retrieved from the same O2- O2 visible 

absorption band assuming a simple opaque and Lambertian cloud model (single albedo = 0.8). They give 

the effective cloud fraction and effective cloud pressure. More can be read in Acarreta et al., 2004; 

Boersma et al., 2011; Veefkind et al., 2016; and Chimot et al., 2016. 

-p.3,l.26-27: The 477 nm ... individual band. –> How many DFS does the O4 band add compared to 

continuum reflectances according to this study? That’s the interesting number here. 

The statement just before, in the manuscript, mentions that the O2 band at 477 nm adds between about 

1 DFS according to the study of Veihelmann et al. (2007). 

-p.4,l.5: area –> areas 

Ok, done. 

-p.4,l.7: emphasize –> emphasis 

Ok, this is corrected. 

-p.4,l.11: the North –> North 

Ok 

-p.4,l.3: expectation –> benefit? 



Ok (I assume that l.13 was meant here, not l.3). 

-p.4,l.19-20: during daylight –> can be left out 

Ok 

-p.4,l.20: two dimensional –> two-dimensional 

Ok 

-p.4,l.24: usually –> but is this also how refl. is defined in this paper? 

For avoiding any confusion, in particular with the continuum reflectance (475 nm), we removed this 

equation which not used in the next parts of this study. 

-p.4,l.27-30: explanation of row numbers, row-anomaly and its progression can be completely left out, 

because it is not relevant; just say that all OMI data used in this study are from before the row-anomaly 

Ok 

-p.5,l.1-20: Discussion of OMAERUV out of place; should be completely moved to introduction. But why 

discuss it so extensively? Are you using the data in your study? 

We removed all the details about OMAERUV that are not used or helpful for this study. We left only the 

mention of the existence of this algorithm and its general performance (i.e. for ζ retrieval). 

-p.5,l.25: The initial purpose of this [sic] algorithm... –> You should describe your algorithm here. Later I 

understood that you use slant columns and continuum reflectances from the cloud product, but that is 

not the algorithm that you use for the sensitivity studies, right? Just describe what you are doing and say 

that you follow the same approach as the OMI cloud product. 

In order to make it more clear, we reformulated the associated (new) Sect.3.1 as follow:  

« In this paper, the aerosol Neural Network (NN) retrieval algorithms allow the conversion of the 

continuum reflectance Rc(475nm) and the O2−O2 SCD NsO2−O2  into ζ and ALP (in hPa). As a 

consequence, the NN retrievals rely on the way how the aerosol parameters modify these two variables 

and thus the photons average light path.  

Prior to this conversion, a spectral DOAS fit must be performed to derive Rc(475nm) and NsO2−O2  from 

the OMI O2−O2 477 nm absorption band. The various DOAS techniques rely on the same key concept: a 

simultaneous fit of several trace gas slant column densities from the fine spectral features due to their 

absorption (i.e. the high frequency part) present in passive UV-Vis spectral measurements of atmospheric 

radiation (Platt and Stutz, 2008). Here, the DOAS fit follows the same approach as in the OMI O2−O2 

cloud algorithm (Acarreta et al., 2004; Veefkind et al., 2016): i.e. the absorption cross-section spectrum 

of O2−O2 is fitted together with a first order polynomial: 

− ln(R(λ)) = γ1 + γ2 · λ + NsO2−O2 (λ) · σO2 −O2 + NsO3(λ) · σO3  

where γ1 + γ2 · λ defines the first order polynomial, σO2 −O2 and σO3 are the O2−O2 absorption cross-

section spectrum and the O3 absorption cross section spectrum respectively, convoluted with the OMI slit 

function, and NsO3 is the O3 slant column density. σO2 −O2 is based on measurements of the cross 



section made by C. Hermans (see http://www.aeronomie.be/spectrolab/o2.htm - file O4.txt). The O3 

cross section spectrum is included because it overlaps with the O2−O2 spectrum. The fitted parameters 

are γ1, γ2, NsO2−O2  , and NsO3. In the absence of absorbers, one may define the continuum reflectance 

Rc at the reference wavelength λ0 : 

Rc = exp(−γ1 − γ2 · λ0 ).  (2) 

The reference wavelength is specified as the middle of the DOAS fit window at λ0 = 475 nm.” 

-p.5,l.22: extraction –> fit? 

Ok 

-p.5,l.23: fine spectral features –> add: due to absorption 

Added 

-p.5,l.24: 460-490 nm –> is this the fit window? 

Yes, this is. We added this clarification. 

-p.5,l.5: initial purpose –> what is the main purpose then? what is the purpose now? 

Since the reformulation of this section (see above), these two words are now removed. 

-p.5,eq.2: Please give references for xsecs. I guess you are fitting the square of the oxygen slant column: 

I only know of O4 xsec reference spectra that have the equilibrium constant between [O2] and [O4] 

included. Why define reflectance explicitly in Eq. 1 when R in Eq. 2 is basically a sun-normalized 

radiance? I know that I am being nitpicky here (pi/mu_o disappears in the polynomial) but I prefer not to 

read unnecessary info. 

The O2-O2 xsec that we have used is based on measurements of the cross section by Christian Hermans 

(http://www.aeronomie.be/spectrolab/o2.htm - file O4.txt). 

According to your previous comments, the here mentioned Eq. 1 is now removed to avoid any confusion.  

Yes indeed, we indeed fit the square of the oxygen slant column density because of the use of the O4 

xsec reference spectra. 

-p.6,l.10-15: This entire para can be left out. You mention MAX-DOAS measurements, the Ring effect, 

radiance measurements without further explanation so this doesn’t add anything and only distracts the 

reader. 

Ok, this is removed. 

-p.6,l.18: Eq. (3) and Eq. (4) –> eqs 2 and 3 ! Please check entire manuscript on references to equations 

and figures in text (preferably before submission): there are more examples of wrong references, for 

example on p.14 and p.17 

We carefully verified the equation label numbers and their use / mention though the entire manuscript. 

Thanks for your remark! 



-p.6,l.20: what do mean with homogeneous and finite? An infinite(ly thick?) layer doesn’t seem an option. 

By “homogeneous”, we mean that all the particles present in the scattering layer have exactly same 

properties (e.g. single scattering albedo, size through the Angstrom parameter etc..).  

By “finite”, we want to emphasize that our aerosol layer is approximated by a single box layer which has 

then, by definition, a finite geometric thickness of about 1 km. Therefore, we assume that no particles 

are present above and below this box layer. This is opposite to a full vertical profile, described over the 

entire atmospheric column, which could be visualized then as multiple box aerosol layers with diverse 

thickness and optical properties. 

For more clarity, we reformulated this part as follow: 

“In this paper, the aerosol layer is assumed to be one single scattering layer (i.e. "box layer") with a 

constant geometric thickness (about 1 km). All the particles included in this layer are supposed to be 

homogeneous (i.e. same size and optical properties). The aerosol layer height (ALH) is then expressed by 

the aerosol layer pressure (ALP), in (hPa), defined as the mid-pressure of this scattering layer.” 

 

-p.6-7,sect.2.3: I have difficulty with this section and with figure 1. I think it is good to briefly describe 

the effect of aerosol parameters on slant columns and continuum reflectances. But the text and the figure 

are confusing. First, you are making forward references a couple of times. Please discus all relevant 

effects here, including effects of aerosol optical properties, which I think is important. Second, I cannot 

quite follow your use of the terms shielding and enhancement (see for example p.6,l.30-31, which I just 

don’t understand) but this may be because I am not too familiar with these terms. Third, you are 

discussing slant column and continuum reflectance as a function of AOT, ALH, and aerosol optical 

properties. But these dependencies are difficult to recognize in figure 1 because you put the independent 

variable into the color map (and sometimes you again don’t). Can you please make an alternative figure 

1 that clearly illustrates the observations in the text. 

Following your suggestion, we changed the figure 1 as follow (see below as well the new figure 1 

please):  we put the measurement variables into the color maps, while the physical variables (aerosol 

optical thickness and aerosol layer pressure - ALP) are out of them. In that way, the reader can better 

see how aerosols (both ζ and their altitude expressed in pressure) directly drive the OMI O2-O2 

measurements. Furthermore, we added 2 panels with different aerosol SSA and surface albedo 

properties. Then, it becomes more clear how these properties, in addition of ζ and ALP, affect these 

measurements. 

Finally, we reformulated in part the referred section to remove all the confusions as follow. The new 

section is now written as follows: 

“Figure 1 illustrates how aerosol particles drive the OMI O2−O2 DOAS parameters at 477 nm assuming 

cloud-free space-borne observations. These effects are obtained from radiative transfer simulations 

including aerosols and no clouds. The detailed generation of such simulations is given in Sect. 3.2. The 

DOAS fit equations following Eq. (2) and Eq. (3) are then applied on these simulated spectra. In this 

paper, the aerosol layer is assumed to be one single scattering layer (i.e. "box layer") with a constant 

geometric thickness (about 1 km). All the particles included in this layer are supposed to be 



homogeneous (i.e. same size and optical properties). The aerosol layer height (ALH) is then expressed by 

the aerosol layer pressure (ALP), in hPa, defined as the mid-pressure of this scattering layer. 

Qualitatively, aerosols have two separate effects on the average light path, and therefore on the O2−O2 

absorption signal at the top of the atmosphere (TOA). These two effects are similar as aerosols and 

clouds have on NO2 absorption signal (Leitão et al., 2010; Chimot et al., 2016): 1) a shielding effect, i.e. 

a decreased sensitivity within and below the aerosol layer due to a reduced amount of photons coming 

from the TOA and reaching the lowest part of the atmosphere compared to an aerosol-free scene, 2) an 

enhancement (albedo) effect, i.e. an increased sensitivity within and above the aerosol layer as more 

photons are scattered back towards the sensors, the part of the atmosphere above the aerosol layer is 

then sampled by a larger fraction of detected photons. Shielding then leads to a reduced O2-O2 

absorption while enhancement may increase the O2-O2 absorption especially for low cloud or aerosol 

layers. The overall effect (enhancement vs. shielding) depends on the aerosol optical properties, the total 

column ζ and ALP. 

The OMI Rc( 475 nm) is directly and primarily affected by the total column ζ of particles present in the 

observed scene. Indeed, Rc increases with increasing ζ independently of the ALP (cf. Fig. 1a). This mostly 

results from the influence of aerosols on the number of detected photons and on the additional scattering 

effects observed in the scene compared to an aerosol-free scene. However, the magnitude of this 

increase relies on aerosol optical properties and the surface brightness. As a consequence, Rc is also 

affected by aerosol ω0 , phase function, and the surface albedo A. Indeed, Rc decreases with decreasing 

ω0 and over a darker surface (i.e. smaller A value) for all the ζ values (cf. Fig. 1c and Fig. 1e). The 

importance of these parameters is further discussed in Sect. 4 and Sect. 5. Note that, in addition, the 

reflectance is also driven by the geometry angles: i.e. viewing zenith angles θ, solar zenith angles θ0 and 

relative azimuth angle φ − φ0. An increase of θ or θ0 will lead to longer average light path, and thus will 

amplify aerosol related additional scattering effects (for a given τ ). 

OMI NsO2−O2 relies on the O2−O2 absorption magnitude along the average light path in the whole 

atmosphere. It is driven by the overall shielding or enhancement effect of photons by the O2−O2 complex 

in the visible spectral range, due to the presence of particles. As depicted in Fig. 1b, NsO2−O2 decreases 

with decreasing ALP. This is a direct consequence of a larger shielding effect applied by aerosols located 

at higher altitudes (i.e. part of the O2−O2 complex located below the aerosol layers are shielded). 

Nevertheless, in case of low ζ values (i.e. ≤ 0.5), NsO2−O2 does not significantly vary with respect to 

ALP. This shows that a low amount of aerosols has very little impacts on O2−O2 absorption 

measurements.  

However, as depicted in Fig. 1b, 1d and 1f, not only ALP but also τ directly influences the slant O2−O2 

absorption since both parameters simultaneously affect the photon path distribution, and therefore the 

overall shielding or enhancement effect. An increase of ζ leads to a decrease of NsO2−O2. The slope of 

this decrease depends on the aerosol altitude (i.e. higher for particles at high altitude). Note that both ω0 

and A also affect NsO2−O2, but this effect is smaller than ζ. For example, a reduced ω0 and A lead to a 

small decrease of NsO2−O2 (cf. Fig. 1d and Fig. 1f). 

As a consequence: 

– the single parameter NsO2−O2 contains information on both ζ and ALP. These parameters cannot be 

separated from this unique variable alone. As a consequence, if ζ is not accurately known, there will likely 

be an ambiguity when analysing NsO2−O2 to retrieve ALP. 



– if an external or prior ζ estimate is not available, then the two parameters NsO2−O2 and Rc could be 

simultaneously combined to retrieve ALP provided that one can accurately and independently retrieve ζ 

from Rc. Then, in that condition, Rc may help to distinguish both ζ and ALP contributions in NsO2−O2. 

However, the simultaneous effects of aerosol ω0 and A on Rc (as discussed above), and therefore their 

associated uncertainties, will impact the feasibility of retrieving ζ from OMI measurements. It may then 

degrade the retrieved ALP performances. 

– ζ , Rc and NsO2−O2 have a non negligible correlation. Indeed, an increase of ζ results in a simultaneous 

increase of Rc and NsO2−O2. Therefore, it has to be noted that these two last parameters are not 

independent and combining them does not provide with two independent pieces of information. 

Overall, the impact of aerosol particles on the OMI O2−O2 spectral band is similar to cloud particles. This 

explains in part the difficulty to distinguish aerosols from clouds. In cases with a mix of aerosols and 

clouds, there is an ambiguity between Rc , ζ and the OMI effective cloud fraction on the one hand, and 

NsO2−O2, the aerosol layer pressure, ζ, the OMI effective cloud pressure and fraction on the other hand 

(Boersma et al., 2011; Castellanos et al., 2015; Chimot et al., 2016). Therefore, this study only focuses 

on cloud-free reflectance to avoid this complexity.” 



 

Figure 1: Continuum reflectance Rc (475nm) and O2 −O2 slant column density NsO2 −O2 as a function of τ and 

aerosol layer pressure for the following conditions: climatology mid-latitude summer temperature, NO2, O3 and H2 

O profiles, θ0 = 32◦, θ = 32◦, surface  pressure = 1010 hPa and fine aerosol particles (α = 1.5, g = 0.7): (a) and (b) 

surface albedo = 0.07 and aerosol ω0 = 0.95, , (c) and (d) surface albedo = 0.03 and aerosol ω0 = 0.95, (e) and (f) 

surface albedo = 0.07 and aerosol ω0 = 0.9. 

-p.7,l.8: 2 –> two. Please check the AMT manuscript preparation guidelines before submitting, not only 

here, but throughout the manuscript (I also read ’Tab. 2’). And check for typos. I see various typos which 

I have no time to correct. I have seen three different ways of describing ranges (’2005-2007’, ’[260:800]’, 

’[0.03-0.05-0.07]’). Also I read in several captions ’(2005, 2006,2007)’. In my pdf, the greek symbol for 

tau in the plots is not recognizable as tau! 



We corrected the writing of numbers where needed. We checked the recent guidelines. We 

acknowledged that the word “Table” should never abbreviated. We corrected accordingly (e.g. Table 2). 

We homogenized the way of describing ranges of numbers in the entire manuscript as follow: 2005-2007, 

or 0.03-0.05-0.07. 

-p.7,l.23: from –> on 

Corrected. 

-p.8,l.8: Networks –> networks 

Ok 

-p.8,l.12-13: Don’t agree: The dependence of slant columns and continuum reflectances on aerosol 

parameters can be accurately simulated with an RT model. 

In our sentence, “with accurate functions” we mean that no invertible analytical function exist that 

describes the dependence of slant columns and continuum reflectances on aerosols.  

Instead, we can accurately simulate it through the processing chain radiative transfer model + spectral 

DOAS fit. But for the conversion to vertical columns one then employs an approximate inverse model 

such a conventional Look--Up-Table (LUT) or NNs (as we did). 

In our sentence, we therefore replace “the link between the OMI O2-O2 measurements and aerosol 

parameters cannot be exactly described with accurate functions” by “no invertible analytical function exist 

that describes the dependence of slant columns and continuum reflectances on aerosols.”. 

-p.8,l.17,l.22: use non-linear consistently (not: non linear) throughout manuscript 

We corrected this in the whole manuscript. 

-p.9,l.14: The MLP ... data set –> don’t understand this sentence 

This sentence means that a MLP NN algorithm needs a well-known ensemble of dataset in order to 

perform an accurate training. We reformulated this sentence. 

-p.9,l.30: referent –> reference (throughout manuscript) 

We corrected this in the whole manuscript. 

-p.10,l.1: you have been referring several times now to average light path distributions, maybe you 

should define it because I don’t quite know how exactly ALH affects this distribution and what this means 

for your retrieval 

The notion of average light path, and how aerosols impact it, are detailed in the previous Section 2.3 

through the so-called shielding and enhancement effects. Aerosols impact the length of the average light 

path depending on the altitude of atmospheric layers that are shielded and enhanced. Since this is 

clarified there, we don’t think we need to repeat it here. We removed the word “distributions”.  



-p.10,l.2-3: The second ... quality. –> I am very confused: Are you following a two step approach for the 

NN_Rc_Ns retrieval? Fit AOT first which you then use as a fixed input for the ALP retrieval? 

No. As described on p. 9 l5-6, while the NN_ ζ,_Ns configuration uses a ζ information as input for 

retrieving ALP, the NN_Rc_Ns uses the OMI continuum reflectance at 475 nm as input information, 

instead of ζ. Therefore, no ζ information is used with this algorithm. 

Only the NN_ ζ _Ns algorithm uses an AOT information then. The choice of which AOT information use 

here is up to the user. Here, we made the choice of using MODIS AOT, as this provides the best 

information available. But, of course, it would be very possible to use the retrieved OMI AOTs as input 

instead. 

One could argue that the NN_Rc_Ns implicitly uses the OMI ζ information to retrieve ALP. Indeed, as 

explained in Section 2.3, when analyzing the O2-O2 SCD, it is crucial to be able to separate the effects 

due to aerosol height (or ALP) on the one hand, and those due to ζ on the other hand. If a prior ζ 

information from an independent instrument is not available, then the OMI continuum reflectance (475 

nm) may be used to retrieve ζ. The accuracy however strongly relies on assumptions about surface 

albedo and aerosol optical properties which drive as well the magnitude of Rc. If these assumptions are 

accurate enough, then one can retrieve a good OMI ζ which could be then used by NN_ ζ_NsO2-O2 for an 

accurate ALP retrieval.  

Since therefore, retrieving a very accurate OMI AOT theoretically means that one is able to precisely 

interpret the continuum reflectance (475 nm), one could in principle directly retrieve in one step OMI ALP 

by using the NN_Rc_Ns configuration. That would replace a 2-step approach consisting of firstly 

retrieving OMI AOT using the NN_Rc_Ns ζ retrieval algorithm, and then secondly using the NN_ ζ _Ns 

ALP retrieval algorithm with the retrieved OMI AOT as prior information. 

-p.10,l.15: what is the geometric thickness of your aerosol layer? 

The thickness of the aerosol layer, considered in all the retrievals is 1 km. We described it. 

-p.11,l.1: most relevant –> optimal? 

This is changed. 

-p.11,l.4: positive-definite –> What does this mean? Your error function is just a plain sum-of-squared-

residuals, right? Nothing special here? 

We just meant that computed error here has, by definition, a positive sign (because of the sum-of-

squared-residuals). We removed this term to avoid any confusion. 

-p.11,eq.7: why factor 1/2? 

The equation given here, of the error minimization function during the training process of the Neural 

Network algorithm follows the more general equation as defined and critically specified by Rumelhart et 

al., (1986) through the description of the Error back-propagation algorithm (described in the present 

previous sections).  

The general error minimization equation given by Rumelhart et al., (1986) is the following: 



� = 1
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Where c is an index over the cases (input-output pairs) contained in the training database, j is an index 

over the output neurons, y is the retrieved value of an output neuron while d is the true expected output. 

This general equation differs by the one given in our paper by the number of sums, two sums here (over 

the output neurons and the training cases) while only one in our manuscript (over the training cases). 

In theory, a Neural Network algorithm can contain more than one output neuron: i.e. a single NN 

algorithm can simultaneously retrieve more than one single parameter. In practice, because retrieving ζ 

and ALP from the OMI O2-O2 absorption band does not exactly require the same input parameters, we 

made the choice of one unique output neuron for each of the developed NN algorithm: i.e. each 

algorithm only retrieves one parameter, either AOT or ALP. As a consequence, only one sum remains in 

our equation (the sum over the output neurons implicitly disappears because the upper limit of the index 

j is 1). Therefore, our equation keeps the sum over the training cases and the factor ½ from the more 

general error minimization equation. 

Leaving out the factor 1/2 does not lead to different results, but that it (probably) originates from more 
general cases where the 1/2 weights this term compared to another addition to E. 
 

-p.11,l.18: you mean the last 15 iteration of 70% * 460000 iterations in total? What if overfitting is 

already present before the last 15 points? 

No. The number 70% (mentioned in line 24) refers to the percentage of the initial learning dataset (i.e. 

460 000 spectral simulations as described in section 3.2.) that is randomly extracted and then used for 

the training of each designed NN. So, about 322 000 simulations (=70% x 460 000) are then used to 

train the NNs. The verification and evaluation steps are achieved with the remaining learning dataset 

(15% each) to ensure independency. The training, step is about finding the optimal weights of the 

synaptic connections of each NN configuration. 

As described in section 3.3., the training step is iteratively performed. Prior to the 1st iteration, the 

synaptic weights are randomly initialized. Then, at each iteration, they are changed through the back-

propagation approach. By experience, the error function (cf. Eq. 7) is maximal at the first iteration and 

decreases with increasing number of iterations. Generally, through all the experiments, this error strongly 

decreases during the first 50 iterations. After that, the decrease magnitude is relatively low, although not 

negligible. Therefore, it is not expected (it is even extremely unlikely) that overfitting occurs over the first 

15 iterations. Generally, the overfitting, when identified, only occurs after the first 100 iterations. Then, 

when the training system identified an overfitting (i.e. verification step), the training process is stopped. 

-p.11,l.22: best evaluation score –> you mean for the evaluation set? 

Yes. The so-called valuation score is the error as defined in the Error Equation computed over the 

evaluation dataset ( = 15% of the entire learning database). 

-p.11,l.28: The ALP retrieval scores are significantly larger. –> But this makes sense because pressures 

are two orders of magnitude larger than AOTs? So ALP performs even better (by a factor of hundred)? 



No. As written in the caption of the figure, the direct output (or retrieved) values from the NN algorithms 

are normalized between -1 and 1. Because of the nature of the sigmoid functions, used by our algorithms 

in the hidden layer, all the input parameters are normalized between -1 and 1 to avoid the saturation of 

these activation functions. Therefore, the outputs are also similarly normalized.  

As a consequence, in the NN error back-propagation algorithm, all the trainings and error calculations are 

performed over normalized values. Then, the values of the total quadratic error E is based on same 

orders of magnitude. The plotted scores here do show then that ALP errors are, on average, larger than ζ 

errors. This confirms than the ALP training score is, in theory, less reliable (and thus more complex) than 

the ζ training score. 

Note that we did not really emphasize too much the normalization step and its reason too much in the 

text of our manuscript, to avoid to dilute too much information. We think this is a technical detail which, 

except in the caption of figure 3, does not add any value in our analyses. However, if the associate editor 

thinks otherwise, we will add it then in Section 3. 

 

-p.12,l.28-30: An overestimation ... surface. –> I am confused: a higher asymmetry parameter means 

more forward scattering (not: backward)...? 

Yes, we agree. If the assumed asymmetry parameter is overestimated (i.e. g = 0.7, while the “true” g is 

0.6), then we would expect to observe in the signal an increased forward scattering. Since, the true g is 

lower, there is actually less forward scattering (i.e. more back-scattering) than expected. Therefore, the 

retrieved aerosol optical thickness is biased negatively: i.e. the retrieved AOT is lower than the true AOT. 

To ensure clarity, we slightly reformulated these sentences as follow: 

“An overestimation of g (i.e. assumed g = 0.7 while true g = 0.6) leads to an increased retrieved ζ value 

(i.e. positive bias) as a result of less photons scattered towards the surface, and therefore more photons 

scattered towards the satellite sensor, compared to what is theoretically assumed. Reciprocally, an 

underestimation of g (i.e. assumed g = 0.7 while true g = 0.8) leads to a decreased retrieved ζ  value 

(i.e. negative bias) as a result of less photons scattered towards the satellite sensor, and more towards 

the surface compared to the assumption.” 

 

-p.13,l.3-17: I find it confusing that the way of analysing and presenting results is different when 

discussing the sensitivity to the error in the surface albedo. I would have preferred a plot in Figure 5 

similar to Figures 4 and 6. Also, I don’t understand the advantage of a box-whisker plot here: a single 

box-whisker is based on only three data points, right (three angles)? In addition, I would definitely like to 

know the direction of effects, particularly the effect of over- and underestimations of the surface albedo 

on ALP. If you want to retain the box-whisker plot (not preferred by me), then at least mention direction 

of effects in the text. 

We removed the box-plots and reproduced impacts of surface albedo on retrieved AOT and ALP similarly 

to the previous ones (see new Figures 4 and 8).  



However, as explained now in our upgraded manuscript, we kept the approach of box-whisker plots for 

evaluating the impacts of O2-O2 SCD uncertainties. Indeed, these uncertainties are precision problem (i.e. 

random error by opposite to systematic error or bias). They are mostly (but not only) related to the 

affects of instrument noise when fitting the O2-O2 SCD. Therefore, they will lead to a random error on a 

the retrieval of ALP, and thus affect the ALP precision. We explained this accordingly in our text. 

We added these elements in our upgraded manuscript: 

Sect. 5.1: 

“Errors in surface albedo also lead to biases in retrieved τ (cf. Fig. 4c). Overall, biases are larger over 

scenes with small τ values. The reason is the dominance of surface reflection in this regime. In cases of 

high amount of aerosols, then aerosol scattering signals are dominant and surface reflection uncertainties 

have less impacts. An underestimated (overestimated) surface albedo results in a negative (positive) 

retrieved τ bias. This is directly related to the change in the measured OMI Rc (cf. Fig. 1). Surface albedo 

uncertainties in the range of 0.025-0.05 lead to biases, in absolute, close to 0.5 for τ in the range of 0.0-

0.5, smaller than 0.25 for τ = 2.0. Typical differences in climatological surface albedo from the total 

ozone monitoring spectrometer (TOMS) and the global ozone monitoring experiement (GOME) 

(Koelemeijer et al., 2003), or between the Lambertian equivalent reflectance (LER) of OMI and the 

MODIS black sky albedo (Kleipool et al., 2008), are known to be up to 0.02.” 

 

Sect.5.2: 

“Surface albedo contributes to the length of the average light path and thus affects NsO2 −O2. Retrieved 

ALP biases are maximum (several hundreds hPa) for ζ ≤ 0.5 (cf. Fig. 8a and Fig.8b). For ζ in the range of 

0.5-1.0, retrieved ALP have lower absolute values (between 100 hPa and 200 hPa on average) with NN_ ζ 

_Ns, while they remain too high with NN_Rc_Ns. Over scenes with ζ ≥ 1.0, biases are reduced to 0-50 

hPa since aerosol scattering signals dominate over surface reflection. The main cause of all these 

improvements is that using an accurate prior ζ information (or at least more accurate than retrieved OMI 

ζ from Rc) allows a better distinction of ζ and ALP effects on the O2−O2 slant column density.  

An accuracy better than 0.2 must be required on prior ζ information (cf. Fig. 8c). Indeed, a ζ bias of 0.25 

can impact, in absolute, the retrieved ALP up to 50 hPa for τ in the range of 0.5-1.0. For τ ≥ 1.0, ompact 

on ALP almost becomes null. Therefore, using MODIS τ as prior to NN_ ζ _Ns is likely expected to show 

retrieved ALP with a higher quality O2−O2 than with NN_Rc_Ns. Indeed, the current retrieved OMI ζ from 

Rc are below the MODIS τ accuracy.” 



 

Figure 4: Simulated τ (550 nm) retrievals, based on noise-free synthetic spectra with aerosols, as a function of true 

τ . The assumed geophysical conditions are: temperature, H2O, O3 , and NO2 from climatology mid latitude summer, 

θ0 = 25◦ and θ = 25◦, P s = 1010 hPa. All particles are located between 800 and 900 hPa and α = 1.5. Note that the 

scenarios with lines and similar symbols general tend to fall on top of each other. The reference aerosol scenario is 

plotted with continuous lines and circle symbols and includes consistent aerosol optical properties with the 

supervision dataset used to train the neural network algorithm: i.e. ω0 = 0.95, g = 0.7. All the retrievals are 

achieved with the NN algorithm trained with ω0 = 0.95: (a) Sensitivity of τ (550 nm) retrievals to the aerosol single 

scattering albedo (ω0 = 0.95, 0.9 or 1.0), (b) Sensitivity of τ (550 nm) retrievals to the aerosol asymmetry 

parameter (g = 0.6, 0.7 or 0.8), (c) Sensitivity of τ (550 nm) retrievals to a surface albedo bias (∂Alb = 0.0, -0.025, 

0.05) with ω0 = 0.95, g = 0.7. 



 

Figure 8: Simulated ALP retrievals, based on noise-free synthetic spectra with aerosols, as a function of true τ . The 

retrievals are achieved with the NN configurations (N NRc,N s and / or N Nτ,N s ) (see Sect. 3.1) trained with ω0 = 

0.95. The assumed geophysical conditions are: temperature, H2 O, O3 , and NO2 from climatology mid latitude 

summer, θ0 = 25◦ and θ = 25◦ , Ps  = 1010 hPa. The reference aerosol scenario assumes fine scattering particles (α 

= 1.5, ω0 = 0.95, g = 0.7) located between 800 and 900 hPa: (a) and (b) Sensitivity of ALP retrievals to a surface 

albedo bias (∂Alb = 0.0, -0.025, 0.05) with N NRc ,N s  and N Nτ,N s , (c) Sensitivity of ALP retrievals to a τ bias (∂τ 

= 0.0, -0.025, 0.05) with NNτ,NsO2 −O2. 

-p.13,l.19: You haven’t discussed figures 5b and 5c yet! 

Please note that, according to the previous remark, we changed these figures 5a, b and c. 

-p.13,l.20-21: For scenes ... 100 hPa. –> But in this AOT range I see biases up to 300 hPa? 

Here we are only referring to cases where no error on aerosol properties and surface albedo are included 

(cf. continuous lines with circles in the plots which are associated with reference cases). The biases up to 

300 hPa in this ζ range appear when including errors in the assumed aerosol SSA. We move this note 

from the end to the beginning statement. 

-p.13,l.25: entire learning database –> you mean: the independent data set? 

No. We really mean here the entire learning database (i.e. training-verification-evaluation, cf. section 3.3) 

which is used to train the NNs, avoid overfitting and identify the optimal NN architecture. We added the 

clarification. 

-p.13,fig.6: Why are there large biases when there are no forward model errors (no error in SSA or g)? 

These are closed-loop, noise-free simulations so the truth should be retrieved? 



We think that being in a “closed-loop” condition is not enough in this case. Approaches like machine 

Learning (e.g. neural Networks) or interpolation within a Look-Up-Table (LUT) can be seen as a retrieval 

method based on an off-line forward (radiative transfer) model. This means that the explicit use of a full 

physics radiative transfer model for each single synthetic spectrum is here replaced by an approximate 

model, which tries to predict the behaviour of the real model for a given set of input parameters. The 

retrieval approach relies then more on a regularization process which resolves the retrieval problem from 

a statistic point of view (i.e. the most likely output associated with the set of all combined inputs), with 

an approximate (or more simple) model without iteration. 

Bayesian retrieval approaches, such as the Optimal Estimation Method (OEM), might be able to retrieve 

the truth on academic cases (noise-free spectra and very low ζ) as 1) they use an exact and full physics 

forward model directly on-line for each synthetic case study, 2) prior knowledge and parameters are 

weighted with their corresponding uncertainties, 3) the non-linear problem is linearized around the prior 

information, 4) iteration is generally performed until the residuals are low enough (below a given 

threshold). Contrary to approaches based on off-line model, such an on-line forward model approach 

tries to fit all the details / fine structure present in the combination of input set of parameters (by 

opposite to regularization techniques). 

However, OEM approaches may encounter other problems: e.g. the iterative process (in cases of very low 

ζ) may not converge, and thus no solution may be delivered to the addressed retrieval problem. Such a 

so-called divergence problem is not accessible by regularization processes (e.g. NNs). 

NNs can be seen, at a high level, as an optimal interpolator (compared to a more conventional 

interpolation within a LUT). The large (negative) biases in ALP retrievals over cases with low AOTs, can 

be interpreted as our inability to interpret very minor changes in O2-O2 SCD. This is very similar to the 

problems of OMI effective cloud pressure in cases of very low effective cloud fraction. As described in 

different studies, OMI effective cloud pressures, which are retrieved through a LUT, are generally largely 

(negatively) biased in these conditions (Acarreta et al., 2004; Chimot et al., 2016; Veefkind et al., 2016). 

The negative sign of the retrieval biases in those cases may be related to the specific curvature of the 

solution space in those regimes. 

-p.14,l.3: on –> in 

Ok 

-p.14,l.8-16: I don’t really see a systematic improvement in ALP retrievals when using a priori AOT in 

case the aerosol model has a bias (for example, when g=0.8 yes but when g=0.6 no). 

It is true that using an accurate prior ζ value as input, there is no systematic improvement ALP retrievals. 

However, major improvements occur when there were already large biases (more than 50 hPa) when 

using the continuum reflectance (475 nm) Rc. When biases with the use of Rc are less major (i.e. smaller 

than 50 hPa), the improvements are not significant anymore. 

However, because, the use of AOT already helps to significantly improve cases with large biases, we can 

conclude that it is better (and therefore recommended) to use AOT instead of Rc as input for ALP 

retrieval. 

-p.14,l.18: eq. 11? Please check all figure ad equation numbers, there are more wrong references. 



We carefully and corrected, where necessary, all the equation and section numbers. 

-p.14,l.22-26: This is an example of repetition; I would leave sentences out. 

These sentences summarize and give all the major arguments justifying the use of a prior accurate ζ as 

input for a correct ALP retrieval. Because these information are not exactly given, or only partially, in the 

previous analyses, we would prefer to leave these final and important conclusion at this place. 

-p.14,l.26-28: Where do these SC precision values come from? Give ref. Are these values typical for OMI 

instrument noise? But then for each scenario there is only one typical SC error as it only depends on the 

radiance and no range should be considered, right? How can a random error in SCs lead to ALP biases? 

Why don’t you take into account the noise error in your other input parameter? Your remark on the 

temperature correction seems out of place. 

The O2-O2 SCD precision numbers that we considered come from the most typical values encountered in 

the OMI NASA O2-O2 product (we made a basic histogram analyse to identify their most likely ranges). 

The O2-O2 SCD precision is typically related to the impact of the OMI noise instrument on the O2-O2 fit. Of 

course, it also includes other uncertainties, such as those related to the employed DOAS approach in the 

O2-O2 absorption band. We replaced “ALP biases” by “ALP uncertainties”. We do not see the reason to 

take into account a noise error in the other input parameter. The impact of surface albedo and ζ errors 

are already analysed previously. For these parameters, we assumed them more as geophysical parameter 

errors which may have specific spatial and/or temporal patterns (contrary to a noise which, by definition, 

presents a random pattern). Therefore, these errors would lead directly to a bias on the ALP retrieval 

instead of a precision impact. An illustration is given in Section 6 with the OMI surface albedo which 

include some aerosol residuals. These residuals lead to some specific patterns in the ALP retrievals as 

observed in Fig. 11. 

We removed the remark about the temperature correction, since this is mentioned later on, in the Section 

5. 

-p.15,l.4: Can you give some more details here about the area that you selected (latitude and longitude? 

How many pixels passed selection? How many ALP data points went into the seasonal averages. 

The considered area is defined by the range of latitude 25-40 deg North, and longitude 110-130 deg East 

excluding the part over the Gobi desert which presents a too bright surface (as explained in Sect. 4.2 and 

6.1). 

As already mentioned in Sect. 6.3 (former Section 5.3), when comparing OMI ALH results with LIVAS, 

about 17% of the pixels passed the selection in summer and spring, and between 5% and 6% in winter 

and autumn. This leads to about 77 000 OMI observations in spring and summer, and about 20 000 in 

winter and spring. 

-p.15,l.19: Applying ... scenes. –> repetition 

Ok, this is removed. 

-p.15,l.21-22: However... as well. –> then why do you apply the OMI cloud fraction threshold...? 



By applying simultaneously OMI and MODIS cloud fraction threshold, we maximize the probability of 

filtering out OMI cloudy pixels. According to past studies [Boersma et al., 2011; Castellanos et al., 2015; 

Chimot et al., 2016], we know that OMI observation pixels with an effective cloud fraction larger than 0.1 

are more likely to contain clouds than aerosols. If, the MODIS cloud fraction is lower than 0.1, but OMI 

effective cloud fraction is larger than 0.1, we preferred to reject this pixel. Such cases might happen since 

OMI and MODIS pixels do not always strictly overlap, and thus apparent “inconsistencies” between OMI 

and MODIS cloud detection might be observed. 

-p.15,l.25-: I find your discussion of the temperature correction and later sensitivity tests completely out-

of-place (particularly as you show results of it in the final most important figure). Also, I don’t understand 

how you do the temperature correction. Is Ns_O4-meas the slant column you get from the OMI cloud 

product? How do you use NCEP temperature profiles to calculate gamma? This factor clearly depends on 

the aerosol conditions, which you are trying to retrieve? I guess the physics of this temperature 

correction is well understood, apparently not part of the OMI cloud product and Veefkind et al. 2016 

describe that users should apply it. So applying the temperature correction is always better and doesn’t 

present a source of uncertainty for your ALH retrieval. 

We shortened our discussion on the temperature correction and mostly included it when analysing the 

spatially and seasonal ALH average retrievals. Ideally, for each single O2-O2 SCD measurements, a NCEP 

temperature profile (the spatially closest one) has to be used to compute the so-called gamma factro and 

then apply it for the temperature correction. That being said, theoretically, by definition of the gamma 

factor, this correction would depend on aerosol properties (typically ζ and ALP). 

However, we found out that in cases of aerosols (contrary to effective cloud retrievals as performed in 

the OMI O2-O2 cloud algorithm), the gamma values does not vary (or very barely) with respect to ζ and 

ALP variability, at least in the ζ range of 0.0-2.0. It is mostly changing with NCEP temperature profiles. 

The reasons are double:1) the magnitude of aerosol optical thickness (between 0 and 2) is way lower 

than typical cloud optical thickness (at least 1 order less), 2) the range of 0-2 of aerosol optical thickness 

somehow depicts low changes (and then more higher stability) than changes in cloud optical thickness. 

Therefore, for convenience and low computing time, we considered for all the OMI observations similar 

aerosol properties (typical optical thickness of 1 and ALP = 800 hPa). 

Also, as indicated in our written text, for practical reasons (implementation and computing time), we 

considered a spatial-seasonal average NCEP temperature profile which is then applied for computing the 

gamma factor for each single ALP / ALH retrieval.  This may have some impacts (order of about 50 m) on 

single retrieval result. But the impacts on the average ALH results are expected to be minimal. 

-p.15,l.8: geophysical location –> grid box? 

We assumed that you meant p.16 here. This is changed. 

-p.15,l.15: Note that ... –> So what does this imply? 

This is to justify why we considered here the MODIS Black Sky albedo, and not the White Sky albedo. 

-p.15-16,sect.5.2: I stopped reading this section in detail. A few general remarks: There are several 

forward references to figures hat have not yet been explained. Some figure numbers are incorrect. When 

investigating the effect of the surface albedo input on the retrieved AOT, I don’t see the reason why you 



should split the analysis per season (perhaps personal taste). Are MODIS AOT and MODIS BSA truly 

independent? 

We reformulated where necessary this section to make it clear. Please read the new Sect.~6.2. We only 

illustrate the impact of surface albedo for the autumn season. The impacts are somehow similar for all 

the other seasons. 

As explained at the end of our Sect.6.2., OMLER and MODIS BSA can be expected to present some 

differences and thus independences: OMLER likely includes some aerosol and cloud residuals, MODIS BSA 

is the integration over the full hemisphere while OMLER includes most (and only) the viewing angles 

encountered by OMI, and the assumed solar reference zenith angle in MODIS BSA is likely inconsistent 

with the true OMI local observation time. 

-p.17,l.27: polarization –> Your RT calculations for the LUT excluded polarization effects? 

Yes, indeed it did not include polarization since the OMI measurements are depolarized (because of the 

use of a scrambler). However, we wanted to acknowledge that not using polarized simulations, in the 

learning database, may lead to some errors (likely of the order of 2% in the Visible according to 

reference studies). This should be investigated in a future work, since this is out the scope of the present 

study. 

-p.17,l.31-32: MODIS tau ... OMI tau. –> Can you provide refs? 

Yes, we added the following references about the overall quality of MODIS ζ in the new Section 2.2 as 

follow: 

“The expected error of MODIS DT ζ is about ±0.05+15 % over land (Levy et al., 2013). The "Deep Blue" 

retrieval algorithm has been developed to complement the DT algorithm by retrieving ζ over bright arid 

land surfaces (e.g. deserts). The typical associated uncertainties are about ±0.03 on average (Sayer et 

al., 2013).” 

-p.18,l.4-9: You discuss the variability in your set of ALH pixels, but what does this tell you? Isn’t it 

obvious that the variability decreases when you use the setup with fixed AOT: there is one free 

parameter less? This doesn’t show that those retrievals are more accurate. Isn’t it obvious that the 

variability decreases with higher AOT as the aerosol signal is more stronger...? But there is an interfering 

effect of the geophysical variability! Perhaps low-AOT aerosols are typically closer to the ground (BL 

pollution) while high- AOT aerosols are extreme events that reach into the free troposphere? Don’t know. 

I am not sure that, by just looking at this figure alone, we can say this is obvious that using MODIS ζ as 

input should decrease the ALP variability. Or at least, this only becomes obvious thanks to the analyses 

achieved on synthetic cases as described and summarised in Sect. 5.2. Only thanks to these analyses, we 

know that retrievals at low ζ  presents some instabilities due to a very low O2-O2 absorption signal.  

To have an idea about the true geophysical variability included in LIVAS, we added the thick black line: it 

shows the expected variability of ALH as seen by LIVAS over the same area. This variability seem to be 

independent of seasons and is about 700 m. ideally, we should expect then our ALH retrievals to show 

varibility as close as possible to this black line. We discussed it in our updated manuscript and as 

response to one of your main remarks above. 



The methodology of deriving the LIVAS variability is given below (next remark / answer). 

-p.18,l.20: Spatial average ... performed. –> How do you compute ALH from extinction profiles? How do 

you compute the spatial average? Do you take into account the sampling of your OMI pixels? I mean, if 

for a given location you have, say, twice as many OMI pixels in summer than in winter, do you take this 

into account when calculating the LIVAS average. Please at least explain exactly what you did. 

The LIVAS ALH is derived from the given averaged vertical profile of aerosol extinction (532 nm) σ(l) over 

each vertical layer l defined by its altitude h(l) as follow: 

 

 

 

Since LIVAS also provides the standard deviation associated with each averaged vertical profile of aerosol 

extinction (532 nm) ∂σ(l), the equivalent standard deviation of each LIVAS ALH ∂ALH is derived as follow: 

 

 

 

where ∂z(l) is the geometric thickness of each vertical layer l. 

We added these equations in our new Sect.2.3. 

We did not take into account the potential discrepancy between the number of OMI pixels and CALIPSO 

pixels included in LIVAS, and therefore their specific sampling. Of course, satellite observation resolution 

and samplings should have an impact. However, fully addressing in this unique study the problem of 

representation error between OMI and LIVAS (which is derived from CALIPSO observations) is a real 

work in itself which is currently out the scope of this project. 

-p.20,l.14-15: You state that the NN with AOT as a fixed input performs better. But comparing figure 16b 

and 16d, this holds for the red and purple lines (SSA 0.95), but the opposite is true for the green line 

(SSA 0.9) and the blue line is undecided. Yet, previously you argued based on the comparison of AOTS 

that an SSA of 0.90 is probably the more accurate value in three seasons. So I think this conclusion 

cannot yet be drawn. 

I don’t think that, in general we have the right to focus on 1 single colour line precisely is appropriate. 

What really matters here is the spread of the overall / global retrievals due to assumptions on aerosol 

optical properties (in particular single scattering albedo) which are the most crucial assumptions 

impacting the spread of our results. The chosen surface albedo being of lower order of magnitude. 

Indeed, we stated that, on average, a ω0 of 0.9 ( in particular in spring, autumn and winter) is likely a 

more reasonable value than 0.95 (upper limit in this region). Since, there is not accurate aerosol ω0 

value available for each individual OMI observation pixel, we do not have the choice but to use a constant 

ω0 value to all the OMI observations. However, using a constant ω0 value leads to substantial errors in 

the ALH results (biases and precisions). Therefore, even if the green line looks to overlap with the LIVAS 



line when using NN_Rc_Ns, I don’t think we can directly conclude that the retrievals are here very good 

in this framework. 

What mainly matters here, because again of how assumed SSA values are employed here, is the spread 

between the lines associated with ω0 0.9 and 0.95 when using NN_Rc_Ns and NN_ ζ _Ns algorithms. 

This is because this spread significantly reduces from NN_Rc_Ns to NN_ζ_Ns, that I think we can 

conclude that the NN_ζ_Ns fits ALP / ALH better. But this algorithm also fits better because we use an 

accurate ζ prior information, provided by MODIS. If we are able to retrieve very accurate ζ from every 

OMI single pixels, the NN_Rc_Ns algorithm would probably correctly fit ALP / ALH as well. 

-p.29,fig.1: What is azimuth difference (throughout)? Does H2O absorb in your fit window? Then why isn’t 

it included in the DOAS fit? At what wvl should I interpret TAU? 

The relative azimuth difference is the difference between the viewing azimuth (of the OMI satellite) and 

the solar azimuth angle. This is already defined in our paper in Sect.~3.2. 

It is known that the H2O absorption is very low in this spectral window. Since, O3 and O2-O2 are the 

dominant absorption gases here, we did not consider the fit of H2O SCD. Note that, similarly, this gas is 

not considered in the OMI cloud algorithm. 

As indicated in the text, and in most of the captions, ζ (i.e. AOT) should always be interpreted at the 

reference wavelength 550 nm. We verified that this information is always clarified though the entire 

manuscript. 

-p.30,table2: I don’t understand this figure. For example, the ALP test error for a given NN configuration 

is the sum-of-squared differences (eq. 7) for all the scenarios in the test set (the 15%). This is one 

number. But then you repeat the training three times. So you have three numbers. Did you calculate box-

whiskers from only three points? That doesn’t seem right. 

-p.33,fig.4: In left panel, can you add also SSA = 1.0 simulation? You have tested positive and negative 

errors in the asymmetry parameter as well? Can you make axes in the right panel such that the 1-1 line 

corresponds to the diagonal?  

The case with ω0 = 1.0 is now added. 

By testing cases with g = 0.6 and g =0.7, while the NNs are trained over a database with g = 0.7, we 

already indeed considered positive and negative errors in the asymmetry parameter. We found out that 

making the axes such that the 1-1 line would correspond to the diagonal does not lead to nice plots. 

Indeed, depending on the magnitude of the retrieved ζ biases, we may have parts of the plots empty / 

white on the right or left part of the figures which would give strange and diverging feeling to the reader. 

Instead, we added the remark, in all the captions, that continuous lines with the circle symbols should be 

considered as the reference. Indeed, the aerosol properties are consistent between the tested cases and 

the NNs trainings. And they do not include any bias on the input surface albedo. Therefore, any gap 

between these lines and the others, refer to a (negative or positive) bias in the plotted retrievals. 

-p.39,fig.10: I see many more lines in the plot than in the legend? Can you make the plot line colors the 

same for the same surface albedos in the top and bottom row? I don’t think the differences between the 

OMLER and MODIS BSA are significant, do you? 



We remove the two plots at the top. Showing the impact of aerosol residuals in the OMI surface albedo 

for only one season (e.g. Autumn) is enough. Similar effects are found for the other seasons. 

-p.40-41,fig.12-13: It took me some time to realise that -for unclear reasons- these figures are split 

whereas they should be merged? The color map labels are not visible? The tau symbol is not a tau 

symbol? 

There are 2 basic reasons why to split the figures as you mentioned: 

- putting all the 4 seasons (x 4 panels) on the same page via LaTex leads to a reduction of their global 

size, and thus make them less visible for the reader. 

- Also, since summer seem to depict better retrieved AOT results assuming SSA = 0.95, it may make 

sense to separate it from the other seasons where assuming SSA = 0.9 seems to be more accurate. 

 

 


