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We thank Referee #1 for his / her very comprehensive and valuable comments. They give us the
opportunity to solidify our different interpretations based on our results and to improve our manuscript.
Below we address them one by one (Referee #1 comments in blue, author and co-authors in black).

Review of An exploratory study on the aerosol height retrieval from OMI measurements of the 477 nm
0,-0, spectral band, using a neural network approach

The authors present a study exploring the retrieval of an aerosol layer height parameter from OMI
measurements of the 0,-O, band in the visual wavelength range. They follow basically the same
approach as the OMI 0,-O, cloud algorithm but use a neural network to replace the traditional look-up
table. Sensitivities of the retrieval to assumptions related to the aerosol optical properties and the surface
albedo are investigated. The algorithm setup has been applied to three years of OMI data and seasonal
averages are compared with MODIS aerosol optical thickness and climatological aerosol heights from the
LIVAS CALIPSO climatology.

In my opinion, the paper presents interesting and substantial work that in principle warrants publication
in AMT. However, I feel that there are a number of major issues that should be addressed before I can
commend publication. Major and minor comments are listed below. I would appreciate if these are
addressed point-by-point and a diffversion of the manuscript is provided together with the replies. In
addition, I struggled with the style and the structuring of the manuscript, which made it hard at times for
me to quickly understand what the authors are trying to say. I give examples of this below. I realise that
this is partly a matter of personal taste, but I strongly encourage the authors to use these comments to
critically look at the entire manuscript. It would help the reader to better understand and appreciate the
authors’ valuable work.

We took into account all the comments and questions asked by Referee #1 below. We reformulated
where necessary according to the remarks and question, in order to ensure a better clarification. More
details on these reformulations are given below where appropriate.

Major comments

-A look-up table is generated and used to train a neural network, which is in turn used in the retrieval
instead of the original look-up table. This lowers memory demands and increases computational speed.
In my opinion this is a very good application of a neural network. However, in your extensive general
discussion of neural networks you suggest that you use a neural network to resolve the ill-conditioning of
the inverse problem. For example, p.7,1.30-p.8,1.2., particularly in p.8,1.16 and again in the conclusion on
p.21,.6. This is clearly not what you do. Your neural network is trained with simulated data, so all the



physical relations between input and output contained in your neural network are already explicitly
described in the RT model, and strong assumptions on the aerosol model, the vertical distribution of the
aerosols and the ground surface are still a priori inputs for your retrieval. I think the text should be
changed to really avoid giving the reader this wrong impression. Also, I don’t quite see why interpolation
in a look-up table should be less accurate than ‘interpolation’ in a look-up table with a neural network
even in the case of non-linear data.

We thank the reviewer for this comment! We verified what we wrote in these mentioned pages. And we
only found the reference to “ill-conditioning of the inverse problem” on p.7, 1.30 “The Multilayer
Perceptron (MLP) neural networks have been widely used and acknowledged for decades in the field of
remote sensing (Atkinson and Tatnall, 1997). Indeed, most retrieval problems in this field are ill-posed
and nonlinear”. On p.8,1.16 and p.21,l.6 we do not address the ill-conditioning problems through the NNs
but compare the advantages of Neural networks (NN) with respect (w.r.t.) Optimal Estimation Method
(OEM) in terms of high speed processing and optimized interpolation techniques:

- “The choice of a NN approach relies on their advantages compared to more conventional
methods such as linear regression, linear interpolation in a LUT or the Optimal Estimation
Method (OEM). In particular, it enables 1) very fast computations with modern computers in
spite of the number of required parameters, 2) optimized interpolation technique even in
case of non linear problems as the NNs are better able to reproduce the curvature between
the LUT nodes therefore lead to lower systematic biases compared to a linear interpolation,
3) reduced memory use compared to a LUT with a very high sampling” (cf. p.8, .14-19).

- “In spite of the high computing time due to the learning database creation and the training
of these algorithms, very fast operational processing is allowed. Such processing is much
faster than approaches relying on the Optimal Estimation Method and employs more
optimized interpolation techniques than a classical linear interpolation within a LUT” (¢f. p.21,
1.6).

Based on the many references available and cited here, these aspects are correct.

We do not mean that the use of a NN, like we did, explicitly resolve the ill-conditioning aspect of the
inverse problem: “The Multilayer Perceptron (MLP) neural networks have been widely used and
acknowledged for decades in the field of remote sensing (Atkinson and Tatnall, 1997). Indeed, most
retrieval problems in this field are ill-posed and nonlinear, in particular the atmospheric ones. Thus, the
associated inverse problems can only be addressed by including a priori information and relying on
statistical analysis. Since aerosol retrieval from passive spectral measurements is well-known as a non-
linear inverse problem, the MLP technique represents then a powerful approach to design a retrieval
algorithm in a fast and robust way.” (cf. from p.7, 1.29 to p.8, 1.2). However, at a high level, similarly to
the OEM approach, it deals (or can deal) with this aspect by relying on prior information, either explicitly
(i.e. prior input parameter given to the retrieval algorithm) or implicitly by assuming some assumptions:
typically the choice of our NNs rely on our assumed Single Scattering Albedo (SSA) value, either 0.9 or
0.95. Nevertheless, the way of how to deal with all these prior information differs depending on the
numerical approach which is employed: For example, in the OEM, prior parameters are generally given
with associated prior errors while these errors are not used by NN or Look-Up-Table (LUT) approaches.

To be sure to avoid any confusion, we clarified this issue in our manuscript.

A conventional interpolation within a LUT is strongly sensitive to: 1) the interpolation technique (e.g.
linear interpolation, spline cubic interpolation), 2) the resolution or sampling of your LUT. Regarding 1),
there is in general very little arguments to support the interpolation technique selection. In general, the
linear interpolation is likely the fastest interpolation technique and least dependent on (arbitrary)
specifications such as which dimensions are interpolated first and which last. Regarding point 2), for a
given problem, a very coarse LUT can lead to substantial numerical biases independent of your



interpolation technique, like with the previous version of the OMI cloud LUT [Chimot et a/, 2016;
Veefkind et a/,, 2016]. In principle, we would say that an infinite high resolution LUT could do as good as
a Neural Network. But, such a LUT is impractical. If 1) the training database includes a high enough
number of cases to learn (here OMI 0,-O, and aerosol spectra simulations), 2) it is representative
enough of the most likely cases to be encountered by the retrieval system, 3) the number of cases is
greater than the number of degrees of freedom of the problem and the variability characterized by the
combination of all the cases, then a NN is expected to be more accurate than a coarse (or too limited
resolution) LUT.

Inverse problems with a LUT should, in general, demonstrate that the resolution specified in all the
dimensions (and the combined dimensions altogether) is high enough for a given problem. This is, in
general, very difficult to establish.

- An important figure is Figure 16. You are showing the seasonal dependence of ALH for your OMI
retrievals and as derived from many years of CALIPSO retrievals. The amplitude of the seasonal variability
in the LIVAS ALHs is only about 0.5 km and I am wondering whether that seasonal variability is picked up
by your OMI retrievals. After all, biases due to wrong assumptions on the aerosol model are of the same
order of magnitude or even larger. What makes Figure 16 a bit deceptive in my view is that you plot four
lines showing OMI ALP retrievals for slightly different settings. These lines are obviously dependent and
therefore correlate. At first sight, the overall consistency between the collection of plot lines suggested to
me that you are indeed picking up the seasonal variability. But when having a closer look, I am not
sure... the apparent consistency may be visually driven by these OMI ALP lines. In practice, you would
pick some optimal retrieval setting based on sensitivity studies, literature etc. and do the retrieval, or you
would perhaps run the retrieval for several retrieval settings and then take the average. I really think that
for a proper comparison of LIVAS ALHs with your OMI ALHs, a figure like Figure 16 should therefore
basically contain one panel with only two lines: one for LIVAS ALP and one for your best OMI ALP. Can
you change Figure 16 (the effect of temperature corrections is not a key point of your paper and the
effect of surface albedo and SSA could then be moved to a separate plot)? I fear that the agreement
between OMI ALH and LIVAS ALH will look less convincing with only four pairs of points, but it is more
realistic.

Thanks for your good remark here! This allows us to emphasize better the key points messages of this
figure.

We modified Figure 16 in such a way that the impact of the mentioned parameters (detailed below) are
now more explicitly and easily visible. We only have 4 panels, each panel showing results:

- for 1 specific NN retrieval algorithm, either based on the OMI continuum reflectance (475 nm) Rc (¢,
NN_Rc_Ns0,-0,), or based on MODIS aerosol optical thickness, or ¢ (550 nm), Dark Target Land as a
prior information (¢f. NN_ C_NsO,-0,).

- for 1 specific prior surface albedo database: either OMLER, or the MODIS Black Albedo.

Each of these panels only represents 1 line with 4 points associated with the Aerosol Layer Height (ALH)
of LIVAS per season and, over it, the spread of our spatial-seasonal averaged OMI ALH retrievals
between our 2 aerosol Single Scattering Albedo (SSA or w0) assumptions: /e a lower limit of 0.9, an
upper limit of 0.95. This spread is coloured in grey, with the upper limit depicted in red while the lower



limit is depicted in blue. All these panels depict retrievals where a temperature correction has been
applied to the OMI 0,-0, slant column densities (SCD), named here after NsO,-O, prior to the retrievals.

To set up the best retrieval setting for each individual OMI 0,-O, observation is, at this stage, impossible
as it requests to use an accurate aerosol model. By an accurate aerosol, we mean here the one
describing accurately (in particular) the optical properties of the particles (e.g. w0). However, 1) no
accurate w0 information is available for each OMI individual observation pixel, and 2) w0 likely
significantly varies spatially and temporally. Instead, we designed and trained one NN algorithm for each
assumed w0 value. And then, these algorithms are applied directly over all the OMI pixels. This is
equivalent of assuming a constant w0 value for the ensemble of all OMI O,-O, observations. Note that
the chosen w0 values are based on literature mentioned in our manuscript.

Assuming “only” two w0 values is not representative enough to perform an average. Therefore, we think
it is more appropriate to depict the gap of the spatial-seasonal OMI ALH average due to the 2 (lower-
upper) assumed w0, and the location of the LIVAS black line within this gap.

For these 4 panels, we can confirm all the following elements:

- assumptions on the forward aerosol model (for the creation of the supervision database) lead to the
highest impacts on the ALH retrievals. This is mostly related to the ability of the corresponding NN to
interpret the combined scattering and absorption of aerosols affecting the NsO,-O,. Assuming OMLER
surface albedo, differences between average ALH retrievals with w0=0.95 and w0=0.9 are in the range
of 540-1200 m with NN_Rc_NsO,-0,, and 560-660 m with NN_ {_NsO,-0,.

- assumptions on chosen surface albedo (OMLER vs. MODIS Black Sky Albedo) also change the spatial-
seasonal averaged ALH retrievals. Related differences in the retrievals are in the range of 0-730 m with
NN_Rc_Ns0,-0,, and 0-180 m with NN_ C_NsO,-0,.

- Although not shown here anymore, we remarked that applying the temperature correction on NsO,-O,
is crucial as it corrects the retrievals between 50 m and 300 m.

In general, largest differences between the spatial-seasonal averaged ALH and LIVAS are found with w0
= 0.95, in the range of 650-1140 m with NN_Rc_NsO,-0,, and 260-800 m with NN_ {_NsO,-0,. With w0
= 0.9, differences are reduced to 180-310 m regardless the NN algorithm.

Independently of the chosen NN configuration, the impacts due to assumptions on w0 (and in general,
the aerosol model) are the most crucial ones. They lead to the highest biases on the ALH retrievals. The
use of two different surface albedo dataset (cf. OMLER and MODIS Black Sky), although not negligible,
has somehow reduced impacts.

Because of the reduced gaps between the ALH retrievals with w0 = 0.9 or 0.95, the more reduced
impacts related to the chosen surface albedo database, and the reduction of the encountered maximum
differences with respect to (w.r.t.) LIVAS ALH, NN_ C_NsO,-0, is actually the algorithm depicting the best
ALH retrieval results. This is likely the case because this configuration uses more accurate prior aerosol
¢(550 nm) information (coming from MODIS ¢ Dark Target land product). Please see more details about
this specific point below (our answers to your point number 4).
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Figure 17: Comparison of the average of the OMI aerosol layer height (ALH) retrievals obtained over scenes with
collocated MODIS (550 nm) > 1.0, with the LIVAS ALH climatology database. The retrievals are achieved over
North-East Asia for cloud-free scenes, over 3 years 2005-2007, and for the 4 seasons. OMI and MODIS Black Sky
surface albedos are considered alternatively. The 2 NN OMI ALH algorithms are used (see Sect. 5.1): NN_Rc_NsO-
0, based on OMI Rc(475 nm) and ) NN_ {_NsO,-O, based on MODIS ¢ (550 nm). A temperature correction is applied
to the OMI NsO,-O, prior to the retrievals (cf. Sect 6.1): (a) NN_Rc_NsO,-O; algorithm and OMLER surface albedo,
(b) NN_Rc_NsO0,-0; algorithm and MODIS Black Sky surface albedo, (c) NN_ {_NsO,-O, algorithm, and OMLER
surface albedo, (d) NN_ {_NsO,-O, algorithm and MODIS Black Sky surface albedo.

-In your analysis you assume that climatological CALIPSO profiles are the truth and you focus then on
biases. I am willing to follow your assumption for the moment but I think presenting the story like this is
too optimistic on the error in retrieved ALH for an individual pixel (which is what you would need for
scatter corrections). (Again, I am making a point of this because you repeat bias values in the abstract,
p.1.,1.9-10.) In the sensitivity analysis you identify several error sources that affect retrieved ALP (aerosol
optical properties, surface albedo, neural network implementation). Together they form something more
like a random error. When calculating biases as you do these random errors are averaged out. In my
view, you should also report the root-mean-square and the standard deviation of the differences (as in:
rms**2 = bias**2 + std**2). This gives a more complete estimate and breakdown of the ALH error as
derived from the evaluation with LIVAS ALHs. In addition, a scatter plot of OMI ALH vs. LIVAS ALH would
definitely help the reader a lot here. As a final note, I would need to do some more thinking on the
implication of assuming climatological (Ze. averaged values) for your analysis. You make a strong point of
ALH retrieval to support scatter corrections in trace gas retrievals. What would be needed then are ALH
retrievals that capture exceptional events not represented by climatological averages, right? See point
below.



Because of the climatology nature of the LIVAS database and of our OMI ALH retrievals, their difference
in terms of sampling (which leads then to additional representation errors) and their associated spatial-
seasonal average, we do not think it is very appropriate to depict a RMS as you are proposing. One of the
reasons, as mentioned above, is that applying a constant w0 value to the whole ensemble of OMI
observations may create specific spatio-temporal patterns in the retrievals. Instead, by emphasizing more
the spreads in our averaged ALH retrievals (as done above, cf. Figure 17), are likely more representative
of the stability and overall quality of the ensemble of our retrievals.

Furthermore, incorrect physical assumptions on surface albedo or aerosol properties would naturally lead
to a systematic on an individual ALH retrieval (ie. contrary to a random noise, the ALH error is
reproducible). The integrated uncertainty related to the physical error sources and the instrument noise
cannot be accurately estimated for each individual OMI pixel. Indeed, it depends on the cases, the real
aerosol amounts and properties, their spatial patterns and temporal variability. The different academic
cases done in Sec.5 allow to identify and quantify how each error source theoretically contributes to the
retrieval error. The averaged real retrievals in Sec.6 and their comparison with LIVAS gives a first global
idea of their consistency assuming then LIVAS is a reference. Overall, by combining the comparisons
shown in Fig.17 above and the associated standard deviations in Fig.16 (below) allow to state that
maximum differences are found on the seasonal and spatial averaged ALH with w0 = 0.95, in the range
of 260-800 m + 1 km. Lower differences are in the range of 180-310 m, and similar variability, with w0 =
0.9. This is a global estimate over the considered region as we may not have enough knowledge, at this
stage, an adequate estimate of the retrieval error of each individual OMI pixel.

Figure 1 below shows, just as illustration here, how our OMI ALH retrievals spatially vary along the
latitude for one day over North East China on 2006.10.02 while a strong aerosol pollution plume was
present. We can see that the associated spatial variability is about 500 m on that day, with a maximum
peak-to-peak of ~1 km. The accuracy of this synoptic variability is currently under analyses for another
study.

Since the mentioned differences can be due to retrieval errors on both sides as well as to spatial
representativity errors, we realize that using the term bias is not exact. We therefore removed in our
updated manuscript this term. We mentioned now only the “differences” and the diverse error sources
that contribute.

Please see our answers to your remarks on climatology vs. exceptional events below.
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Figure 1: OMI Aerosol layer Height (ALH) retrieved on 2006.10.02 over North-East Asia along a CALIPSO track.
These retrievals are obtained from OMI cloud-free scenes, with collocated MODIS (550 nm) > 0.75 and within a
distance of 50 km of CALIPSO track.

-It is a pity that you only show only seasonal three-year averages. The temporal variability in such an
average is small (discussed in a previous point). Figure 14 suggest that the std in ALP across pixels can
easily be 200 hPa or higher. It would help if you could provide ALP maps for some selected scenes that
show that within a particular scene there is spatial consistency but that the variability emerges when
comparing different scenes. Perhaps together with some MODIS RGB images or other info..? I have to
admit that I am not convinced at this stage that your ALP retrievals have indeed sufficient sensitivity to
show geophysical variability - then again, it is an exploratory study. Such an addition would really
strengthen the paper, but I realise that this requires substantial work. This is a strong recommendation
but I will eventually leave it to the authors to decide whether or not they follow it up.

As extensively discussed in our manuscript, the possibility to derive an aerosol height from a satellite
OMI-like O,-0, visible absorption band is a quite challenging and important topic. In particular for the air
quality retrieval community which has discussed and thought about it during the last 15 years (and
perhaps even longer). If we leave aside the effective cloud parameters and their more or less sensitivity
to the aerosol scattering effects and their altitude, at our knowledge, only Park et a/,, (2016) with a Look-
Up-Table (LUT) with about 10 case studies over ocean, and our manuscript with NNs over land in North-
East Asia have retrieved an explicit aerosol height parameter from the OMI 0,-O, 477 nm band.

Comprehensive and detailed investigations of the performances of our retrievals will require in-depth
analyses combining different scales and strategies to fully understand our potential new OMI product.
They would mix: global scale, long-time observation periods, focus on regional and/or local areas, day-to-
day or pixel-by-pixel variability, statistical analysis to characterize the general behaviour of the algorithms
over an ensemble of data, careful investigations of each single observation over a well-know and
characterized case study.

In our view, addressing all these strategies together is out of the scope of this very first study and will
require more than one manuscript. Instead, for our first paper presenting our algorithms, we chose to
address an ensemble of 3-year OMI observations covering a somehow large industrialized land region
(North-East Asia). This ensemble is analysed through a statistic strategy in order to characterize the
general performance and main sensitivities of our product. Our general idea is that if a statistic analysis



already shows a good global performance and seasonal patterns, then this would encourage to continue
this work by focusing on smaller scales (regional, local, reference daily case studies) and further
investigating the behaviour of individual OMI retrievals on a pixel basis.

Overall, our manuscript on this topic shows first encouragements about the feasibility of retrieving
aerosol height from OMI. Therefore, we are planning to publish follow-up studies on the same topic, but
with complementary strategies. In fact, we can already say that we have started a study comparing OMI
aerosol height retrievals over land, on some specific case studies (e.g. strong urban pollution & biomass
burning events) with CALIPSO aerosol measurements along-track. We are planning to publish these
results in the forthcoming months in a new journal paper.

Regarding your remark about MODIS RGB images, we do not think this is applicable. These images can
tell us where are aerosol plumes and, potentially, how thick they are. But they do not give any
information about aerosol altitudes.

-In the introduction you quite extensively discuss the uncertainty in DOAS trace gas retrievals due to
aerosols. This is fine with me. But in the abstract you clearly state that the ‘main motivation of this study
is to evaluate the possibility of retrieving ALH for potential future improvements of trace gas retrievals’
(p.1.,1.4-5; repeated at the end of the intro and in conclusion). This is not what you do. Either statements
concerning this claim should be softened (throughout) or a thorough and critical discussion of your
results from the perspective of trace gas retrievals should be provided. The reason I make a point of this
is the following: Figure 16 suggests that at least your seasonal average ALH is probably something like a
boundary layer top height that perhaps follows the expected seasonal dependence. But for trace gas
corrections you need ALHs on a pixel level. Given the large uncertainties on individual retrievals I doubt
whether the OMI ALH will then be useful: 0.9 km +/- 1 km in winter and 1.4 km +/- 1 km in summer
does not appear to me as a tighter constraint for trace gas retrievals than simply assuming climatological
boundary layer heights or something similar. Of course, there is Figure 14 showing that individual ALHs
show quite some variability, but the question is whether the ALH variability for AOT below about one is
really geophysical variability or indicates a large retrieval error. And of course, you also retrieve AOT
itself, which may be useful for the trace gas retrievals, but also the AOT seems to be very sensitive to the
aerosol model you assume.

Your remark about the need for an aerosol scattering correction in DOAS trace gas retrievals is very
relevant. Analysing what we really need for that purpose (ie. a climatology database of a daily pixel-by-
pixel ALH variability) and whether we can use the current ALH retrievals are clearly another study in
itself, and therefore beyond the scope of this manuscript.

We realize then, although our motivation statements are clear and correct, they are possibly more related
to our long-term objectives than to the present manuscript. Therefore, we softened our statements as
follow:

In the abstract:

" [ ...] This study presents a first step of this long-term objective which evaluates, from a statistic point-
of-view, an ensemble of OMI ALH retrievals over a long-time period of 3 years covering a large
industrialized continental region. [...] ”



In the introduction:

" [...] Since aerosol altitude, in addition to aerosol optical thickness C , is one of the key parameters
affecting the computation of AMF for trace gases retrievals such as NO, (Leitdo et a/, 2010; Chimot et
al, 2016), our long-term motivation is to evaluate the capability of retrieving it from the satellite O, -0,
absorption band at 477 nm. This exploratory study is the first step and statistically analyses an ensemble
of OMI observations over 3 year period (2005-2007) and covering a large industrialized continental region
(i.e. North-East Asia). [...] "

In the conclusion:

“[...] The main objective of this work is first to evaluate the feasibility of a direct retrieval of this key
aerosol parameter from a statistical point of view: /e. over a long-time period and large industrialized
continental area, and therefore a high number of observations. [...] Our study indicates that it is
worthwhile to design and evaluate aerosol height retrieval algorithm exploiting the satellites 477 nm O,
—0; absorption band. Our long-term motivation is to evaluate the feasibility of replacing the effective
clouds by more explicit aerosol parameters in the computation of trace gas AMF. This is relevant not only
for OMI but for most of the UV-Vis satellite missions devoted to air quality monitoring. For that purpose,
further analyses must be performed by focusing on significant geophysical variability cases: e.g. pixel-by-
pixel variability over smaller regions. Furthermore, single OMI ALH retrievals should be compared with
reference aerosol vertical profile measurements (ground-based and/or satellites) over some remarkable
case studies.”

Regarding the reviewer’s remark about the ALH variability, we added in the updated Figure 16 (ex Figure
15) of our manuscript (see also below) the variability as extracted from the LIVAS database. The
methodology for deriving LIVAS ALH and its variability are described further in this document, as
response to one of the technical questions. On average, the spatial and climatology variability over North-
East Asia is about 700 m. Our spatially and seasonally averaged OMI ALH shows similar variability in
winter and autumn, but more variability and hence higher standard deviation in spring and summer (from
1100 to 1800 m). The OMI ALH variability is lower, and closer to LIVAS, when using the NN_ _NsO,-O,
algorithm with the MODIS ¢(550 nm) Dark target product.
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Figure 16: Standard deviation of the OMI aerosol layer height (ALH) retrievals obtained for the cloud-free scenes
with MODIS 1 (550nm) = 1.0 over North-East Asia. The retrievals are done for cloud-free scene, over 3 years 2005-
2007. Aerosol single scattering albedo w0 = 0.95 is assumed. OMLER and MODIS black sky surface albedo, and the

NN configurations (N NRc,NsO2 —02 and NNT,NsO2 —02 with MODIS 1 (550 nm) as input) are alternatively
considered (cf. Sect.6.1).

-Finally, you state in the conclusion that accurate knowledge of AOT is needed for a good ALH retrieval. I
am not yet convinced, because I think the comparison with LIVAS ALH is not conclusive in this respect
(see comment above). The simulations however do seem to point in this direction (Figure 6). However,
also MODIS AOT has an associated error which is well documented in the literature but not discussed at
all. If you want to retain the conclusion that a retrieval setup with external AOT input is the way forward,
then a discussion of the uncertainty in MODIS AOT should definitely be provided and also a small test on
the sensitivity of your retrieved ALH to this AOT uncertainty should be added to section 4 (can be done
fairly quickly I think).

As discussed above and with our upgraded Figure 16, we confirm that we think our results derived with
the NN_ ¢_NsO,-0, algorithm using MODIS (550 nm) Dark target land present overall the best quality.

Because of all the uncertainties mentioned in our answers to your major comment #2, we do not think it
is fully appropriate to look only at individual lines in Figure 16 (now Figure 17!). The apparent minor
changes of the line associated with w0 = 0.9 and OMLER surface albedo from NN_Rc_NsO,-O, and to
NN_C NsO,-O, cannot indicate a degradation. Instead, the spreads between the ALH retrievals due to
aerosols and surface albedo assumptions and from a statistic point-of-view (/.e. spatial-seasonal average)
are the main criteria evaluating the robustness of each NN algorithm. A second criterion is the
comparison of the OMI ALH retrievals w.r.t. LIVAS ALH over the same region (see updated Figure 15
above). Because these gaps strongly reduce and the OMI & LIVAS ALH variability are closer by employing
NN_C_NsO,-0, with MODIS ¢(550 nm), they confirm that an accurate knowledge of C is then necessary.



Such infomration reduces the freedom of the system and thus the impact of inaccurate assumptions
driving the OMI 0,-0, observations.

In addition, we would like to highlight the following points:

- The ALH retrieval results from the NN_ _NsO,-O, algorithm statistically show a higher quality
only because the MODIS {(550 nm) product is used as input. Indeed, as explained in Section
2.3, both ¢ and ALH drive the NsO,-O, magnitude. And these effects need to be
distinguished. The use of the NN_ {_NsO,-O, algorithm in itself does not guarantee a better
performance than the NN_ Rc_NsO,-O, algorithm.

- Since Rc is mainly driven by ¢, using NN_ Rc_NsO,-0, is at a first approximation equivalent to
using NN_ € _NsO,-0O, with the OMI ¢(550 nm) product (instead of MODIS) retrieved prior to
ALH retrieval. However, as shown in our study, large uncertainties remain on our OMI ¢(550
nm) due to incorrect assumptions on aerosol model and surface albedo. Since these
uncertainties are larger than MODIS {(550 nm) Dark target uncertainties, they impact the
quality of our OMI ALH retrievals.

- Because uncertainties for our OMI {(550 nm) product are larger than for MODIS ¢(550 nm)
Dark target product, performance of the NN_ Rc_NsO,-O, algorithm is more limited. To
increase this performance, our capability to interpret Rc(475 nm) must be improved by
separating the effects of aerosol {(550 nm), w0 and surface albedo. In summary, OMI (550
nm) retrieval from the O,-O, visible continuum must be further developed.

We emphasized all these points in our manuscript where necessary.
The MODIS C uncertainties are now discussed in the new Section 2.2 as follow:

“The expected error of MODIS DT ( is about +/- 0.05+15% over land (Levy et al., 2013). The "Deep
Blue" retrieval algorithm has been developed to complement the DT algorithm by retrieving C over bright
arid land surfaces (e.g. deserts). The typical associated uncertainties are about +/-0.03 on average
(Sayer et al., 2013).".

Minor comments:

-The use of a neural network trained by a look-up table has been done before. I am aware of the
ROCINN cloud algorithm, but I guess there must be more references. Please add some references.

By default, as mentioned by our references, a NN is always created based on an ensemble of training or
supervision dataset. The term LUT is not really used on this topic for this specific need. We added some
recent references related to the work of Crevoisier ef a/. on CH4 and CO, retrievals from IASI using a NN
approach, and Di Noia et al for Ozone and aerosol retrievals, and the work of cloud retrievals with
ROCINN.

-Can you provide quantitative estimates of the increase in speed and the reduced memory needs
compared to the original look-up table?

An exercise comparison with a LUT would be sensitive to the LUT settings, in particular its resolution and
sampling. We can state that a NN is a bit faster since using a LUT requires to identify the nodes, in each



dimension, where to perform the interpolation for each single observation. On the contrary, a NN directly
“interpolates” or perform its regularization on the given observation.

Similarly, the memory consumption of a LUT depends on the number of dimensions and nodes within the
LUT. Therefore, this is difficult to give a full estimate of increase speed and reduced memory.

What we can say is that performing 3-year ALH + C retrievals over the North East Asia takes about 20
min per season, by using only 1 single CPU. The memory is only consumed by the synaptic weights
between each neuron (input - hidden layer number 1, hidden layer number 1 — hidden layer number 2,
hidden layer number 2 — output layer). This takes between 100 and 300 Mo (a simple and rough
estimate) when using 1 single NN algorithm.

However, training times are more expensive, but this is of less importance for an operational use.
-p.2,l.1: source (typo)

Ok corrected

-p.2,1.5: clouds —> cloud

Done

-p.2,1.5: Throughout the paper you often talk about fine particles, and it is not clear to me what you
mean. Do you mean fine-mode particles? But also coarse-mode particles can act as CCNs? (throughout

paper)

In this paper, we numerically define the size of particles through the Angstrom parameter a. This
parameter describes the spectral variation of the Aerosol Optical Thickness (AOT) C. The higher this
value, the higher the dependence on the wavelength is the . Typically, a < 1 suggests an optical of
coarse particle type (such as dust). a > 1 suggests an optical dominance of fine particles (e.g. smoke). In
our study, the entire supervision dataset used for training the neural networks contains simulations with
a = 1.5 ( fine mode particles). The main reason is because of the assumed dominant presence of
aerosols released by anthropogenic fossil-fuel based activities such as industries, power plants and
traffic. Also, such a value is dominant in the MODIS aerosol product over the region of North-East Asia.

-p.2,1.8: contributes to —> contributes

We changed it as follows: “... are still the largest uncertainties of the total RF estimate ...” (“are” instead
of “contributes”).

-p.2,1.18: vertical distribution —> the vertical distribution

Ok

-p.2,1.19: affects the computation of Air Mass Factor —> affects trace gas Air Mass Factors
Ok

-p.2,1.22-23: uncertainties in the computed tropospheric NO2 AMF for OMI are the dominant source of
errors —> you mean: uncertainties associated with aerosols?



Here, I mean that all the uncertainties in general included in the calculation of the tropospheric NO, AMF
are the dominant source of errors in the retrieval of the tropospheric NO, Vertical Column Density. In
addition, uncertainties related to the spectral fit of the slant column density also contribute to these
retrieval errors. However, according to the mentioned literature, they are of lower magnitude than the
errors associated with the AMF.

Of course, aerosols play a big part in the tropospheric NO, AMF errors. But, uncertainties related to the
shape of the NO, vertical profile, clouds and surface albedo are also significant.

Overall, the magnitude of the error on the tropospheric NO, column retrieval is over polluted areas mostly

determined by the uncertainty of the air mass factor, and not by the uncertainty of the slant column fit
(Boersma et al., 2007). We reformulated accordingly.

-p.2,1.27: depending if —> depending on whether
Ok

-p.2,1.30: PBL —> throughout paper abbreviations are introduced several times (should be only first time),
or abbreviations are introduced that are not further used (distracting); please check paper

We carefully checked that all abbreviations are only introduced once through the whole paper.
-p.2,1.35: 0,-0,; spectral band —> 0,-O, absorption band?

Ok

-p.3,l.1: what are effective cloud parameters?

The OMI effective cloud parameters are the OMI cloud products retrieved from the same O,- O, visible
absorption band assuming a simple opaque and Lambertian cloud model (single albedo = 0.8). They give
the effective cloud fraction and effective cloud pressure. More can be read in Acarreta et al, 2004;
Boersma et al., 2011; Veefkind et al., 2016; and Chimot et a/., 2016.

-p.3,.26-27: The 477 nm ... individual band. —> How many DFS does the O, band add compared to
continuum reflectances according to this study? That's the interesting number here.

The statement just before, in the manuscript, mentions that the O, band at 477 nm adds between about
1 DFS according to the study of Veihelmann et a/. (2007).

-p.4,1.5: area —> areas

Ok, done.

-p.4,1.7: emphasize —> emphasis
Ok, this is corrected.

-p.4,1.11: the North —> North
Ok

-p.4,1.3: expectation —> benefit?



Ok (I assume that I.13 was meant here, not 1.3).

-p.4,1.19-20: during daylight —> can be left out

Ok

-p.4,1.20: two dimensional —> two-dimensional

Ok

-p.4,1.24: usually —> but is this also how refl. is defined in this paper?

For avoiding any confusion, in particular with the continuum reflectance (475 nm), we removed this
equation which not used in the next parts of this study.

-p.4,1.27-30: explanation of row numbers, row-anomaly and its progression can be completely left out,
because it is not relevant; just say that all OMI data used in this study are from before the row-anomaly

Ok

-p.5,1.1-20: Discussion of OMAERUV out of place; should be completely moved to introduction. But why
discuss it so extensively? Are you using the data in your study?

We removed all the details about OMAERUV that are not used or helpful for this study. We left only the
mention of the existence of this algorithm and its general performance (ie. for C retrieval).

-p.5,1.25: The initial purpose of this [sic] algorithm... —> You should describe your algorithm here. Later I
understood that you use slant columns and continuum reflectances from the cloud product, but that is
not the algorithm that you use for the sensitivity studies, right? Just describe what you are doing and say
that you follow the same approach as the OMI cloud product.

In order to make it more clear, we reformulated the associated (new) Sect.3.1 as follow:

«In this paper, the aerosol Neural Network (NN) retrieval algorithms allow the conversion of the
continuum reflectance Rc(475nm) and the 0,-0, SCD NsO,-0, into ¢ and ALP (in hPa). As a
consequence, the NN retrievals rely on the way how the aerosol parameters modify these two variables
and thus the photons average light path.

Prior to this conversion, a spectral DOAS fit must be performed to derive Rc(475nm) and NsO,—0, from
the OMI 0,-0, 477 nm absorption band. The various DOAS techniques rely on the same key concept: a
simultaneous fit of several trace gas slant column densities from the fine spectral features due to their
absorption (/.e. the high frequency part) present in passive UV-Vis spectral measurements of atmospheric
radiation (Platt and Stutz, 2008). Here, the DOAS fit follows the same approach as in the OMI 0,-0,
cloud algorithm (Acarreta et al., 2004; Veefkind et al.,, 2016): i.e. the absorption cross-section spectrum
of 0,—0, is fitted together with a first order polynomial:

= In(R(N)) = y1 + y2 * A + NsO,—0; (A) * 00, =05 + NsOs(A) * o3

where y1 + y2 - A defines the first order polynomial, 60, —0, and oOs are the 0,—0, absorption cross-
section spectrum and the O; absorption cross section spectrum respectively, convoluted with the OMI slit
function, and NsOs is the Os slant column density. 0O, —0, is based on measurements of the cross



section made by C. Hermans (see http://www.aeronomie.be/spectrolab/o2.htm - file O4.txt). The O3
cross section spectrum is included because it overlaps with the 0,—0, spectrum. The fitted parameters
are y1, y2, NsO,—-0, , and NsOs. In the absence of absorbers, one may define the continuum reflectance
Rc at the reference wavelength AO :

Rc =exp(-yl —y2-A0). (2)

The reference wavelength is specified as the middle of the DOAS fit window at AO = 475 nm.”
-p.5,1.22: extraction —> fit?

Ok

-p.5,1.23: fine spectral features —> add: due to absorption

Added

-p.5,1.24: 460-490 nm —> is this the fit window?

Yes, this is. We added this clarification.

-p.5,1.5: initial purpose —> what is the main purpose then? what is the purpose now?

Since the reformulation of this section (see above), these two words are now removed.

-p.5,eq.2: Please give references for xsecs. I guess you are fitting the square of the oxygen slant column:
I only know of O4 xsec reference spectra that have the equilibrium constant between [02] and [04]
included. Why define reflectance explicitly in Eq. 1 when R in Eq. 2 is basically a sun-normalized
radiance? I know that I am being nitpicky here (pi/mu_o disappears in the polynomial) but I prefer not to
read unnecessary info.

The 0,-0, xsec that we have used is based on measurements of the cross section by Christian Hermans
(http://www.aeronomie.be/spectrolab/o2.htm - file O4.txt).

According to your previous comments, the here mentioned Eq. 1 is now removed to avoid any confusion.

Yes indeed, we indeed fit the square of the oxygen slant column density because of the use of the O,
xsec reference spectra.

-p.6,1.10-15: This entire para can be left out. You mention MAX-DOAS measurements, the Ring effect,
radiance measurements without further explanation so this doesn’t add anything and only distracts the
reader.

Ok, this is removed.

-p.6,1.18: Eq. (3) and Eq. (4) —> egs 2 and 3 ! Please check entire manuscript on references to equations
and figures in text (preferably before submission): there are more examples of wrong references, for
example on p.14 and p.17

We carefully verified the equation label numbers and their use / mention though the entire manuscript.
Thanks for your remark!



-p.6,1.20: what do mean with homogeneous and finite? An infinite(ly thick?) layer doesn’t seem an option.

By “homogeneous”, we mean that all the particles present in the scattering layer have exactly same
properties (e.g. single scattering albedo, size through the Angstrom parameter etc..).

By “finite”, we want to emphasize that our aerosol layer is approximated by a single box layer which has
then, by definition, a finite geometric thickness of about 1 km. Therefore, we assume that no particles
are present above and below this box layer. This is opposite to a full vertical profile, described over the
entire atmospheric column, which could be visualized then as multiple box aerosol layers with diverse
thickness and optical properties.

For more clarity, we reformulated this part as follow:

“In this paper, the aerosol layer is assumed to be one single scattering layer (ie. "box layer") with a
constant geometric thickness (about 1 km). All the particles included in this layer are supposed to be
homogeneous (/e. same size and optical properties). The aerosol layer height (ALH) is then expressed by
the aerosol layer pressure (ALP), in (hPa), defined as the mid-pressure of this scattering layer.”

-p.6-7,sect.2.3: I have difficulty with this section and with figure 1. I think it is good to briefly describe
the effect of aerosol parameters on slant columns and continuum reflectances. But the text and the figure
are confusing. First, you are making forward references a couple of times. Please discus all relevant
effects here, including effects of aerosol optical properties, which I think is important. Second, I cannot
quite follow your use of the terms shielding and enhancement (see for example p.6,1.30-31, which I just
don't understand) but this may be because I am not too familiar with these terms. Third, you are
discussing slant column and continuum reflectance as a function of AOT, ALH, and aerosol optical
properties. But these dependencies are difficult to recognize in figure 1 because you put the independent
variable into the color map (and sometimes you again don't). Can you please make an alternative figure
1 that clearly illustrates the observations in the text.

Following your suggestion, we changed the figure 1 as follow (see below as well the new figure 1
please): we put the measurement variables into the color maps, while the physical variables (aerosol
optical thickness and aerosol layer pressure - ALP) are out of them. In that way, the reader can better
see how aerosols (both C and their altitude expressed in pressure) directly drive the OMI 0,-O,
measurements. Furthermore, we added 2 panels with different aerosol SSA and surface albedo
properties. Then, it becomes more clear how these properties, in addition of ¢ and ALP, affect these
measurements.

Finally, we reformulated in part the referred section to remove all the confusions as follow. The new
section is now written as follows:

“Figure 1 illustrates how aerosol particles drive the OMI O,—0, DOAS parameters at 477 nm assuming
cloud-free space-borne observations. These effects are obtained from radiative transfer simulations
including aerosols and no clouds. The detailed generation of such simulations is given in Sect. 3.2. The
DOAS fit equations following Eq. (2) and Eq. (3) are then applied on these simulated spectra. In this
paper, the aerosol layer is assumed to be one single scattering layer (/e. "box layer") with a constant
geometric thickness (about 1 km). All the particles included in this layer are supposed to be



homogeneous (/e. same size and optical properties). The aerosol layer height (ALH) is then expressed by
the aerosol layer pressure (ALP), in hPa, defined as the mid-pressure of this scattering layer.

Qualitatively, aerosols have two separate effects on the average light path, and therefore on the 0,-0,
absorption signal at the top of the atmosphere (TOA). These two effects are similar as aerosols and
clouds have on NO, absorption signal (Leitdo et a/., 2010; Chimot et a/., 2016): 1) a shielding effect, ie.
a decreased sensitivity within and below the aerosol layer due to a reduced amount of photons coming
from the TOA and reaching the lowest part of the atmosphere compared to an aerosol-free scene, 2) an
enhancement (albedo) effect, /e. an increased sensitivity within and above the aerosol layer as more
photons are scattered back towards the sensors, the part of the atmosphere above the aerosol layer is
then sampled by a larger fraction of detected photons. Shielding then leads to a reduced 0,-O,
absorption while enhancement may increase the 0,-O, absorption especially for low cloud or aerosol
layers. The overall effect (enhancement vs. shielding) depends on the aerosol optical properties, the total
column ¢ and ALP.

The OMI Rc( 475 nm) is directly and primarily affected by the total column ¢ of particles present in the
observed scene. Indeed, Rc increases with increasing ¢ independently of the ALP (cf. Fig. 1a). This mostly
results from the influence of aerosols on the number of detected photons and on the additional scattering
effects observed in the scene compared to an aerosol-free scene. However, the magnitude of this
increase relies on aerosol optical properties and the surface brightness. As a consequence, Rc is also
affected by aerosol w0 , phase function, and the surface albedo A. Indeed, Rc decreases with decreasing
w0 and over a darker surface (ie. smaller A value) for all the C values (c¢f Fig. 1c and Fig. 1e). The
importance of these parameters is further discussed in Sect. 4 and Sect. 5. Note that, in addition, the
reflectance is also driven by the geometry angles: /e. viewing zenith angles 8, solar zenith angles 60 and
relative azimuth angle @ — @0. An increase of 8 or 80 will lead to longer average light path, and thus will
amplify aerosol related additional scattering effects (for a given 7).

OMI NsO,-0, relies on the O,—0, absorption magnitude along the average light path in the whole
atmosphere. It is driven by the overall shielding or enhancement effect of photons by the 0,—0, complex
in the visible spectral range, due to the presence of particles. As depicted in Fig. 1b, NsO,—O, decreases
with decreasing ALP. This is a direct consequence of a larger shielding effect applied by aerosols located
at higher altitudes (ie. part of the 0,—0O, complex located below the aerosol layers are shielded).
Nevertheless, in case of low ( values (ie. < 0.5), NsO,—0, does not significantly vary with respect to
ALP. This shows that a low amount of aerosols has very little impacts on 0O,—0, absorption
measurements.

However, as depicted in Fig. 1b, 1d and 1f, not only ALP but also T directly influences the slant 0,—0,
absorption since both parameters simultaneously affect the photon path distribution, and therefore the
overall shielding or enhancement effect. An increase of ( leads to a decrease of NsO,—0,. The slope of
this decrease depends on the aerosol altitude (/.e. higher for particles at high altitude). Note that both w0
and A also affect NsO,—0,, but this effect is smaller than {. For example, a reduced w0 and A lead to a
small decrease of NsO,—0, (¢ Fig. 1d and Fig. 1f).

As a consequence:

— the single parameter NsO,—0O, contains information on both ¢ and ALP. These parameters cannot be
separated from this unique variable alone. As a consequence, if C is not accurately known, there will likely
be an ambiguity when analysing NsO,—-0, to retrieve ALP.



— if an external or prior { estimate is not available, then the two parameters NsO,—0, and Rc could be
simultaneously combined to retrieve ALP provided that one can accurately and independently retrieve
from Rc. Then, in that condition, Rc may help to distinguish both € and ALP contributions in NsO,-0,.
However, the simultaneous effects of aerosol w0 and A on Rc (as discussed above), and therefore their
associated uncertainties, will impact the feasibility of retrieving ¢ from OMI measurements. It may then
degrade the retrieved ALP performances.

-, Rc and NsO,—0, have a non negligible correlation. Indeed, an increase of C results in a simultaneous
increase of Rc and NsO,—0,. Therefore, it has to be noted that these two last parameters are not
independent and combining them does not provide with two independent pieces of information.

Overall, the impact of aerosol particles on the OMI O,—0, spectral band is similar to cloud particles. This
explains in part the difficulty to distinguish aerosols from clouds. In cases with a mix of aerosols and
clouds, there is an ambiguity between Rc , ¢ and the OMI effective cloud fraction on the one hand, and
NsO,—0,, the aerosol layer pressure, {, the OMI effective cloud pressure and fraction on the other hand
(Boersma et al., 2011; Castellanos et al/,, 2015; Chimot et al., 2016). Therefore, this study only focuses
on cloud-free reflectance to avoid this complexity.”
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Figure 1: Continuum reflectance Rc (475nm) and 02 —02 slant column density NsO2 —02 as a function of T and
aerosol layer pressure for the following conditions: climatology mid-latitude summer temperature, NO2, 03 and H2
O profiles, 60 = 32-, 8 = 32-, surface pressure = 1010 hPa and fine aerosol particles (a = 1.5, g = 0.7): (a) and (b)
surface albedo = 0.07 and aerosol w0 = 0.95, , (c) and (d) surface albedo = 0.03 and aerosol w0 = 0.95, (e) and (f)
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surface albedo = 0.07 and aerosol w0 = 0.9.

-p.7,1.8: 2 —> two. Please check the AMT manuscript preparation guidelines before submitting, not only
here, but throughout the manuscript (I also read Tab. 2"). And check for typos. I see various typos which
I have no time to correct. I have seen three different ways of describing ranges ('2005-2007’, '1260:8007’,
'[0.03-0.05-0.077). Also I read in several captions (2005, 2006,2007)". In my pdf, the greek symbol for

tau in the plots is not recognizable as tau!



We corrected the writing of numbers where needed. We checked the recent guidelines. We
acknowledged that the word “Table” should never abbreviated. We corrected accordingly (e.g. Table 2).

We homogenized the way of describing ranges of numbers in the entire manuscript as follow: 2005-2007,
or 0.03-0.05-0.07.

-p.7,1.23: from —> on
Corrected.

-p.8,1.8: Networks —> networks
Ok

-p.8,1.12-13: Don't agree: The dependence of slant columns and continuum reflectances on aerosol
parameters can be accurately simulated with an RT model.

In our sentence, “with accurate functions” we mean that no invertible analytical function exist that
describes the dependence of slant columns and continuum reflectances on aerosols.

Instead, we can accurately simulate it through the processing chain radiative transfer model + spectral
DOAS fit. But for the conversion to vertical columns one then employs an approximate inverse model
such a conventional Look--Up-Table (LUT) or NNs (as we did).

In our sentence, we therefore replace “the link between the OMI 0,-O, measurements and aerosol
parameters cannot be exactly described with accurate functions” by “no invertible analytical function exist
that describes the dependence of slant columns and continuum reflectances on aerosols.”.

-p.8,1.17,1.22: use non-linear consistently (not: non linear) throughout manuscript
We corrected this in the whole manuscript.
-p.9,l.14: The MLP ... data set —> don't understand this sentence

This sentence means that a MLP NN algorithm needs a well-known ensemble of dataset in order to
perform an accurate training. We reformulated this sentence.

-p.9,1.30: referent —> reference (throughout manuscript)
We corrected this in the whole manuscript.

-p.10,1.1: you have been referring several times now to average light path distributions, maybe you
should define it because I don't quite know how exactly ALH affects this distribution and what this means
for your retrieval

The notion of average light path, and how aerosols impact it, are detailed in the previous Section 2.3
through the so-called shielding and enhancement effects. Aerosols impact the length of the average light
path depending on the altitude of atmospheric layers that are shielded and enhanced. Since this is
clarified there, we don't think we need to repeat it here. We removed the word “distributions”.



-p.10,1.2-3: The second ... quality. —> I am very confused: Are you following a two step approach for the
NN_Rc_Ns retrieval? Fit AOT first which you then use as a fixed input for the ALP retrieval?

No. As described on p. 9 15-6, while the NN_ {,_Ns configuration uses a C information as input for
retrieving ALP, the NN_Rc_Ns uses the OMI continuum reflectance at 475 nm as input information,
instead of ¢. Therefore, no ¢ information is used with this algorithm.

Only the NN_ C _Ns algorithm uses an AOT information then. The choice of which AOT information use
here is up to the user. Here, we made the choice of using MODIS AOT, as this provides the best
information available. But, of course, it would be very possible to use the retrieved OMI AOTs as input
instead.

One could argue that the NN_Rc_Ns implicitly uses the OMI C information to retrieve ALP. Indeed, as
explained in Section 2.3, when analyzing the O,-O, SCD, it is crucial to be able to separate the effects
due to aerosol height (or ALP) on the one hand, and those due to C on the other hand. If a prior
information from an independent instrument is not available, then the OMI continuum reflectance (475
nm) may be used to retrieve {. The accuracy however strongly relies on assumptions about surface
albedo and aerosol optical properties which drive as well the magnitude of Rc. If these assumptions are
accurate enough, then one can retrieve a good OMI { which could be then used by NN_ {_NsO,-O, for an
accurate ALP retrieval.

Since therefore, retrieving a very accurate OMI AOT theoretically means that one is able to precisely
interpret the continuum reflectance (475 nm), one could in principle directly retrieve in one step OMI ALP
by using the NN_Rc_Ns configuration. That would replace a 2-step approach consisting of firstly
retrieving OMI AOT using the NN_Rc_Ns C retrieval algorithm, and then secondly using the NN_ C _Ns
ALP retrieval algorithm with the retrieved OMI AOT as prior information.

-p.10,1.15: what is the geometric thickness of your aerosol layer?

The thickness of the aerosol layer, considered in all the retrievals is 1 km. We described it.
-p.11,l.1: most relevant —> optimal?

This is changed.

-p.11,1.4: positive-definite —> What does this mean? Your error function is just a plain sum-of-squared-
residuals, right? Nothing special here?

We just meant that computed error here has, by definition, a positive sign (because of the sum-of-
squared-residuals). We removed this term to avoid any confusion.

-p.11,eq.7: why factor 1/2?

The equation given here, of the error minimization function during the training process of the Neural
Network algorithm follows the more general equation as defined and critically specified by Rumelhart ef
al, (1986) through the description of the Error back-propagation algorithm (described in the present
previous sections).

The general error minimization equation given by Rumelhart et a/., (1986) is the following:



1
E zizzyj,c —djc
c J

Where c is an index over the cases (input-output pairs) contained in the training database, j is an index
over the output neurons, y is the retrieved value of an output neuron while d is the true expected output.
This general equation differs by the one given in our paper by the number of sums, two sums here (over
the output neurons and the training cases) while only one in our manuscript (over the training cases).

In theory, a Neural Network algorithm can contain more than one output neuron: /ie. a single NN
algorithm can simultaneously retrieve more than one single parameter. In practice, because retrieving ¢
and ALP from the OMI 0,-O, absorption band does not exactly require the same input parameters, we
made the choice of one unique output neuron for each of the developed NN algorithm: ie. each
algorithm only retrieves one parameter, either AOT or ALP. As a consequence, only one sum remains in
our equation (the sum over the output neurons implicitly disappears because the upper limit of the index
j is 1). Therefore, our equation keeps the sum over the training cases and the factor %2 from the more
general error minimization equation.

Leaving out the factor 1/2 does not lead to different results, but that it (probably) originates from more
general cases where the 1/2 weights this term compared to another addition to E.

-p.11,1.18: you mean the last 15 iteration of 70% * 460000 iterations in total? What if overfitting is
already present before the last 15 points?

No. The number 70% (mentioned in line 24) refers to the percentage of the initial learning dataset (/e
460 000 spectral simulations as described in section 3.2.) that is randomly extracted and then used for
the training of each designed NN. So, about 322 000 simulations (=70% x 460 000) are then used to
train the NNs. The verification and evaluation steps are achieved with the remaining learning dataset
(15% each) to ensure independency. The training, step is about finding the optimal weights of the
synaptic connections of each NN configuration.

As described in section 3.3., the training step is iteratively performed. Prior to the 1% iteration, the
synaptic weights are randomly initialized. Then, at each iteration, they are changed through the back-
propagation approach. By experience, the error function (cf. Eq. 7) is maximal at the first iteration and
decreases with increasing number of iterations. Generally, through all the experiments, this error strongly
decreases during the first 50 iterations. After that, the decrease magnitude is relatively low, although not
negligible. Therefore, it is not expected (it is even extremely unlikely) that overfitting occurs over the first
15 iterations. Generally, the overfitting, when identified, only occurs after the first 100 iterations. Then,
when the training system identified an overfitting (/e. verification step), the training process is stopped.

-p.11,1.22: best evaluation score —> you mean for the evaluation set?

Yes. The so-called valuation score is the error as defined in the Error Equation computed over the
evaluation dataset ( = 15% of the entire learning database).

-p.11,1.28: The ALP retrieval scores are significantly larger. —> But this makes sense because pressures
are two orders of magnitude larger than AOTs? So ALP performs even better (by a factor of hundred)?



No. As written in the caption of the figure, the direct output (or retrieved) values from the NN algorithms
are normalized between -1 and 1. Because of the nature of the sigmoid functions, used by our algorithms
in the hidden layer, all the input parameters are normalized between -1 and 1 to avoid the saturation of
these activation functions. Therefore, the outputs are also similarly normalized.

As a consequence, in the NN error back-propagation algorithm, all the trainings and error calculations are
performed over normalized values. Then, the values of the total quadratic error E is based on same
orders of magnitude. The plotted scores here do show then that ALP errors are, on average, larger than ¢
errors. This confirms than the ALP training score is, in theory, less reliable (and thus more complex) than
the C training score.

Note that we did not really emphasize too much the normalization step and its reason too much in the
text of our manuscript, to avoid to dilute too much information. We think this is a technical detail which,
except in the caption of figure 3, does not add any value in our analyses. However, if the associate editor
thinks otherwise, we will add it then in Section 3.

-p.12,1.28-30: An overestimation ... surface. —> I am confused: a higher asymmetry parameter means
more forward scattering (not: backward)...?

Yes, we agree. If the assumed asymmetry parameter is overestimated (ie. g = 0.7, while the “true” g is
0.6), then we would expect to observe in the signal an increased forward scattering. Since, the true g is
lower, there is actually less forward scattering (i.e. more back-scattering) than expected. Therefore, the
retrieved aerosol optical thickness is biased negatively: i.e. the retrieved AOT is lower than the true AOT.

To ensure clarity, we slightly reformulated these sentences as follow:

“An overestimation of g (i.e. assumed g = 0.7 while true g = 0.6) leads to an increased retrieved ( value
(i.e. positive bias) as a result of less photons scattered towards the surface, and therefore more photons
scattered towards the satellite sensor, compared to what is theoretically assumed. Reciprocally, an
underestimation of g (/ie. assumed g = 0.7 while true g = 0.8) leads to a decreased retrieved { value
(i.e. negative bias) as a result of less photons scattered towards the satellite sensor, and more towards
the surface compared to the assumption.”

-p.13,1.3-17: I find it confusing that the way of analysing and presenting results is different when
discussing the sensitivity to the error in the surface albedo. I would have preferred a plot in Figure 5
similar to Figures 4 and 6. Also, I don't understand the advantage of a box-whisker plot here: a single
box-whisker is based on only three data points, right (three angles)? In addition, I would definitely like to
know the direction of effects, particularly the effect of over- and underestimations of the surface albedo
on ALP. If you want to retain the box-whisker plot (not preferred by me), then at least mention direction
of effects in the text.

We removed the box-plots and reproduced impacts of surface albedo on retrieved AOT and ALP similarly
to the previous ones (see new Figures 4 and 8).



However, as explained now in our upgraded manuscript, we kept the approach of box-whisker plots for
evaluating the impacts of 0,-O, SCD uncertainties. Indeed, these uncertainties are precision problem (/.e.
random error by opposite to systematic error or bias). They are mostly (but not only) related to the
affects of instrument noise when fitting the 0,-O, SCD. Therefore, they will lead to a random error on a
the retrieval of ALP, and thus affect the ALP precision. We explained this accordingly in our text.

We added these elements in our upgraded manuscript:
Sect. 5.1:

“Errors in surface albedo also lead to biases in retrieved T (¢ Fig. 4c). Overall, biases are larger over
scenes with small T values. The reason is the dominance of surface reflection in this regime. In cases of
high amount of aerosols, then aerosol scattering signals are dominant and surface reflection uncertainties
have less impacts. An underestimated (overestimated) surface albedo results in a negative (positive)
retrieved T bias. This is directly related to the change in the measured OMI Rc (cf. Fig. 1). Surface albedo
uncertainties in the range of 0.025-0.05 lead to biases, in absolute, close to 0.5 for T in the range of 0.0-
0.5, smaller than 0.25 for T = 2.0. Typical differences in climatological surface albedo from the total
ozone monitoring spectrometer (TOMS) and the global ozone monitoring experiement (GOME)
(Koelemeijer et al,, 2003), or between the Lambertian equivalent reflectance (LER) of OMI and the
MODIS black sky albedo (Kleipool et a/., 2008), are known to be up to 0.02.”

Sect.5.2:

“Surface albedo contributes to the length of the average light path and thus affects NsO, —0,. Retrieved
ALP biases are maximum (several hundreds hPa) for < 0.5 (cf. Fig. 8a and Fig.8b). For Cin the range of
0.5-1.0, retrieved ALP have lower absolute values (between 100 hPa and 200 hPa on average) with NN_
_Ns, while they remain too high with NN_Rc_Ns. Over scenes with { > 1.0, biases are reduced to 0-50
hPa since aerosol scattering signals dominate over surface reflection. The main cause of all these
improvements is that using an accurate prior { information (or at least more accurate than retrieved OMI
¢ from Rc) allows a better distinction of ¢ and ALP effects on the O,—0, slant column density.

An accuracy better than 0.2 must be required on prior C information (cf. Fig. 8c). Indeed, a ( bias of 0.25
can impact, in absolute, the retrieved ALP up to 50 hPa for T in the range of 0.5-1.0. For T > 1.0, ompact
on ALP almost becomes null. Therefore, using MODIS T as prior to NN_ ¢ _Ns is likely expected to show
retrieved ALP with a higher quality O,—0, than with NN_Rc_Ns. Indeed, the current retrieved OMI C from
Rc are below the MODIS T accuracy.”
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Figure 4: Simulated T (550 nm) retrievals, based on noise-free synthetic spectra with aerosols, as a function of true
T . The assumed geophysical conditions are: temperature, H20, 03 , and NO2 from climatology mid latitude summer,
60 = 25- and 6 = 25-, Ps = 1010 hPa. All particles are located between 800 and 900 hPa and a = 1.5. Note that the
scenarios with lines and similar symbols general tend to fall on top of each other. The reference aerosol scenario is
plotted with continuous lines and circle symbols and includes consistent aerosol optical properties with the
supervision dataset used to train the neural network algorithm: /.e. @0 = 0.95, g = 0.7. All the retrievals are
achieved with the NN algorithm trained with @0 = 0.95: (a) Sensitivity of T (550 nm) retrievals to the aerosol single
scattering albedo (w0 = 0.95, 0.9 or 1.0), (b) Sensitivity of T (550 nm) retrievals to the aerosol asymmetry
parameter (g = 0.6, 0.7 or 0.8), (c) Sensitivity of T (550 nm) retrievals to a surface albedo bias (dAlb = 0.0, -0.025,
0.05) with w0 = 0.95, g = 0.7.
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Figure 8: Simulated ALP retrievals, based on noise-free synthetic spectra with aerosols, as a function of true t. The
retrievals are achieved with the NN configurations (N NRc,N s and / or N NT1,N s ) (see Sect. 3.1) trained with w0 =
0.95. The assumed geophysical conditions are: temperature, H2 O, 03 , and NO2 from climatology mid latitude
summer, 80 = 25- and 0 = 25-, Ps = 1010 hPa. The reference aerosol scenario assumes fine scattering particles (a
= 1.5, 0 = 0.95, g = 0.7) located between 800 and 900 hPa: (a) and (b) Sensitivity of ALP retrievals to a surface
albedo bias (9Alb = 0.0, -0.025, 0.05) with N NRc,N s and N Nt1,N s, (c) Sensitivity of ALP retrievals to a T bias (91
= 0.0, -0.025, 0.05) with NN1,NsO2 —-02.

-p.13,1.19: You haven't discussed figures 5b and 5c yet!
Please note that, according to the previous remark, we changed these figures 5a, b and c.
-p.13,1.20-21: For scenes ... 100 hPa. —> But in this AOT range I see biases up to 300 hPa?

Here we are only referring to cases where no error on aerosol properties and surface albedo are included
(cf. continuous lines with circles in the plots which are associated with reference cases). The biases up to
300 hPa in this C range appear when including errors in the assumed aerosol SSA. We move this note
from the end to the beginning statement.

-p.13,1.25: entire learning database —> you mean: the independent data set?

No. We really mean here the entire learning database (/.e. training-verification-evaluation, cf. section 3.3)
which is used to train the NNs, avoid overfitting and identify the optimal NN architecture. We added the
clarification.

-p.13,fig.6: Why are there large biases when there are no forward model errors (no error in SSA or g)?
These are closed-loop, noise-free simulations so the truth should be retrieved?




We think that being in a “closed-loop” condition is not enough in this case. Approaches like machine
Learning (e.g. neural Networks) or interpolation within a Look-Up-Table (LUT) can be seen as a retrieval
method based on an off-line forward (radiative transfer) model. This means that the explicit use of a full
physics radiative transfer model for each single synthetic spectrum is here replaced by an approximate
model, which tries to predict the behaviour of the real model for a given set of input parameters. The
retrieval approach relies then more on a regularization process which resolves the retrieval problem from
a statistic point of view (/e. the most likely output associated with the set of all combined inputs), with
an approximate (or more simple) model without iteration.

Bayesian retrieval approaches, such as the Optimal Estimation Method (OEM), might be able to retrieve
the truth on academic cases (noise-free spectra and very low ) as 1) they use an exact and full physics
forward model directly on-line for each synthetic case study, 2) prior knowledge and parameters are
weighted with their corresponding uncertainties, 3) the non-linear problem is linearized around the prior
information, 4) iteration is generally performed until the residuals are low enough (below a given
threshold). Contrary to approaches based on off-line model, such an on-line forward model approach
tries to fit all the details / fine structure present in the combination of input set of parameters (by
opposite to regularization techniques).

However, OEM approaches may encounter other problems: e.g. the iterative process (in cases of very low
¢) may not converge, and thus no solution may be delivered to the addressed retrieval problem. Such a
so-called divergence problem is not accessible by regularization processes (e.g. NNs).

NNs can be seen, at a high level, as an optimal interpolator (compared to a more conventional
interpolation within a LUT). The large (negative) biases in ALP retrievals over cases with low AOTs, can
be interpreted as our inability to interpret very minor changes in 0,-O, SCD. This is very similar to the
problems of OMI effective cloud pressure in cases of very low effective cloud fraction. As described in
different studies, OMI effective cloud pressures, which are retrieved through a LUT, are generally largely
(negatively) biased in these conditions (Acarreta et al, 2004; Chimot et al., 2016; Veefkind et al/.,, 2016).
The negative sign of the retrieval biases in those cases may be related to the specific curvature of the
solution space in those regimes.

-p.14,1.3: on —> in
Ok

-p.14,1.8-16: I don't really see a systematic improvement in ALP retrievals when using a priori AOT in
case the aerosol model has a bias (for example, when g=0.8 yes but when g=0.6 no).

It is true that using an accurate prior  value as input, there is no systematic improvement ALP retrievals.
However, major improvements occur when there were already large biases (more than 50 hPa) when
using the continuum reflectance (475 nm) Rc. When biases with the use of Rc are less major (i.e. smaller
than 50 hPa), the improvements are not significant anymore.

However, because, the use of AOT already helps to significantly improve cases with large biases, we can
conclude that it is better (and therefore recommended) to use AOT instead of Rc as input for ALP
retrieval.

-p.14,1.18: eq. 11? Please check all figure ad equation numbers, there are more wrong references.



We carefully and corrected, where necessary, all the equation and section nhumbers.
-p.14,1.22-26: This is an example of repetition; I would leave sentences out.

These sentences summarize and give all the major arguments justifying the use of a prior accurate C as
input for a correct ALP retrieval. Because these information are not exactly given, or only partially, in the
previous analyses, we would prefer to leave these final and important conclusion at this place.

-p.14,1.26-28: Where do these SC precision values come from? Give ref. Are these values typical for OMI
instrument noise? But then for each scenario there is only one typical SC error as it only depends on the
radiance and no range should be considered, right? How can a random error in SCs lead to ALP biases?
Why don't you take into account the noise error in your other input parameter? Your remark on the
temperature correction seems out of place.

The 0,-0, SCD precision numbers that we considered come from the most typical values encountered in
the OMI NASA 02-02 product (we made a basic histogram analyse to identify their most likely ranges).

The 0,-0, SCD precision is typically related to the impact of the OMI noise instrument on the 0,-O; fit. Of
course, it also includes other uncertainties, such as those related to the employed DOAS approach in the
0,-0, absorption band. We replaced “ALP biases” by “ALP uncertainties”. We do not see the reason to
take into account a noise error in the other input parameter. The impact of surface albedo and  errors
are already analysed previously. For these parameters, we assumed them more as geophysical parameter
errors which may have specific spatial and/or temporal patterns (contrary to a noise which, by definition,
presents a random pattern). Therefore, these errors would lead directly to a bias on the ALP retrieval
instead of a precision impact. An illustration is given in Section 6 with the OMI surface albedo which
include some aerosol residuals. These residuals lead to some specific patterns in the ALP retrievals as
observed in Fig. 11.

We removed the remark about the temperature correction, since this is mentioned later on, in the Section
5.

-p.15,1.4: Can you give some more details here about the area that you selected (latitude and longitude?
How many pixels passed selection? How many ALP data points went into the seasonal averages.

The considered area is defined by the range of latitude 25-40 deg North, and longitude 110-130 deg East
excluding the part over the Gobi desert which presents a too bright surface (as explained in Sect. 4.2 and
6.1).

As already mentioned in Sect. 6.3 (former Section 5.3), when comparing OMI ALH results with LIVAS,
about 17% of the pixels passed the selection in summer and spring, and between 5% and 6% in winter
and autumn. This leads to about 77 000 OMI observations in spring and summer, and about 20 000 in
winter and spring.

-p.15,1.19: Applying ... scenes. —> repetition
Ok, this is removed.

-p.15,1.21-22: However... as well. —> then why do you apply the OMI cloud fraction threshold...?



By applying simultaneously OMI and MODIS cloud fraction threshold, we maximize the probability of
filtering out OMI cloudy pixels. According to past studies [Boersma ef a/., 2011; Castellanos ef a/., 2015;
Chimot et al., 2016], we know that OMI observation pixels with an effective cloud fraction larger than 0.1
are more likely to contain clouds than aerosols. If, the MODIS cloud fraction is lower than 0.1, but OMI
effective cloud fraction is larger than 0.1, we preferred to reject this pixel. Such cases might happen since
OMI and MODIS pixels do not always strictly overlap, and thus apparent “inconsistencies” between OMI
and MODIS cloud detection might be observed.

-p.15,1.25-: I find your discussion of the temperature correction and later sensitivity tests completely out-
of-place (particularly as you show results of it in the final most important figure). Also, I don't understand
how you do the temperature correction. Is Ns_O4-meas the slant column you get from the OMI cloud
product? How do you use NCEP temperature profiles to calculate gamma? This factor clearly depends on
the aerosol conditions, which you are trying to retrieve? I guess the physics of this temperature
correction is well understood, apparently not part of the OMI cloud product and Veefkind ef a/. 2016
describe that users should apply it. So applying the temperature correction is always better and doesn't
present a source of uncertainty for your ALH retrieval.

We shortened our discussion on the temperature correction and mostly included it when analysing the
spatially and seasonal ALH average retrievals. Ideally, for each single 0,-O, SCD measurements, a NCEP
temperature profile (the spatially closest one) has to be used to compute the so-called gamma factro and
then apply it for the temperature correction. That being said, theoretically, by definition of the gamma
factor, this correction would depend on aerosol properties (typically ¢ and ALP).

However, we found out that in cases of aerosols (contrary to effective cloud retrievals as performed in
the OMI 0,-0, cloud algorithm), the gamma values does not vary (or very barely) with respect to ¢ and
ALP variability, at least in the C range of 0.0-2.0. It is mostly changing with NCEP temperature profiles.
The reasons are double:1) the magnitude of aerosol optical thickness (between 0 and 2) is way lower
than typical cloud optical thickness (at least 1 order less), 2) the range of 0-2 of aerosol optical thickness
somehow depicts low changes (and then more higher stability) than changes in cloud optical thickness.
Therefore, for convenience and low computing time, we considered for all the OMI observations similar
aerosol properties (typical optical thickness of 1 and ALP = 800 hPa).

Also, as indicated in our written text, for practical reasons (implementation and computing time), we
considered a spatial-seasonal average NCEP temperature profile which is then applied for computing the
gamma factor for each single ALP / ALH retrieval. This may have some impacts (order of about 50 m) on
single retrieval result. But the impacts on the average ALH results are expected to be minimal.

-p.15,1.8: geophysical location —> grid box?

We assumed that you meant p.16 here. This is changed.

-p.15,1.15: Note that ... —> So what does this imply?

This is to justify why we considered here the MODIS Black Sky albedo, and not the White Sky albedo.

-p.15-16,sect.5.2: I stopped reading this section in detail. A few general remarks: There are several
forward references to figures hat have not yet been explained. Some figure numbers are incorrect. When
investigating the effect of the surface albedo input on the retrieved AOT, I don't see the reason why you



should split the analysis per season (perhaps personal taste). Are MODIS AOT and MODIS BSA truly
independent?

We reformulated where necessary this section to make it clear. Please read the new Sect.~6.2. We only
illustrate the impact of surface albedo for the autumn season. The impacts are somehow similar for all
the other seasons.

As explained at the end of our Sect.6.2., OMLER and MODIS BSA can be expected to present some
differences and thus independences: OMLER likely includes some aerosol and cloud residuals, MODIS BSA
is the integration over the full hemisphere while OMLER includes most (and only) the viewing angles
encountered by OMI, and the assumed solar reference zenith angle in MODIS BSA is likely inconsistent
with the true OMI local observation time.

-p.17,1.27: polarization —> Your RT calculations for the LUT excluded polarization effects?

Yes, indeed it did not include polarization since the OMI measurements are depolarized (because of the
use of a scrambler). However, we wanted to acknowledge that not using polarized simulations, in the
learning database, may lead to some errors (likely of the order of 2% in the Visible according to
reference studies). This should be investigated in a future work, since this is out the scope of the present
study.

-p.17,1.31-32: MODIS tau ... OMI tau. —> Can you provide refs?

Yes, we added the following references about the overall quality of MODIS C in the new Section 2.2 as
follow:

“The expected error of MODIS DT C is about £0.05+15 % over land (Levy et a/,, 2013). The "Deep Blue"
retrieval algorithm has been developed to complement the DT algorithm by retrieving { over bright arid
land surfaces (e.g. deserts). The typical associated uncertainties are about +0.03 on average (Sayer ef
al, 2013).”

-p.18,1.4-9: You discuss the variability in your set of ALH pixels, but what does this tell you? Isn't it
obvious that the variability decreases when you use the setup with fixed AOT: there is one free
parameter less? This doesn't show that those retrievals are more accurate. Isn't it obvious that the
variability decreases with higher AOT as the aerosol signal is more stronger...? But there is an interfering
effect of the geophysical variability! Perhaps low-AOT aerosols are typically closer to the ground (BL
pollution) while high- AOT aerosols are extreme events that reach into the free troposphere? Don’t know.

I am not sure that, by just looking at this figure alone, we can say this is obvious that using MODIS ( as
input should decrease the ALP variability. Or at least, this only becomes obvious thanks to the analyses
achieved on synthetic cases as described and summarised in Sect. 5.2. Only thanks to these analyses, we
know that retrievals at low { presents some instabilities due to a very low O,-O, absorption signal.

To have an idea about the true geophysical variability included in LIVAS, we added the thick black line: it
shows the expected variability of ALH as seen by LIVAS over the same area. This variability seem to be
independent of seasons and is about 700 m. ideally, we should expect then our ALH retrievals to show
varibility as close as possible to this black line. We discussed it in our updated manuscript and as
response to one of your main remarks above.



The methodology of deriving the LIVAS variability is given below (next remark / answer).

-p.18,1.20: Spatial average ... performed. —> How do you compute ALH from extinction profiles? How do
you compute the spatial average? Do you take into account the sampling of your OMI pixels? I mean, if
for a given location you have, say, twice as many OMI pixels in summer than in winter, do you take this
into account when calculating the LIVAS average. Please at least explain exactly what you did.

The LIVAS ALH is derived from the given averaged vertical profile of aerosol extinction (532 nm) o(l) over
each vertical layer | defined by its altitude h(l) as follow:

S h(l)o(l)
ALH(LIVAS) = ]ET

L

Since LIVAS also provides the standard deviation associated with each averaged vertical profile of aerosol
extinction (532 nm) da(l), the equivalent standard deviation of each LIVAS ALH 0ALH is derived as follow:

S Oh(1do (1)

OALH(LIVAS) =1
>.all)
1

where 9z(l) is the geometric thickness of each vertical layer .
We added these equations in our new Sect.2.3.

We did not take into account the potential discrepancy between the number of OMI pixels and CALIPSO
pixels included in LIVAS, and therefore their specific sampling. Of course, satellite observation resolution
and samplings should have an impact. However, fully addressing in this unique study the problem of
representation error between OMI and LIVAS (which is derived from CALIPSO observations) is a real
work in itself which is currently out the scope of this project.

-p.20,1.14-15: You state that the NN with AOT as a fixed input performs better. But comparing figure 16b
and 16d, this holds for the red and purple lines (SSA 0.95), but the opposite is true for the green line
(SSA 0.9) and the blue line is undecided. Yet, previously you argued based on the comparison of AOTS
that an SSA of 0.90 is probably the more accurate value in three seasons. So I think this conclusion
cannot yet be drawn.

I don't think that, in general we have the right to focus on 1 single colour line precisely is appropriate.
What really matters here is the spread of the overall / global retrievals due to assumptions on aerosol
optical properties (in particular single scattering albedo) which are the most crucial assumptions
impacting the spread of our results. The chosen surface albedo being of lower order of magnitude.

Indeed, we stated that, on average, a w0 of 0.9 ( in particular in spring, autumn and winter) is likely a
more reasonable value than 0.95 (upper limit in this region). Since, there is not accurate aerosol w0
value available for each individual OMI observation pixel, we do not have the choice but to use a constant
w0 value to all the OMI observations. However, using a constant w0 value leads to substantial errors in
the ALH results (biases and precisions). Therefore, even if the green line looks to overlap with the LIVAS



line when using NN_Rc_Ns, I don't think we can directly conclude that the retrievals are here very good
in this framework.

What mainly matters here, because again of how assumed SSA values are employed here, is the spread
between the lines associated with @0 0.9 and 0.95 when using NN_Rc_Ns and NN_ ¢ _Ns algorithms.
This is because this spread significantly reduces from NN_Rc_Ns to NN_C Ns, that I think we can
conclude that the NN_C_Ns fits ALP / ALH better. But this algorithm also fits better because we use an
accurate C prior information, provided by MODIS. If we are able to retrieve very accurate { from every
OMTI single pixels, the NN_Rc_Ns algorithm would probably correctly fit ALP / ALH as well.

-p.29,fig.1: What is azimuth difference (throughout)? Does H,0 absorb in your fit window? Then why isn't
it included in the DOAS fit? At what wvl should I interpret TAU?

The relative azimuth difference is the difference between the viewing azimuth (of the OMI satellite) and
the solar azimuth angle. This is already defined in our paper in Sect.~3.2.

It is known that the H,O absorption is very low in this spectral window. Since, Os; and 0,-O, are the
dominant absorption gases here, we did not consider the fit of H,O SCD. Note that, similarly, this gas is
not considered in the OMI cloud algorithm.

As indicated in the text, and in most of the captions, C (ie. AOT) should always be interpreted at the
reference wavelength 550 nm. We verified that this information is always clarified though the entire
manuscript.

-p.30,table2: I don't understand this figure. For example, the ALP test error for a given NN configuration
is the sum-of-squared differences (eq. 7) for all the scenarios in the test set (the 15%). This is one
number. But then you repeat the training three times. So you have three numbers. Did you calculate box-
whiskers from only three points? That doesn’t seem right.

-p.33,fig.4: In left panel, can you add also SSA = 1.0 simulation? You have tested positive and negative
errors in the asymmetry parameter as well? Can you make axes in the right panel such that the 1-1 line
corresponds to the diagonal?

The case with w0 = 1.0 is now added.

By testing cases with g = 0.6 and g =0.7, while the NNs are trained over a database with g = 0.7, we
already indeed considered positive and negative errors in the asymmetry parameter. We found out that
making the axes such that the 1-1 line would correspond to the diagonal does not lead to nice plots.
Indeed, depending on the magnitude of the retrieved { biases, we may have parts of the plots empty /
white on the right or left part of the figures which would give strange and diverging feeling to the reader.

Instead, we added the remark, in all the captions, that continuous lines with the circle symbols should be
considered as the reference. Indeed, the aerosol properties are consistent between the tested cases and
the NNs trainings. And they do not include any bias on the input surface albedo. Therefore, any gap
between these lines and the others, refer to a (negative or positive) bias in the plotted retrievals.

-p.39,fig.10: I see many more lines in the plot than in the legend? Can you make the plot line colors the
same for the same surface albedos in the top and bottom row? I don't think the differences between the
OMLER and MODIS BSA are significant, do you?



We remove the two plots at the top. Showing the impact of aerosol residuals in the OMI surface albedo
for only one season (e.g. Autumn) is enough. Similar effects are found for the other seasons.

-p.40-41,fig.12-13: It took me some time to realise that -for unclear reasons- these figures are split
whereas they should be merged? The color map labels are not visible? The tau symbol is not a tau
symbol?

There are 2 basic reasons why to split the figures as you mentioned:

- putting all the 4 seasons (x 4 panels) on the same page via LaTex leads to a reduction of their global
size, and thus make them less visible for the reader.

- Also, since summer seem to depict better retrieved AOT results assuming SSA = 0.95, it may make
sense to separate it from the other seasons where assuming SSA = 0.9 seems to be more accurate.



Interactive comment on «An exploratory study on the aerosol height
retrieval from OMI measurements of the 477nm 0,—0, spectral band, using a
Neural Network approach » J. Chimot et a/.

Julien Chimot et a/.

J.J.Chimot@tudelft.nl

We thank Referee #2 for his / her valuable comments. Below we address them one by one (Referee #2
comments in blue, author and co-authors in black).

The paper examines retrievals of aerosol optical thickness and layer pressure (height) from OMI spectral
measurements (or as applicable to other instruments) of the 0,-O, absorption band near 477 nm using a
neural network approach. A detailed analysis is carried out using simulated data. The approach is then
applied in different ways using OMI and MODIS data over land areas of Asia with relatively high aerosol
loading and compared with a lidar-based data set (LIVAS).

This is a detailed paper that should be published in AMT. The paper is in general clearly written though
there are a number of typos and grammatical issues that it is assumed will be caught during the copy-
editing of the manuscript. Only a very few are listed below. I agree with the comments of reviewer 1 and
add some additional comments for minor revisions below (some of these may be duplicates).

We thank you for your recommendations and encouragements. We took into account and answer the
comments and questions of Referee #1. You can see them in our corresponding document on the AMT
website, below the link to the reviews of Referee #1.

We carefully reviewed the new version of our manuscript and verified & corrected the typos and
grammatical issues where necessary.

The last sentence of the abstract - “This study shows the first encouraging aerosol layer height retrieval
results over land from satellite observations of the 477 nm 0,-O, spectral band.” - is correct as written.
However, the authors may mention here that a previous study examined case study retrievals over
ocean. This sentence may stick in the reader’s head as this is a “first” implementation with real data
(references are later given and it becomes more obvious that these are the first results shown with data
over land). I had to go back and reread the sentence to find the over land part, which makes it correct.
Following the mention of the reference of Park et al., (2016) in the other parts of our manuscript, we
added the following statement in the abstract: “Following the previous work of Park et a/, (2016) over
ocean, our study shows the first ....”

It might be better to include up front a Data section with the various satellite data sets used (OM],
MODIS, LIVAS) rather than to mention them in different places (and not referenced at the first mention -
LIVAS). As it is OMI is mentioned in its own section section with MODIS mentioned below in the
Methodology section. It seems that MODIS is an important part of this study as it is important to get
accurate ALH and perhaps it deserves more attention.

Thanks for your suggestion. We created a specific Section 2 where are gathered and described all the
satellite dataset: aerosol measurements and products (OMI, MODIS AOT Collection 6, and LIVAS
climatology), and the surface albedo databases (OMLER and MODIS Black Sky Albedo). These
descriptions are mostly all the parts that were written in our former manuscript version (ex-Section 6.1,
now renamed as section 7.1). This section is now reduced, mostly focusing on the process of collocation
of OMI-MODIS, cloud filtering and the applied temperature correction on the 0,-O, slant column density
(SCD).



P. 2, L. 34, here and also elsewhere suggest to add e.g. before references as there are others not in this
list.
Ok, this is done on P.2, L.34 and other pages.

P. 3., L. 20, please add Torres et al., 1998 before de Graaf reference, also suggest to add Torres et al.,
2013 reference here and explain that monthly climatology of CALIOP aerosol heights are currently in use
for determination of aerosol parameters from OMI UV measurements.

We included the reference Torres et al., (1998) prior to de Graaf et a/., (2005). In the introduction, we
added a mention about the study of Torres et al, (2013) that has integrated monthly climatology
CALIPSO aerosol heights to update the OMAERUV algorithm

P.4, L. 2, please add appropriate references here (altogether, though they are listed above).

Section 2.3, 1st par., This information may go better in the introduction. It's not clear why MAX-DOAS is
mentioned specifically here (this sentence seems out of place and not necessary). May be useful also to
mention the work of using O, A-band to retrieve aerosol height (over ocean by e.g., Dubuisson et al.
2009) and discuss possible advantages of the 0,-O, band (lower surface albedos over land?) and also
discuss availability of these bands on various sensors such as OMI, OMPS, GOME-2, TROPOMI.

The statement on P.4 L.2 states that no aerosol height retrieval exists (at our knowledge) from the OMI
0,-0, visible absorption band over land. Because of the nature of this statement, we do not have specific
references here. Regarding the previous statements, mentioning the past works analyzing the nature of
this spectral band, the rereferences are already mentioned (e.g. Veihelmann et a/., (2007), Dirksen et al.,
(2009), Park et al., (2016)).

We removed our discussion about MAX-DOAS. It was just an information about existing 0,-O, ground-
based measurements. But it is true that we do not use them then further in the manuscript.

P. 9, L. 6, I think “either” should be removed as it is confusing. Sect. 5.1, Perhaps I missed it but I do not
see where the area of North-East Asia is defined. Please give the latitude-longitude of the area studied
and/or show it on a map. I believe the highly industrialized areas (where there is heavy aerosol loading)
used in this study may also be referred to as South-East Asia, thus it can be confusing.

We removed the word “either”. We added the description of the area as follow:
“The considered area is defined by the range of latitude 25-40 deg North, and longitude 110-130 deg

East excluding the part over the Gobi desert which presents a too bright surface (as explained in Sect.
4.2 and 6.1).”

P. 15, The discussion of the pairing of OMI and MODIS is confusing. It should be made clear that the
resolution of MODIS is 1 km or better, but that collection 6 aerosol products are available at either 3 or
10 km resolution and that you are using 10 km.

We clarified in the new Section 2.2 as follow: “The MODIS instrument, launched on the NASA EOQS-Aqua
platform in May 2002, is a spectrometer delivering continuous images of the Earth in the visible, solar
infrared and thermal infrared approximately 15 min prior to OMI on-board EOS-Aura. The considered
MODIS Aqua Level 2 (L2) aerosol product is the collection 6 of M Y D04L 2, based on the Dark Target
(DT)

Land algorithm with a high enough quality flag (Xiao ef a/., 2016). While the MODIS measurement is
available at the resolution of 1 km, the MODIS aerosol product is available at both 3 km x 3 km and 10
km x 10 km. Since this last one is relatively close to the OMI nadir spatial resolution, it is then used ine
the work below (cf. Sect. 7). The improved calibration of MODIS Aqua instrument is included in the
reprocessing of the collection 6 aerosol product (Levy et a/., 2013; Lyapustin et a/., 2014).”

Please mention that you are using dark target only if this is the case and mention the specific product
name, e.g., MYD04_L2. I believe that data are provided within the 10 km grids if they have some amount



of cloud free pixels, so there may still be clouds present within the given area even when MODIS data are
reported. Also, the 10 km x 10 km areas should not be referred to as a pixel as this can be confused with
native MODIS pixels. Does the MODIS geometric cloud fraction used come from the aerosol product? This
should be clarified as there are multiple MODIS cloud detection algorithms.

We added the mention of the Dark Target algorithm where the MODIS aerosol product comes from over
land. We clarified in the text that the MODIS measurement is acquired over a pixel observation of 1 km,
but the grid cell of the used MODIS Level 2 (L2) aerosol product has a resolution of 10 km.

P. 15, L 24, change of to or.

Please check the English meaning of referent. It is defined in most English dictionaries as a noun but
used in the paper primarily as an adjective. I believe the word reference may serve better in most
instances and also perhaps the word default.

Change is done.

The word “reference” is more appropriate indeed. We modified where necessary in the text.

P. 17, L. 19, accuracy of OMI tau retrievals with respect to MODIS.

We added in Sect.2.2 the following:

“The expected error of MODIS DT 7 is about £0.05+15 % over land (Levy et a/., 2013). The "Deep Blue"
retrieval algorithm has been developed to complement the DT algorithm by retrieving T over bright arid
land surfaces (e.g. deserts). The typical associated uncertainties are about +£0.03 on average (Sayer et
al., 2013).”

P. 18, L. 29, remarkable agreement with respect to seasonal mean values Table 1: What happens for
surface pressures < 963 hPa. The neural net will be extrapolating. How well will it do this? Does this
occur with the real data? Likewise, why not add a node with single scattering albedo of unity? Also, the
maximum value of VZA for OMI is > 44.2 degrees, so why not include the full range?

Somehow, when the input parameters are outside of the range of the training ensemble dataset, the NN
will by default extrapolation. The activation function associated with the neurons in the hidden layer is a
sigmoid function. Because of the shape of this function (by opposite to a Dirac for instance), the
extrapolation is possible over a limited range of the dynamic of each parameter. Therefore, we can
expect the NN to correctly extrapolate. This is confirmed by the ensemble results and our statistical
analyses in this manuscript. No results show strange extrapolation features or saturated values because
of extrapolation beyond the shape of the sigmoid function.

But, further analyses should be done over single and specific cases to ensure the quality and characterize
the degree of this extrapolation.

Because of the specified geometric thickness of our aerosol layer, and its nature, we could not define a
proper simulation in the training dataset with an ALP (Aerosol Layer Pressure) below 963 hPa. The
radiative transfer simulations would have been unrealistic and would have greatly affected the NN
training performances.

The reason not include OMI VZA > 44.2 degrees is due to the high time consuming to increase the
number of simulations in the supervision dataset. We had already 400 000 simulations which we think is
already a large enough number to ensure the robustness of the training step. Furthermore, most of the
OMI observation pixels have statistically a VZA lower than 44 deg. But we do recognize that we probably
selected pixels with larger angles...

Table 2: When providing values for delta NsO,-O, it would be good to provide a percentage

error for these for a given scenario (readers will not have a good idea as to how large these values are).
Perhaps I missed it but doing a search of “table” doesn’t turn up a reference to Table 2 from the text.
The aerosol optical thickness error is quite large for a change in surface albedo of 0.05. If surface albedo
errors are more of the order of 0.02 (as stated in the text) then perhaps this would be a more
appropriate value to use.



The percentages may vary, but as a first order numbers in the range of 2-7% are probably a good
approximation. We added them.

The impact of surface albedo uncertainties on retrieved AOT over synthetic cases is updated in Figure 4,
following the comments of Referee #1. The retrieved AOT biases are shown per AOT and for 2 typical
surface albedo uncertainties, with opposite signs: a high uncertainty of 0.05, and a lower of 0.025. The
second one is then more in line with a more appropriate value as discussed in our manuscript.

All figures in general would benefit from larger fonts. Also the tau in the figures looks different enough
from the tau in the text to be somewhat confusing. Figure 3 caption is confusing. What exactly is the
supervised data set (training-validation-test)?

We have enlarged fonts where captions, legends, ax labels where not readable enough.

Figure 4, again lines and symbols hard to distinguish. It would be helpful to mention in the caption that
the scenarios for the lines with the dot symbols tend to tall on top of one another.
Ok, we added this remark in the caption of Figure 4.

Figure 6: Something should be mentioned in the caption about the range of surface albedos (Alb) used
(same for several other figures).

The range of surface albedos is already mentioned in the captions. The Albedo parameter is defined by
the notation A. We verified that this notation is already properly introduced throughout the entire
manuscript.

Figure 9: I don't see where it is stated that the dotted line is the 1:1 line.
Thanks! We added this remark in the caption of Figure 9.

Fig. 10: There are many lines on these plots. It would help the reader if the 1:1 lines were made thicker
to distinguish them. There are backward brackets in the legends at the ends of lines.

Following your suggestion and the one from referee #1, we changed this figure by leaving only 1 season
(autumn), so then the reader has only a limited nhumber of lines to visualise.
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Abstract. This paper presents an exploratory study on the retrieval-of-aerosol layer height (ALH) retrieval from the OMI 477
nm O2—O0Os spectral band. We have developed algorithms based on the Multilayer Perceptron (MLP) Neural Network (NN)
approach and applied them on 3-year (2005-2007) OMI cloud-free scenes over North-East Asia, collocated with MODIS-Aqua
aerosol product. In addition to the importance of aerosol altitude for climate and air quality objectives, the-main-motivation-of
this-stuey-our long-term motivation is to evaluate the possibility of retrieving ALH for potential future improvements of trace

gas retrievals (e.g. NO2, HCHO, SOa, etc..) from UV-Vis air quality satellite measurements over scenes including high aerosol

concentrations. ALHThis study presents a first step of this long-term objective and evaluates, from a statistic point-of-view,
an ensemble of OMI ALH retrievals over a long-time period of 3 years covering a large industrialized continental region.
This ALH retrieval relies on the analysis of the O2—O3 slant column density (SCD) and requires an accurate knowledge of
the aerosol optical thickness 7. Using the-MODIS-Aqua aerosel-optical-thickness-at-550-7(550nm) as a prior information,
eomparison—with-maximum differences between the Lldar climatology of vertical Aerosol Structure for space-based lidar
simulation (LIVAS) shows-that-Adl-H-average biases-and average OMI ALH, over scenes with MODIS 7 > 1.0, are in the range
of 260-800 m depending on the seasons. These results depend on the assumed aerosol single scattering albedo (sensitivity
up to 666-660 m) and the chosen surface albedo (variation less than 200 m). Scenes with 7 < 0.5 are expected to show too
large biases due to the little impacts of particles on the O —0O2 SCD changes. In addition, NN algorithms also enable aerosol
optical thickness retrieval by exploring the OMI reflectance in the continuum. Comparisons with collocated MODIS-Aqua
show agreements between —(0.02 £=0.45 and —0.18 £ 0.24 depending on the season. Improvements may be obtained from a
better knowledge of the surface albedo, and higher accuracy of the aerosol model. Fhis-Following the previous work over
ocean of Park et al. (2016) , our study shows the first encouraging aerosol layer height retrieval results over land from satellite
observations of the 477 nm O3 —0O3 absorption spectral band.
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1 Introduction

The ability to monitor air quality and climate from UltraViolet-Visible (UV-Vis) satellite spectral measurements requires ac-
curate trace gas (e.g. NOs, SO2, HCHO, O3) and aerosol observations. Aerosols and trace gases often share similar anthro-
pogenic sourcessetrees, and their concentrations, as shown by the satellite observations, often exhibit significant correlations
(Veefkind et al., 2011). The reason is that trace gases are often precursors for aerosols. The importance of measuring vertical
distribution of atmospheric aerosols on a global scale is triple. Firstly, aerosols directly impact the radiation budget of the
Earth-atmosphere system through the scattering and absorption of solar and terrestrial radiation (Feingold et al., 1999). High
concentrations of fine particles lead to reduced elouds—cloud droplet size, enhanced cloud reflectance (Twomey et al., 1984),
and reduced precipitation (Rosenfeld, 2000; Ramanathan et al., 2001; Rosenfeld et al., 2002). Therefore, large uncertainties of
aerosol optical properties limit our climate predictive capabilities (IPCC: Solomon et al., 2007). In spite of more robust climate
predictions in the last years, radiative forcing (RF) induced by aerosols stit-contributes-to-are still the largest uncertainty to the
total RF estimate (IPCC: The Core Writing Team Pachauri and Meyer, 2014). The vertical distribution and relative location are
determining factors of aerosol radiative forcing in the long-wave spectral range (Dufresne et al., 2002; Kaufman et al., 2002).
Secondly, aerosols play a significant role in air quality, in particular near the surface. Due to the rapid growth of both popula-
tion and economic activity, such as in Asian region, increase in fossil fuel emissions gives rise to concerns about fine particles
formation and dispersion. Aerosols include a variety of hazardous organic and inorganic substances, reduce visibility, lead to
reductions in crop productivity and strongly affect health of inhabitants in urban regions (Chameides et al., 1999; Prospero,
1999; Eck et al., 2005).

Thirdly, slant column densities (SCD) of trace gases, derived from UV-Vis air quality space-borne sensors, have a high
sensitivity to aerosol heights. For partly cloudy conditions, clouds are the main error source of trace gas measurements. But,
in the absence of clouds, vertical distribution of aerosols, combined with their scattering and absorbing properties, modifies
the length of the average light path of the detected photons, and therefore affects the-eomputation—of-trace gas Air Mass
FaetorFactors (AMF). The application of the AMF is crucial for the conversion of slant column densities (SCD) from satellite
line-of-sight measurements into vertical column densities. Then, aerosols strongly contribute to the uncertainties of trace gas
retrievals from space-borne observations. For example, tneertainties-in-the-computed-tropospherie- AMEfor-the-the magnitude
of the error on the Ozone Monitoring Instrument (OMI) are-the-dominant-souree-of-errors-in-theretrieved-tropospheric NO3
column-retrieval is, over polluted areas, mostly determined by the AMF uncertainty, not by the SCD ugnertainty. It results

from the combination of aerosols, clouds and the shape of the NO» profile (Boersma et al., 2007). Negative biases on OMI
tropospheric NOo columns, between —26 % and —50 %, are found in urban and very polluted areas in cases of high aerosol

pollution and particles located at elevated altitude (Shaiganfar et al., 2011; Ma et al., 2013; Kanaya et al., 2014). HCHO AMF
for GOME-2 and SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) shows about
20-50 % sensitivity to aerosols, depending #-whether they are located within or above the boundary layer (Barkley et al., 2012;
Hewson et al., 2015). Dust aerosols (large particles, with strong absorption in UV) can reduce the AMF in the SO, wavelengths
(310 - 330 nm) by half, thus doubling the retrieved SO, (Krotkov et al., 2008). This impacts the ability of sensors like OMI
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to monitor Planetary Boundary Layer (PBL) SO5 with a sensitivity to local anthropogenic sources. Over regions of enhanced
columns, aerosols highly contribute to the total SO AMF error (Lee et al., 2009). Therefore, acrosol parameters (or retrievals)
are a pre-requisite before retrieving trace gas vertical column densities.

State-of-the-art trace gas retrieval algorithms correct for aerosol effects either explicitly using modeled aerosol vertical
profiles (e.g., (Barkley et al., 2012, 2013; Kuhlmann et al., 2015; Lin et al., 2014, 2015)), or alternatively implicitly via cloud
algorithms. For example, the OMI O2—0; speetral-absorption band at 477 nm has been widely exploited to derive cloud
information (Acarreta et al., 2004; Sneep et al., 2008). However, the OMI cloud algorithm is sensitive to aerosols, and thus
the retrieved effective cloud parameters are modified in their presence (Boersma et al., 2007; Castellanos et al., 2015; Chimot
et al., 2016). The OMI O5—Os spectral band at 477 nm contains significant information on aerosol properties and height. The
retrieved effective clouds are then used to correct the computed AMF (de Smedt et al., 2008; Boersma et al., 2011). In spite
of these well considered perturbations, the use of the effective cloud parameters, assuming that the opaque Lambertian cloud
model can reproduce the distribution of scattering fine particle effects, does not yet completely correct for the aerosol effects
when computing the AMF, in particular for the tropospheric NO5 columns (Castellanos et al., 2015; Chimot et al., 2016).

Characterizing the aerosol vertical distribution, in addition to the associated optical properties, using passive space-borne
measurements is challenging due to the absence of spectral features in the aerosol optical properties and the combined influ-
ences of surface and cloud reflection. Contrary to effective cloud retrievals, aerosol retrieval is a more complex problem mainly
because of the variability of particle microphysical properties and the lower optical thickness (typically 1-2 orders of magni-
tude). As a consequence, methods assuming large multiple scattering contributions, such as a simple cloud model assuming
Lambertian properties, cannot be used. Passive radiometers like Moderate Resolution Imaging Spectroradiometer (MODIS)
can only retrieve a limited amount of independent information from their measurements, usually aerosol optical thickness 7 and
the extinction Angstrém exponent «, as a proxy for the particle size distribution (Levy et al., 2007, 2013). The near-UV tech-
nique has been widely used to map the daily global distribution of UV-absorbing aerosols such as desert dust particles as well
as carbonaceous aerosols generated by anthropogenic biomass burning and wildfires. It allows to retrieve 7, Single Scattering
Albedo wp and the qualitative Aerosol Absorbing Index (AAI) in the 330-388 nm of the Total Ozone Mapping Spectrome-
ter (TOMS) and OMI sensors (Torres et al., 1998; Torres et al., 2002; Torres et al., 2007). However, this technique is highly
affected by the dependency of the measured radiances on the height of the absorbing aerosol layer {de-Graatet-al52005)—

Torres et al., 1998: de Graaf et al., 2005) . OMAERUYV has been upgraded by integrating a monthly climatology of CALIOP
aerosol heights to retrieve acrosol parameters from OMI UV _measurements (Torres et al., 2013) . The Cloud-Aerosol Lidar
with Orthogonal Polarization (CALIOP) has been providing vertical profiles of aerosols but with limited spatial coverage be-
cause of its measurements characteristics (Omar et al., 2009). Park et al. (2016) evaluated the sensitivity of the Oo—O5 slant
column density to changes in aerosol layer height over ocean. It is demonstrated that the O3 —O4 spectral band at 477 nm is
the most sensitive to the aerosol layer effective height (compared to the O;—0O5 absorption bands at 340, 360 and 380 nm),
due to the largest O»—O> absorption and reduced Rayleigh scattering. Veihelmann et al. (2007) determined that the complete
OMI UV-Vis reflectance measurements contain between 2 and 4 Degrees of Freedom of Signal (DFS). The 477 nm O2—05
band adds about 1 degree and therefore contains more information than any other individual band. This relative large number
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of DFS for UV-Vis satellite solar backscatter observations is explained by the sensitivity of the reflectance to the aerosol layer
height. Detailed O;—O, radiative transfer simulations performed by Dirksen et al. (2009) revealed the availability of the alti-
tude information about smoke aerosol plume, released by intense forest fires and transported over long distance, under specific
conditions: high AAT and no clouds. In spite of all these efforts, no aerosol height retrieval has been done at this moment from
05 —04 satellite measurements at 477 nm over land.

Since aerosol altitude, in addition to aeresel-optical-thickness-7, is one of the key parameters affecting the computation
of AMF for trace gases retrievals such as NOg (Leitdo et al., 2010; Chimot et al., 2016), the-metivation-of-this-exploratery
study-our long-term motivation is to evaluate the capability of retrieving it from the satellite O,—O2 absorption band at 477

nm. This stady-exploratory study is the first step and statistically analyses an ensemble of OMI observations over a three year
eriod (from 2005 to 2007) and covering a large industrialized continental region (i.e. North-East Asia). This study follows

the conclusions of previous works focused on the sensitivity of this spectral band and the observed links between the O2—0O5
effective cloud retrievals and aerosol parameters. In this paper, quite a few algorithm concepts are developed, based on the
Neural Network (NN) approach, and then tested on a high number of OMI observations over land. The-primary-focus-of-this
exptoratory-stuey-Our primary focus is the retrieval performance of aerosol layer pressure (ALP) associated with scattering and
fine particles over large urban, industrialized and highly polluted area and cloud-free scenes. In addition, the sensitivity of the
algorithms to 7 knowledge is investigated and, therefore, the capability of 7 retrievals from the same OMI band is evaluated.
The considered OMI-ebservations-satellite observations and input dataset are described in Sect. 2-with-a-particularemphasize
2. Sect. 3 focuses on the available OMI O,—0O3 Differential Optical Absorption Spectroscopy (DOAS) parameters and their
link with Ad=H-Aerosol Layer Height (ALH) and 7. The development of the different NN algorithms are described in Sect. 3-
4. Their performances are evaluated in Sect. 4-5 on synthetic and independent data set with a characterization of the main
limiting factors. Finally, these algorithms are applied to-3-years{2005-2007)-of-in Sect. 6 to cloud-free OMI observation over
the North-East Asia -where large amounts of aerosols are emitted from both natural and anthropogenic sources (Lee et al.,
2012). They are then compared with other observation products, namely MODIS Aqua 7 and the LIdar climatology of vertical

Aerosol Structure for space-based lidar simulation (LIVAS).

2 OMIDOAS-analysis-and-aeresels
2 Aerosol and surface albedo satellite data

In this section, are described the three main aerosol satellite data that are used in this study: OMI Visible measurements
MODIS aerosol product and LIVAS climatology database. In addition, the two considered surface albedo databases: OMI
Lambert Equivalent Spectral Surface Reflectance (OMLER) and MODIS Black Sky Albedo are also described.
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2.1 OMI satellite data

The Dutch-Finnish mission OMI (Levelt et al., 2006) is a nadir-viewing push-broom imaging spectrometer launched on the
National Aeronautics and Space Administration (NASA) Earth Observing System (EOS)-Aura satellite. It provides daily global
coverage of key air quality components through observations of the backscattered solar radiation that are captured during
daylightin the UV-Vis spectral domain. Based on a twe-dimensiorat-two-dimensional detector array concept, radiance spectra
are simultaneously measured on a 2600 km wide swath within a nadir pixel size of 13x24 km? (28 x 150 km? at extreme off-
nadir). OMI has a higher spatial resolution than any other UV-Vis hyperspectral spectrometers. It measures in the wavelength
range of 270 nm to 500 nm with a spectral resolution of 0.45 nm in the UV-2 band (310-360 nm) and 0.63 nm in the visible
band (360-500 nm). Retrieva i i §
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Starting mid-2007, an—external-ebstruction—to—the—sensor’sfield-of—~view-the so-called "row anomaly" has been perturb-
ing OMI measurements of the Earth-shine radiance at all the wavelengths. At—this—moment—abouthalf—ofthesenser’s

] )

aty—Details are given on the site

http://www .knmi.nl/omi/research/product/rowanomaly-background.php. For practical reasons, this study only used the OMI
data acquired during 2005-2007, i.e. before the development of this anomaly.

OMI has not been optimized for aerosol monitoring. However, various-studies-demonstrated-the-sensitivity-of the-reflectanee
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contrast-to-Rayleigh-seattering—The-the OMI near-UV aerosol algorithm (OMAERUYV) independently retrieves atmospheric

total columns of aeresel-optical-thickness-T and singleseattering-albedo-w from the 2 U
(Torres et al., 2007, 2013). Fh Hmult-—w reth-aleor

V wavelengths, 354 nm and 388 nm

a N hea (OWNTAERO a N Pa
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In comparison with 44 Aerosol Robotics Network (AERONET) sites, evaluated OMAERUV 7 yield a root mean square
error (RMSE) of 0.16 and a correlation coefficient of 0.81 over the years 2005-2008 (Ahn et al., 2014). About 65 % of these
retrievals lie within the expected uncertainty. The OMAERUV SSA-—products—agree—wy _product agrees with AERONET to
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within 0.03 in 46,% of the collocated pairs, and to within 0.05 in 69 % of the cases (Jethva et al., 2014). Parket-al-2046)used

The OMI O2—02 477 nm absorption band is currently operationally exploited by the OMI O2—O2 cloud algorithm to derive
effective cloud fraction and pressure (Acarreta et al., 2004; Veefkind et al., 2016) . Park et al. (2016) applied a Look-Up-Table
(LUT) approach te-retrieve;from-the-OMI-477-speetral-band;-on this band to retrieve aerosol effective height over ocean, close

to East Asia, within the error range of 1 km (compared to CALIOP). This approach was applied to 7 case studies, each of
them covering a few days. No aeresel-opticat-thickaess—1 was retrieved. No study has yet explicitly used this satellite band to
directly retrieve aerosotayer-height-and-ALH and 7 ever-tandover land. This band is not only available on OMI but also on
various sensors such GOME-2, OMPS and the next Tropospheric Ozone Monitoring (TROPOMI) space-borne.

2.2 MODIS aerosol product

The MODIS instrument, launched on the NASA EOS-Aqua platform in May 2002, is a spectrometer delivering continuous
images of the Earth in the visible, solar and thermal infrared approximately 15 min prior to OMI on-board EOS-Aura. The
considered MODIS Aqua Level 2 (LL2) aerosol product is the collection 6 of MY D047 2, based on the Dark Target (DT) Land

algorithm with a high enough quality flag (Xiao et al., 2016) . While the MODIS measurement is acquired at the resolution of

1 km, the MODIS aerosol product is available at both 3 km x 3 km and 10 km x 10 km. Since this last one is relatively close
to the OMI nadir spatial resolution, it is then used in the work below (c.f. Sect. 7). The improved calibration of MODIS Aqua

instrument is included in the reprocessing of the collection 6 aerosol product (Levy et al., 2013; Lyapustin et al., 2014) .

The availability of the MODIS aerosol products is generally a good confirmation of cloud-free scenes as MODIS Aqua
i i.e. the MODIS

average 7 variable is exclusivel rovided a high amount of cloud-free sub-pixels is available

measurement resolution of 1 km).

The expected error of MODIS DT 7 is about 4-0.05+ 15% over land (Levy et al., 2013) . The "Deep Blue" retrieval

algorithm has been developed to complement the DT algorithm by retrieving 7 over bright arid land surfaces (e.g. deserts). The

typical associated uncertainties are about 4-0.03 on average (?) .

2.3 DOAS-analysis-LIVAS climatology database

The Lldar climatology of Vertical Aerosol Structure for space-based lidar simulation studies (LIVAS) is a 3-D multi-wavelength

global aerosol and cloud optical database (Amiridis et al., 2015) . This database provides averaged profiles of aerosol optical
properties over 9 years (1_january 2007 - 31 December 2015) from the Cloud Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO) data_on _a uniform grid of 1° x 1°. LIVAS addresses the wavelength dependency of aerosol
properties for many laser operating wavelengths including 532 nm. LIVAS data set has been evaluated against AERONET
in Amiridis et al. (2015

data set ideal for synergistic use with other satellite products.

showing realistic and representative mean state aerosol optical depth values in 532 nm making this




The LIVAS ALH is derived from the given averaged vertical profile of aerosol extinction (532 nm) o(l) over each vertical
layer [ defined by its altitude h(l) as follow:

Zlih(l)a(l)
5 ALH(LIVAS)= S

1

ey

Since LIVAS also provides the standard deviation associated with each averaged vertical profile of aerosol extinction (532
nm) do (1), the equivalent standard deviation AL H of each LIVAS ALH is derived as follow:
>>0h(1)oo (1)

OALH(LIVAS) = -+ —— 2
]
ZIZ o(l)

where 0z(1) is the geometric thickness of each vertical layer [.

10 24  Surface albedo dataset

The standard and reference product is the OMLER climatology derived from several years of OMI observations at the spatial

resolution of 0.5 ° x 0.5 ° longitude-latitude grid for each calendar month (Kleipool et al., 2008) . The OMLER algorithm is
based on temporal histograms of the observed Lambert Equivalent Spectral Surface Reflectance (LER) values per grid box.
Potential small residual cloud and aerosol contaminations are expected to remain in the OMLER product. As an alternative, the

15 global and spatially complete MODIS black sky surface albedo in the band 3 (459-479 nm) is considered. It is defined as the
directional hemispherical reflectance and is a function of solar zenith angle 6 (Schaaf et al., 2002) . Itis derived by integrating
the atmospheric corrected Bidirectional Reflectance Distribution Function (BRDF), derived from combined MODIS-Aqua and
Terra observations over every 16-day period. The downwelling flux in the MODIS black sky albedo has no diffuse component.
The Collection 6 of the-OMEMCD43C3 product is given on a 0.03° (5.6 km) latitude/longitude Climate Modeling Grid

20 (CMG). Note that (Kleipool et al., 2008) demonstrated that the OMLER data set is closer to the black sky than to the white sky
by evaluating the ratio between diffuse and direct illumination.

3 OMI O2—02 DOAS analysis and aerosols
3.1 DOAS analysis of the OMI O2—0O2 477 nm absorption band

In this paper, the aerosol Neural Network (NN) retrieval algorithms allow the conversion of the continuum reflectance
25 R.(475nm) and the O53—0O5 SCD N2 into 7 and ALP (in hPa). As a consequence, the NN retrievals rely on the way how
the aerosol parameters modify these two variables and thus the photons average light path.

Prior to this conversion, a spectral DOAS fit must be performed to derive R.(475nm) and ¢ from the OMI O5—0O>
477 nm speetral-band
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Fhe-absorption band. The various DOAS techniques rely on the same key concept: a simultaneous extraetionit of several

trace gas slant column densities from the fine spectral features due to their absorption (i.e. the high frequency part) present

step-of-this-algorithm-is-a DOASspeetral-fitin-which-Here, the DOAS fit follows the same approach as in the OMI O2—05
cloud algorithm (Acarreta et al., 2004; Veefkind et al., 2016) : i.e. the absorption cross-section spectrum of O2—OQ5 is fitted

together with a first order polynomial:
- hl(R()\)) =7 + Y2 A + N82702 (>\) *005—04 + N83 (>\) 003, (3)

where 71 + 72 - A defines the first order polynomial, 00,0, and oo, are the O2—O3 absorption cross-section spectrum {at
253)-and the O3 absorption cross section spectrum respectively, convoluted with the OMI slit function, and N§ _ is the O slant
column densityand-N¢, —q -is-the slanteolumn-density—. 00,0, is based on measurements of the cross section made by C..
Hermans (see http://www.aeronomie.be/spectrolab/o2.htm - file O4.txt). The O3 cross section spectrum is included because it

overlaps with the O2—Os spectrum. The fitted parameters are 71, y2, N(S)roz’ and N(S)a. In the absence of absorbers, one may

define the continuum reflectance R, at the reference wavelength \g:
Re =exp(—y1— 72" Ao)- “)

The reference wavelength is specified as the middle of the DOAS fit window at Ag =475 nm.

Figure 1 illustrates how aerosol particles directly drive the OMI O3—0O2 DOAS parameters at 477 nm assuming cloud-free

space-borne observations. These effects are obtained from radiative transfer simulations including aerosols and no clouds. The

detailed generation of such simulations is given in Sect. 3:24.2. The DOAS fit equations following Eq. (3) and Eq. (4) are then
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applied en-to these simulations. In this paper, the aerosol layer hetght-tAEH)is-expressed-by-the-aerosoHayerpressure(AEP)IS
assumed to be one single scattering layer (i.e. "box layer") with a constant geometric thickness (about 1 km). All the particles
included in this layer are supposed to be homogeneous (i.e. same size and optical properties). ALH is then expressed by ALP,
in hPa, defined as the mid-pressure of an-hemogencous-and-finite-acrosol-ayer—
The-OMI-continuum-reflectance-at-475-—is-directhy-this scattering layer.
Qualitatively, aerosols have two separate effects on the average light path, and therefore on the O2—0> absorption signal
at the top of the atmosphere (TOA). These two effects are similar to aerosols and clouds have on NO, absorption signal

Leitdo et al., 2010; Chimot et al., 2016) : 1) a shielding effect, i.e. a decreased sensitivity within and below the aerosol layer

e

due to a reduced amount of photons coming from the TOA and reaching the lowest part of the atmosphere compared to
an aerosol-free scene, 2) an enhancement (albedo) effect, i.e. an increased sensitivity within and above the aerosol layer as
more photons are scattered back towards the sensors, the part of the atmosphere above the aerosol layer is then sampled by a
larger fraction of detected photons. Shielding then leads to a reduced O2—02 absorption while enhancement may increase the

05 —04 absorption especially for low cloud or aerosol layers. The overall effect (enhancement vs. shielding) depends on the

aerosol optical properties, the total column 7 and ALP.
OMI RC(475nm) is directly and primarily affected by the total column 7 of fire-particles present in the observed sceneas

-Indeed, R increases

with increasing 7 independently of the ALP (cf. Fig. 1a). This mostly results from the influence of aerosols on the ensemble

number of detected photons and on the additional scattering effects observed in the scene compared to an aerosol-free scene.

However, the magnitude of this increase relies on aerosol optical properties and the surface brightness. As a consequence, R,

Wﬁfgggmmwoaﬂd—eh& , phase function, and the surface albedo A. Indeed, R decreases with decreasing wgy and
over a darker surface (i.¢. smaller A value) for all the 7 values (cf. Fig. l¢ and Fig. Ie). The importance of these parameters
is further discussed in Sect. 4-5 and Sect. 5—11-6. Note that, in addition, the reflectance is also driven by the geometry angles:
i.e. viewing zenith angles 0, sotarzenith-angles-0y and relative azimuth angle defined as the difference between viewing and
zenith azimuth angles ¢ — ¢o. An increase of ¢ or 6y will lead to longer average light path, and thus will amplify aerosol related
additional scattering effects (for a given 7).

OML NG, _q, telies on the O—0Og absorption meastrements-determine-the-magnitude along the average light path in
the whole atmosphere. It is driven by the overall shielding or enhancement effect of photons by the O;—02 complex in the

visible spectral range, due to the presence of particles. a

below—As depicted in Fig, 1b, INV? decreases with decreasing ALP. This is a direct consequence of a larger shieldin
effect applied by aerosols located at higher altitudes (i.e. deere&%e—ef—fkmeﬂgfh—ef—ehe—avefage—hgm—pﬁh)—&}eh—&ﬂ—eﬁeet

has-a-direet-impaet-on—the-part of the O2—0O> ¢
%WAVW@G%—EM&%@%—GW%%om lex located below the aerosol layers are
shielded). Nevertheless, in case of low 7 values (i.e. <0.5), o, generally-inereases-with-inereasing-aerosoHayerpressure
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for-deereasing-aerosoHayer-height)—does not significantly vary with respect to ALP. This shows that a low amount of aerosols

has very little impacts on O2—0O absorption measurements.
However, as depicted in Fig. +e;-1b, 1d and 1f, not only ALP but also 7 directly influences the slant O3 —O5 absorption

AARAAAAAAAAAAN

since both parameters simultaneously affect the photon-path-distributionavergae path followed by the photons, and therefore

the overall shielding or enhancement effect. An increase of 7 -for-partietes-with-w0-<0:95-1eads to a decrease of N3, .
The slope of this decrease depends on the aerosol altitude (i.e. higher for particles at high altitude). This-means-that+alse

and-Note that both wy and A also affect N, o, have-anonneghgibleeorrelation{see-, but this effect is smaller than 7. For

example, a reduced wy and A lead to a small decrease of N¢ cf. Fig. %b%acreheyﬂhafe—mﬁaﬂ—%amemfefmaﬁeﬂ—me

As a consequence:
— the variable-gingle parameter N§, o, eontain-beoth-information-contains information on both 7 and ALPthateannotbe

eastly-separated—As-a-consequenee. These parameters cannot be separated from this unique variable alone. Therefore, if
7 is not accurately known, there will likely be an ambiguity when analysing N, , to retrieve ALPsinece-contributions

— if an external or prior 7 estimate is not available, then the two parameters N@ and R (475nm) could be

simultaneously combined to retrieve ALP provided that one can accurately and independently retrieve 7 from
R.(475nm). Then, in that condition, OMI R.(475nm) may help to distinguish both 7 and ALP contributions in /N2

However, the simultaneous effects of aerosol wg and A on R. (as discussed above), and therefore their associated
uncertainties, will impact the feasibility of retrieving 7 from OMI measurements. It may then degrade the retrieved
ALP performances.

R. and N}, 5 have a non negligible
correlation. Indeed, an increase of 7 )-results in a simultaneous increase of 1. and N, _q,. Therefore, it has to be noted
that these two last parameters are not independent and combining them does not provide with two independent pieces of

Overall, the impact of aerosol particles on the OMI O, —0O5 spectral band is similar to cloud particles. This explains in part
the difficulty to distinguish aerosols from clouds. In cases with a mix of aerosols and clouds, there is an ambiguity between R,
the-t and the OMI effective cloud fraction on the one hand, and N(S)2 —0y» the-aeresoHayerpressureALP, 7, the OMI effective
cloud pressure and fraction on the other hand (Boersma et al., 2011; Castellanos et al., 2015; Chimot et al., 2016). Therefore,

this study only focuses on cloud-free reflectance to avoid this complexity.

10
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4 Design of the neural network retrieval algorithms

The retrieval algorithms developed for this paper are based frem-on the Pybrain software (Schaul et al., 2010). Pybrain is a ver-
satile machine learning library written in Python designed to facilitate both the application of and research on premier learning
algorithms such as recurrent NNs. It includes several functions such as supervised learning algorithms, feed forward network
design and error back-propagation computations. Only the main developments specific to the present study are explained and
discussed in the next sub-sections. For more details related to the Pybrain specificities, the reader is encouraged to read Schaul
etal. (2010).

The Multilayer Perceptron (MLP) neural networks have been widely used and acknowledged for decades in the field of
remote sensing (Atkinson and Tatnall, 1997). Indeed, most retrieval problems in this field are ill-posed and nonlinear;—n
particular-the-atmospherie-ones. Thus, the associated inverse problems can only be addressed by including a priori information
and relying on statistical analysis. Since aerosol retrieval from passive spectral measurements is well-known as a non-linear
inverse problem, the MLP technique represents then a powerful approach to design a retrieval algorithm in a fast and robust
way. The basic idea is to build an optimal interpolator system making the link between the OMI 477 nm O5—O2 measurements
i i ~ALP and 7 (cf. Fig. 1). However,

knowledge must be acquired by the network by means of a supervision database. The following sections summarize then the

and the retrieved 4

design of the developed algorithms (see Sect. 3-14.1), the generated supervision database (see Sect. 3-24.2) and the employed
learning process (Sect. 3-34.3).

4.1 Multilayer Perceptron network approach: application to the OMI Oz — O3 aerosol retrievals

Artificial neural Networks are a family of models related to the machine learning and the artificial intelligence domain (Luger
and Stubblefield, 1998). They are used to reduce the number of calculations of functions requiring a large number of inputs
and being generally unknown (or not well defined). The idea is to approximate them by parameterized and more simple
functions. Input and output signals are then interconnected by a set of activation functions and a set of weights associated
with each of them (Luger and Stubblefield, 1998). In the context of this work, the-link-betweenthe-OMI-measurements-and

aerosol-parameters-cannot-be-exactly-deseribed-with-aceuratefunetionsno invertible analytical function exist that describes

the dependence of slant columns and continuum reflectances on aerosols (see Sect. 2.3). Thus, the idea of developing neural
networks here is to identify input-output relationships directly from a well-known training ensemble. The choice of a NN

approach relies on their advantages compared to more conventional methods such as linear regression, linear interpolation in a
LUT or the Optimal Estimation Method (OEM). In particular, it enables 1) very fast computations with modern computers in
spite of the number of required parameters, 2) optimized interpolation technique even in case of nen-nearnon-linear statistical
modelling and so potentially lower systematic biases compared to a linear interpolation, 3) reduced memory use compared to
a LUT with a very high sampling.

As illustrated in Fig. 2, the designed NNs rely on a multi-layer architecture, based on the Multilayer Per-
ceptron technique(Rumelthartet-als1986)-, composed of parallel processors (i.e. neurons) organized in distinct layers

11
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(Rumelhart et al., 1986) . Such an architecture allows to separate non-linear data, and generally consists of 3 (or more) types
of layers. The first layer includes all the required input variables. The last layer includes all the desired output data (or here
retrievals). The intermediate layers are usually referred as hidden layers and contain the activation functions. All these layers
are connected via neural links: two nodes or neurons ¢ and j between two consecutive layers have synaptic connections associ-
ated with a synaptic weight w;;. Each neuron j computes a weighted sum of its NV x; information sent from the neurons of the
previous layer. Then, this weighted sum is transported through a non-linear mathematical function before being passed to the

next layer. Here use is made of the classical sigmoid function:

1
The output z; of the neuron j in the hidden layer is thus given by:
N
Zj :a(Zwij $1) (6)
i=1

The overall set W of synaptic weights w;; contain all the information about the network (i.e. its neural architecture defined
by a specified number of layers, neurons and connections). When the transport reaches the output layer, it forms the network
output.

The chosen neural architecture is the following (see Fig. 2). The input layer is composed of 7 parameters that include (1) 6,

0o, ¢ — ¢o, surface pressure Ps, surface albedo A4, and (2):

- either R R (475nm) and N§, o, for #7(550nm) and ALP retrievals: this configuration is named N Ng, Ng,

-0y ’

— or+#7(550nm) and N(S)ro2 for ALP retrieval: this configuration is named NN, Ny o,

The output layer is, for each NN retrieval algorithm, composed of only one output variable: either 7, or aerosol layer pressure
ALP. In total, three NN retrieval algorithms are then selected and used at the end: one NNp_ No. o, for =7 (550nm) retrieval,
one ]\f]\f}:\gm]\f(s)z_o2 and one NNT»N(S)Q—oz for ALP retrieval.

The choice to use either NN, g, or NN: ng _, will impact the accuracy of the ALP retrieval results (see Sect. 4-2;
5.2 and 5.3).

4.2 Generation of the supervision database: aerosol properties and simulations

The MLP neural networks must be tratned-tn-order—to-build-models-that-cantearn-accurately trained from a well-known data
set-and-ther-. They are then able to generalize the inverse problem by predicting the aerosol retrievals from input observations
that have never been seen before. For that purpose, a learning database must be carefully designed and generated. It must be
representative of the entire distribution of (input-output) values that can likely be encountered in the OMI observations. As a
consequence for the MLP algorithms, a large quantity of data is often required for the learning process. However, very large
learning data set can be extremely time consuming in terms of generation and then NN training.

The-NNs-are-here-trained—-with-simulated-dataTraining a neural network based on a large ensemble of synthetic dataset
has been widely employed in atmospheric retrieval science such as for CO5 and CHy (2?) , aerosol (?) and cloud properties

12
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(22?) .. This study uses-created our own training dataset based on simulations from the Determining Instrument Specifications
and Analyzing Methods for Atmospheric Retrieval (DISAMAR) software of KNMI (de Haan, 2011). DISAMAR includes

a radiative transfer model and different retrieval methods. The radiative transfer model is based on the Doubling Adding KNMI

(DAK) model (de Haan et al., 1987; Stammes, 2001) and thus computes the reflectance and transmittance in the atmosphere

using the adding/doubling method. This method calculates the internal radiation field in the atmosphere at levels to be specified

by the user and takes into account Rayleigh, aerosol and cloud scattering and trace gas and aerosol absorption. Scattering by

aerosols is simulated with a Henyey—Greenstein scattering phase function ®(©) (Hovenier and Hage, 1989):
1-g°

(14 g2 —2gcos©)3/2°

where O is the scattering angle. The phase function is then parameterized by the asymmetry parameter g, which is the average

B(0) =

@)

of the cosine of the scattering angle, such its variation —1 < g < 1 ranges from back-scattering through isotropic scattering to
forward scattering. Following the DISAMAR configuration, 7 values in the simulations are specified at the referentreference
wavelength of 550 nm. The Angstrém exponent o describes the spectral dependence of 7.

ALP is the main target parameter since this is one of the main parameters describing the average light path distribution
in the tropospheric NO; AMF computation. The second target is 7 since this information may be requested for a good ALP
retrieval quality. We thus assume we do not need at this level to define more realistic aerosol models for every aerosol scene.
With a referent-reference asymmetry parameter of g = 0.7, intermediate value typically observed (Dubovik et al., 2002), the
Henyey-Greenstein function is known to be smooth and reasonably well reproduce the Mie scattering functions for most of
aerosol types. This approach is also used for the preparation of the operational aerosol layer height retrieval algorithm from
Sentinel-5 Precursor (Sanders et al., 2015) and for explicit aerosol corrections in the AMF calculation when retrieving trace
gases such as tropospheric NO, (Spada et al., 2006; Wagner et al., 2007; Castellanos et al., 2015).

The ensemble of parameters and associated values used for generating the learning database is detailed in Table 1. About 460
000 spectral simulations, over the O;—04 spectral band (460-490 nm), were generated, assuming different satellite viewing
and solar geometries, surface-albedo;surfacepressure-A, Ps and aerosol pollution levels. Scenes with too large angles (i.e.
0o > 65°) and too bright surfaces (i.e. A > 0.1) are excluded. For each of these simulations, R=R.(475nm) and N(S)ro2 were
deduced from the DOAS fit equations Eq. (23) and Eq. (34). Aerosols are specified for a standard case, assuming fine particles

with a unique value of A&g%fem—eeemeteﬁt—a = 1.5 and g = 0.7. Aerosol profiles are parameterized by scattering layers with

constant aerosol volume extinction coefficient and aeresetsingleseatteringwy and with a fixed pressure thickness. Fhe-ALP

—In order to investigate the assumptions related to the
single scattering albedo properties wy, two typical values are considered: wg =0.95 and 0.9. Contrary to the other variables,
wq 1s not known for each OMI pixel and thus cannot be used as an explicit input parameter by the designed NNs. Moreover, it
cannot be retrieved from this band since it is supposed to affect #2—[(475nm) and N§ ., similarly as 7. Therefore, 2 sets

of NN models are developed for different purposes:

— one set of three MLP NN algorithms (]\f]\f}:\gm]\f(s)z_o2 for 7 retrieval, ]\U\f}:\gm]\f(s)z_o2 and ]\f]\fTJ\f(s)z_o2 for ALP retrieval)

is trained assuming wy = 0.95;
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— one set of three MLP NN algorithms (]\f]\f}:\gm]\f(s)z_o2 for 7 retrieval, ]\U\f}:\gm]\f(s)z_o2 and ]\f]\fTJ\f(s)z_o2 for ALP retrieval)

is trained assuming wy = 0.9.

The choice to use one of these sets will impact the accuracy of the retrieval results.
4.3 Optimization of the learning process and selection of the best NN architecture

Prediction of the optimal number of neurons and the hidden layers is generally not possible as these values are strongly specific
to the given problem (Atkinson and Tatnall, 1997). While it has been theoretically proven that a single hidden layer MLP
networks with nea—tnear-non-linear activation functions may represent any nonlinear continuous function (Haykin, 1999),
a 2-hidden layer MPL may approximate any function to any degree of non-linearity taking also into account discontinuities
(Sontag, 1992). To identify the best NN architecture for each aerosol retrieval parameter (7 and ALP) and for each configuration
(]\f]\f}:\fc’]\;(s)2 or ]\UVTJ\;(S)2

o, S€€ Sect. 3.1), several architectures are trained and then evaluated: one single hidden layer

-0
with a Variableznumber of neurons (between 9 and 70) and two hidden layers (between 15 and 70 neurons on the 1st layer, and
between 10 and 40 on the 2nd layer). Then, the mestrelevant-optimal NN architecture is selected based on the best computed
evaluation score. In total, about 96 different MLP architectures, for each configuration, were evaluated.

For one given NN architecture, the training process is the optimization technique that estimates the optimal network param-
eters W of synaptic weights o;; (see Sect. 3.1). For that purpose, a-pesttive-definite-an error function £ must be minimized.
This error function measures, for a set of p representative situations, for which inputs and outputs (i.e. 7 and ALP) are known,
the mismatch between the neural network outputs o; and the true outputs ¢; as follow:

1 &
E=3) (o—ti) ®)

i=1

This error function minimization follows here the Error Back-Propagation algorithm as specified by Rumelhart et al. (1986).
It is a stochastic steepest descent algorithm well adapted to the MLP hierarchical architecture. The learning step is made sample
by sample, iteratively and stochastically selected in the training data set. The network is initialized with random synaptic
weights. At each iteration, the error is computed and then propagated backwards from the output layer. The processes of error
back-propagating and feeding forward signals are repeated iteratively until the error function is minimized or the maximum
number of iterations is reached (i.e. 500).

During the training phase, the considered network architecture must obtain an optimal generalization performance: i.e.
the network performance should not degrade significantly when data set other than the training one is analyzed. Standard
NN architectures, like the fully connected MLP, generally have a too large parameter space, and are prone to over-fitting.
Although the network performance seems to constantly improve on the training sets at each iteration, it can actually begin to
worsen (in terms of errors) on unseen data set. Therefore, a verification step is performed, over the last 15 iterations, to detect
this overfitting moment (i.e. no significant variation of ) and stop the training phase. This process is called early stopping.
Finally, to ensure that the system is not trapped in local minima during the eesterror function minimization, the learning phase

(training+verification) is repeated three times, the synaptic weights being randomly initialized at the beginning of each training
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phase. The network system presenting the best evaluation score (see Eq. 78) is then selected. All these precautions are carried
out by randomly splitting the learning data (see Fab:Table 1) into 3 independent sets: training, verification and evaluation. They
respectively consisted of 70 %, 15 % and 15 %.

Figure 3 depicts the box-whisker plots of the square of errors obtained over the ensemble of training-verification-evaluation
data set for 7 and ALP retrieval and for NNg, g _, configuration, assuming aerosotewyof0:95wy = 0.95. For 7 retrievals,
although the NNs with 40 and 70 neurons on one hidden layer do reasonably well, the scores show improved values when
two hidden layers are used. The ALP retrieval scores are significantly larger than for 7 ( a factor of 100). This is a direct
consequence that ALP is less well constrained by the spectral measurements: lower pieces information are available compared
to 7, in particular for scenes dominated by low 7 values. While the NNs with one hidden layer do not show any significant
improvements when increasing number of neurons, better scores are only obtained with 2 hidden layers. Overall, the similar
behavior of training-verification-evaluation scores validate that the trained NNs are generalized enough to be able to reproduce
similar variation of the scores on other independent data set. The identified best NN algorithms are thus found with 2 hidden
layers, with-including between 25 and 70 neurons on the first layer, and between 10 and 20 neurons on the second layer

depending on the considered configuration (see Sect. 2.3) and retrieved parameter.

5 Sensitivity analyses on synthetic data set

The robustness of the trained and selected NN retrieval algorithms is assessed by applying them to independent simulations, not
present in the learning (training-verification-evaluation) database. Simulated refleetanee-spectra are noise-free and only include
aerosol particles (no clouds). The sensitivity of #7(550nm) and ALP retrievals is verified for different surface-atbedor-A4 and
aerosol properties (wo, 7, ALP). R—R (475nm) and N§, o, are derived from the spectra and provided as inputs to the NNs.
The impact of uncertainties on surface albedo, aerosol model and Ng _,, are analysed. Consistent geophysical conditions
(temperature, NO, and Og profiles) are considered between these simulations and those included in the learning database. All

the analyses performed here are summarized in Fab-Table 2.

5.1 Aerosol Optical Thickness retrievals

dertved-rvaly om+h mlated-sp ared s-and-ho

inaceurate-assumptions-about-the-aerosel-single-seattering-albedo-compares the retrieved to the true 7(550nm) values of the
simulated spectra, and how uncertainties on woor-the-asymmetry-parameter-, g and A degrade the retrieval quality. Figure-4a
shows-that-Overall, retrieved and true +7(550nm) values are very well correlated for all the types of surface, assuming no
error in the assumed surface albedo and aerosol properties. This confirms the success of the learning process implemented in
Sect. 3-2-4.2 and Sect. 3-34.3 and the use of the NN approach.

The assumed aerosol properties (single-seattering-albedo-wy and phase function through the-asymmetry-parameter-g), and

so the choice of the trained NN algorithm, are of high importance. They change the slope between retrieved and true 7 values

and drastically affect the retrieved 7 accuracy. If the triie-aeroset-assumed wg vatae-istower(wyg—=0-9)-than-in-the-simulations
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of-(i.e. 0.95) through the simulations in the learning database {twg—=-=0-95is too high (true wg = 0.9), retrieved 7 is smaHer;then

consequence of reduced scattering efficiency and-thtis-as more photons are absorbed instead of being scattered back towards

the satellite sensor{see-. The measured R.(475nm) is then lower (cf. Fig. 4a)—The-biasreaches-a-maximum-value-of-about0:8

i.e. a bias of 1.0 for 7(550nm) = 2 ;and-istowerthan-O-3for+<0-5(see-(cf. Fig. 3b)—Thisis-direetlyrelated-to-the-impaet-of
aerosols-and-their-optical-properties-on-the-meastred+i-4a).

Figure 4b illustrates retrieved #7(550nm) bias due to the difference between the assumed asymmetry—parameter—¢g in
the learning database and in the synthetic spectra. This—gives—the-direct-impact-ofuneertainties-associated-with—the-aerosel
seattering-phase—function—characterization—While g = 0.7 is the referent-reference value for most of aerosols, scenes with

g = 0.6 are related to finer and weakly absorbing particles with a somewhat reduced forward scattering direction such as

carbonaceous aerosols, desert dust and volcanic dash models as given by the ESA aerosol CCI-project (de Leeuw et al., 2013).
Values of g = 0.8 are associated with larger particles and an increased forward scattering direction such as cirrus (Sanders
et al.,, 2015). An overestimation of g (i.e. trae-assumed g = 6-6-white-assumed-0.7 while true g = 6-70.6) leads to an increased
retrieved 7 value (i.e. positive bias) as-a—result-of-because of less photons scattered towards the surface, and therefore more
photons scattered back towards the satellite sensor, and-less-towards-the-surfaeecompared to what is theoretically assumed.
Reciprocally, an underestimation of g (i.e. trae-assumed g = 6-8-while-assumed-0,7 while true g = 6:70.8) leads to a decreased
retrieved 7 value (i.e. negative bias) as-a—restuttof-due fo less photons scattered back towards the satellite sensor, and more
towards the surface ¢ &;nwggl}g@wwg\tm Absolute bias values can exceed 0.5 for ﬁ;l%jimm while they
stay close to 0.25 for < i

meérﬁyhm&s}epe—beﬁﬁeﬁﬁemeved—aﬂd—ﬁ%w—ﬁa}ue&(%

Errors in surface albedo —Estimations—are

also lead to biases in retrieved 7(550nm) (cf, Fig. 4¢).

Opverall, biases are larger over scenes with small 7(550nm) values. The reason is the dominance of surface reflection in this

regime. In cases of high amount of aecrosols, then aerosol scattering signals are dominant and surface reflection uncertainties
have less impacts. An underestimated (overestimated) surface albedo results in a negative (positive) retrieved 7(550nm) bias.

This is directly related to the change in the measured OMI Rc (cf. Fig. 1). Surface albedo uncertainties in the range of

0.025-0.05 lead to absolute biases close to 0.5 for 7 +
. . : :

€(0x) = % | 7(z+ 0x) —71(x —0x) | .
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should-notexeeed-0:025—Typieal-differeneeso10.0-0.5, smaller than 0.25 for 7 = 2.0. Typical differences in climatological
surface albedo between-that-obtained-from the total ozone monitoring spectrometer (TOMS) and the global ozone monitoring

experiement (GOME) (Koelemeijer et al., 2003), or between the-Lambertian-equivalentreflectance(EER)-of-OMI-OMLER
and the MODIS black sky albedo (Kleipool et al., 2008), are known to be up to 0.02. F—wvas-observed-that-surface-albedo

5.2 Aerosol Layer Pressure retrievals

Figure 6-5 and Figure 7-6 depict the expected performances of the developed NN algorithms for Aerosol Layer Pressure
(ALP) retrievals. For-seenes-dominated-by——Qver scenes with 7(550nm) in the range of 0.5-1.0, and assuming no error in
prior A and the employed aerosol model, ALP retrievals are guiterelatively stable presenting biases close to 100 hPa. Only
for #=>34-67(550nm) > 1.0, biases are smaller than 50 hPa. The accuracy of the retrieved ALP generally increases with
increasing 7. Indeed, assuming true ALP of 850 hPa an i
Fig. 76), positive biases larger than 400 hPa are found for =<-6-57(550nm) < 0.5. Note that this behavior is observed for
all the NN configurations (NNg,,ng _, and NN7 ng ). A box-whisker plot, in Figure 87, illustrates the variability of

the ALP NN biases as a function of 7 over all the simulations contained in the entire learning database (as defined and used
in Sect.3). This confirms that, in spite of the strict training-verification-evaluation process achieved in Sect. 3-34.3, the NN
ALP retrievals are not expected to be accurate for small 7 values, especially below 0.5. The reason is directly linked to the
magnitude of the O2—O3 shielding effect and its dependenee-on-the-combined dependence on aerosol amount (in-addition
to-the-aerosol-attitude—ow-or 7) and aerosol altitude (cf. Fig. 1 and Sect. 3.2). Because low amount of aerosols have very
limited effects on the O>—0O3 absorption (see Fig—hH—TFhusSect. 3.2), even advanced interpolation techniques like NNs have
difficulties for these cases. When 7 increases, the O3 —O5 shielding effect amplifies and the algorithms are more able to link i
to-the- AP-variationthe O2—O2 absorption signal to ALP. Overall, even for small #7(550nm) values (like 0.5), the retrieved
aerosol pressures correlate with the aerosol layer height in spite of very poor accuracy (see Fig. 7a-6a and Fig. 7e6c) .
The-advantages—ofusing—A very accurate prior 7 information as input instead—of (475 —are—multiple;provided-this
information-is given-with-a-high-enough-aceuraeyis required to generally improve the ALP retrieval performances. As explained
in Sect. 3.2, usin implicitly relies on the 7 retrieval capability from OMI Rc(475nm). Usin
with the true 7 value as input (thus no error) is expected to deliver higher performances. Firstly, it allows to improve the accu-
racy of the ALP retrieval for-eases-dominated-by-over scenes with low 7 and particles located at high altitude (above 800 hPa
or 2 km). Indeed, en-in Fig. 6b5b, for 7 = 0.5 and ALP between 750 and 850 hPa, ALP biases are reduced from 256:356te
1+50:250250-350 hPa WMWhPa VM&@WM' For particles higher

than 650 hPa (or 3.5 km), no improvements are however observed. The low sensitivity to retrieve ALP when particles are
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located at a very high altitude is directly due to the O3—O2 complex and its vertical distribution. This was demonstrated by
Park et al. (2016): O, —0O5 concentration exponentially decreases with increasing atmospheric altitude.

Secondly, impacts due to uncertainties related-to-on the chosen surface albedo and aerosol model are reduced. Assumptions
on aerosol wq drive the interpretation of the shielding of the O2—O5 dimers by aerosols. H-the-assumed-w is-tee-high-Ge-
assumed—wy—=-0:95-while—wy—true=-0:9);—can perturb ALP retrievals obtained with the-NNp_ N3, o, configuration—are
perturbed-by-more than 100 hPa (see Fig. 6a5a). These perturbations are reduced to the range of 0-100 hPa over scenes with
high 7 values (larger than 1) only for particles close to the surface, i.e. true AL P > 850hPa (see Fig. 7a-6a and Fig. 7e6c¢). Using
the-N N, N02 o, %WWWWWMMMhCIpS to mitigate theses biases. The-ALP

ane-All the ALP retrievals present the same behaviors with

respect to the particles altitude and 7 and biases lie in the range of 0-50 hPa(see Fig. 6b5b). Similar conclusions are observed

regarding uncertainties on the-asymmetry—parameter—Higher-¢g (cf. Fig. 5c and Fig. 5d). Too high g values impact the ALP
retrievals from N Ng_ n=

03-0 —o
Surface albedo V&f’r&bﬂi&y—é@ﬂtﬁfbmes—t&contributes the length of the average light path and thus k&d&teén&nges—ia—affects
NO _ 0, . Retrieved ALP bﬂ%@q%%ﬂe%beﬂ%eﬂ%—bmm s hPaand+41-enaverage;for
vith the NN v, o, eonf ;MM

lower absolute values (between 50 hPa en-4

over scenes with 7 < 1.0. Such a bias is largely reduced with the NN, N, configuration.

b%&s—deefeases—ffem—}%%MhPa on average) with VN, ns , while they remain too high with NNRC,N(S)2_O2’EG
69+79-, Over scenes with 7(550nm) > 1.0, biases are reduced to 0-50 hPa With-NNr v — —TFhe-reasons-since aerosol
scattering signals dominate over surface reflection. The main cause of all these 1mprovements afe—l—)—trhe—%&eﬂg—eeffela&eﬂ

mﬁ}eaekthewfhedﬂfefpelaﬁeﬂ—pfeeeﬂ%%iﬁﬂgls that using an accurate prior 7 as-inputis-more-consistent-with-the-definition

he-information (or at

least more accurate than retrieved OMI 7(550nm) from Re(475nm)) allows a better distinction of 7 and ALP effects on the

03—03 slant column density.

An accuracy better than 0.2 must be required on prior 7 information (cf. Fig. 8c). Indeed, a 7(550nm) bias of 0.25 can
impact, in absolute, the retrieved ALP up to 50 hPa for 7(550nm) in the range of 0.6-1.0. For 7(550nm) > 1.0, impact on

ALP becomes almost null. Therefore, using MODIS 7 as prior to N IV, ns is likely expected to show retrieved ALP with

a higher quality than with NN s . Indeed, the current retrieved OMI 7(550nm) from Rc(475nm) does not present a
better accuracy than MODIS 7(550nm).

Figure 9 depicts the box-whisker distribution of ALP precision e(ONZ

obtained for fine and scattering particles (av= 1.5, wo= 0.95, g= 0.7). (N is obtained from the half of ALP

recision. Estimations are
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differences between adding and deducting uncertainties of the variables as follows:

S 1 s s s s
6(8N02702) = 5 | 14[11—‘)(]\]02702 +8N02702) —ALP(N02702 —8N02702) | . (9)

where ON& is the uncertainty applied to /V2 . €(ONE values are computed for all combinations of surface

albedo 0.03-0.05-0.07 and 6-0 = [25°-25°, 50°-25°, 25°-45°]. The reason to use this aproach here is that, since [N&

recision is a random error (opposite to systematic

a systematic bias. A precision of N&_ _,_ lying in the range of 0.05-0.25 10~ ** mol?cm > results-in-similarALP-bias(i.c.

it will directly impact the retrieved ALP precision instead of leading to

at a first order, 2-7 % of N? results in ALP uncertainties between 19 +29 hPa and 57 £ 31 hPa on average for both
NN configurations (see Fig. 5¢). Nete-atemperature-correctionforreal-observationsmust-be-takentito-necount-to-corre

Overall all the estimated NN retrieval uncertainties are in line with the theoretical sensitivity analyses of Park et al. (2016)
who found that the O2—O3 at 477 nm is significantly influenced by aerosol optical properties (including single-seattering
atbedowy), 7, particle size and surface-albedoA. In particular, a wq uncertainty of 10 % was demonstrated to lead to the aerosol
effective height (AEH) retrieval error ranging from 270 to 1440 m, depending on the aerosol types. Errors were found larger
for high particle altitude and low 7 cases. A surface albedo uncertainty of 0.02 was expected to impact AEH retrievals between

154 m and 434 m on average. AEH error was frequently larger only for low #7(550nm) (< 0.4) and high AEH (> 1 km).

6 Application to OMI observation measurements
6.1 Methodology

Aerosol retrievals, as described in the previous sections, are performed on the OMI O5—Os observations over large indus-

trialized continental areas in North-East Asia over 3 yearst, 2005-2007)-, and cloud-free scenes. All the associated results

are summarized in Fab:Table 2. The considered North-East Asia area is defined by the range of latitude 25-40 °North, and
longitude 110-130 °East excluding the part over the Gobi desert which presents a too bright surface (as further explained

Only OMI observations collocated with MODIS Aqua fevel2+L2 j)-aerosol product collection 6 iae-et-als2046)-are

darad ha natio aga 1oR O O ala a 2PN A haOM\ o ~Natio agn OR ha NMOP
I . S cl cl S h cl v y S vV cl S cl cl S . VIO

-are considered (cf.
Sect. 2.2). The reason is triple: 1) to maximize the probability of the selection of cloud-free OMI observation pixels dominated

by aerosol pollution, 2) to evaluate the retrieved OMI +r7 (550nm) products by comparing with collocated MODIS #5568
37(550nm), 3) to use the MODIS #5507 (550nm) as input of the NN, Ng,_, algorithm for retrieving the OMI ALP prod-
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uct, assuming then this is the most accurate 7 information available for each collocated SGMI-MODIS-ebservation—pixelOMI
observation pixel-MODIS aerosol grid cell.

MODIS data are paired on a OMI pixel-by-pixel basis if the distance between pixel-eenters-OMI pixel center and MODIS
aerosol grid cell is smaller than 5 km and if both ebservations-observation and product are acquired within 15 min. A threshold
of 0.1 is applied to both OMI and MODIS cloud fraction: i.e. if the OMI effective cloud fraction and/or the MODIS geometric
cloud fraction (given in the same MODIS aerosol product at 10 km resolution) has a cloud fraction value higher than 0.1, the

OMI pixels are filtered out. Applying-such-a-threshold-inereases-the-probability-of identifying-cloud-free-seenes-Furthermore

exchustvelyretrieved-over—sutheient-cloud-free-pixels—However, since the OMI effeeive-effective cloud fraction is sensitive
to the scattering aerosols, it is well recognized that cloud-free observations with large presence of scattering aerosols are

frequently excluded as well. In addition, a threshold of 0.1 is applied en-the-OMIsurface-atbedo-(i-e-OMEER-database-)-to the

OMLER database in order to filter out too bright surfaces (either desert ef-or snow covered pixels).

The NN retrieval algorithms developed and selected in Sect. 3 are used WO‘%M&@
ALP retrievals, NN, n= with MODIS 7(550nm), from DT algorithm over land, as input for ALP retrieval. For reminder.
retrieving ALP from NN but with the retrieved OMI 7(550nm), as
input (cf, Sect. 3.2 and 5.2). All the NNs designed and trained with the two different w
order to investgate the impact of wy assumptions.

These algorithms are applied on the OMI DOAS O2—O; observations, available in the OMCLDO2 product (Acarreta et al.,
2004) which can be downloaded here: hitp : //disc.sci.gs fc.nasa.gov/Aura/data—holdings/OMI /omcldo2,,003.shitml.
As explained in Veefkind et al. (2016), the-slant-eotumn—density-INg,_, depends on the temperature profile due to the

nature of dimers of which the absorption scales with the pressure-squared instead of being linear with pressure. Therefore,

is implicitly similar than from /N V.

i.e. 0.9 and 0.95) are considered in

a simple temperature correction is here applied by using seasonal mean temperature profiles given by the National Centers
for Environmental Prediction (NCEP) analysis data. This correction is performed through the computation of the v factor
(Veefkind et al., 2016):
sRef
— NOE*Oz (A)

= oMeas (10)
NOl\z/EOz (A)

with N(S)Eifoz, the Oo—05 SCD associated with the reference temperature profile employed in the learning database
and N(S)lffagz, the measured O2—Os SCD related to the actual temperature conditions. As a first and simple
asstmptiorapproximation, no prior knowledge on aerosols is considered here. The main reason is the little sensitivity to aerosol
loading and altitude of this « factor, for 7 < 2.0, compared to the change of temperature profiles for the considered OMI ob-
servations.

Finally, retrievals are performed based on different assumed surface albedo databases—The-standard-and-referentproduetis

a an ha on aco on—of-0 o

OMNMIER a rafla nea matalag darivad Om—cAYe a af-ONA
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g g - either OMLER or MODIS Black Sky Albedo (cf. Sect. 2.4).
The MODIS Black Sky Albedo is resampled to match the OMI pixel resolution by calculating the average of all MODIS pixels

udefongitud Vodeling-Grid IG);—and-1s

6.2 Aerosol optical thickness accuracy: on the importance of the surface albedo and the assumed aerosol properties

Figure 9-shews-10 compares collocated retrieved OMI and MODIS reverNorth-East-Asta-in-2005-2007-and-forcloud-free

seenes—As-seeni-(550 nm). Similarly to the analyses on synthetic cases (cf. Sect. 4-+5.1), the change of aeresel-assumed wy,
mostly perturbs retrievals of high 7 values, and thus the slope between OMI and MODIS 7(550 nm). Increasing wq from 0.9 to

0.95 reduces the retrieved 7 retrievat-values of about 0.5 for MODIS 7 = 1.5.

Seet—4-+-Overall a very good agreement is obtained assuming wg = 0.9 for the seasons spring, autumn and winter (see Fig. 9
10 and Fig. 13): differences (OMI-MODIS) of 7(550 nm) lie between —0.18 4= 0.24 in winter and —0.02 £ 0.45 in spring. In
summer time, the best agreements are found assuming wg = 0.95 with differences in the range of —0.06 &= 0.31 (see Fig. 8 and
Fig. 12).

From the end of autumn to spring, westerly winds transport mineral dust from the Taklimakan and Gobi deserts in northern
China and Mongolia region. These dust particles are then frequently mixed with the local anthropogenic aerosols released
from the industrial activities, vehicle emissions and coal burning (Eck et al., 2005). Southeast Asia is affected in spring by
biomass-burning activity (mostly over the peninsular) which is a major source of carbonaceous aerosols in the world. Overall;
Jethva et al. (2014) show that AERONET and OMAERUY retrieve aerosol wq values on average between 0.9 and 0.95 in these
regions: most of the sulphate particles have wq close to 0.95, while smoke and dust present lower values (closer to 0.9, even
below in some cases). These observations-analysis confirm that the employed-aerosel-model-with-assumption of wy = 0.95
should be considered as an upper limit for the OMI T retrievals in autumn, winter and spring times, while a lower wy (i.e.
0.9) is likely more appropriate and thus allows, on average, more reliable 7 retrievals. In summer time, because of reduced
amounts of dust particles, 7 values are more representative of local anthropogenic urban pollution, with mere-daily-variabilities
a higher daily variability in the opfical and scattering properties. Lee et al. (2007); Lin et al. (2015) also found higher wq
values over Nerth-Eas-North-East Asia in summer (0.95-0.96) and lower for the other seasons (0.88-0.92). Overall, assuming
same constant value (i.e. average) for all the acquired OMI pixels probably lead to some errors since aerosol scattering and
absorption properties likely vary day-to-day, even month-to-month.

Figure 11 depicts a-the dependence of the retrieved OMI #te-7(550nm ) on the OMLER surface albedo values. As discussed

in Sect. 4-45.1, error in surface albedo directly creates a bias on the retrieved 7. fn—stummer-and-spring—higher—vatues-are
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teund-Most of the retrievals depict higher values over darker surfacesti-e—OMEERsurface-albedobetween0-65-and-0-66), or

lower surface albedo. In the range of OMI surface albedo values 0.05-0.1, such behavior should not be observed assuming no
systematic bias on the surface properties. Moreover, OMI 7 (550nm) shows too small values for scenes with MODIS +<-0-4
7(550nm) < 0.4 in autumn and winter using OMLER (see Fig. 11 and Fig. 43)~—Using-the-14). MODIS black sky surface
albedo allows to reduce this dependence in summer and spring ¢see-Fig—d)-and reasonably increases OMI 7 retrievals
over scenes with low MODIS 7 values in autumn and winter (cf. Fig. HbFig—13e-andFig—13g)in-autumn-and-winter[4).
Furthermore, standard deviation of differences (OMI-MODIS) 7(550 nm) shows a net improvement of the retrievals precision,
with a gereral-mean reduction of 0.05 from OMLER to MODIS black sky —(cf, Fig. 12). An exception is however noticed in
winter, which may be due to remaining snow covered pixels in spite of the applied filtering(s —5b- . Overall,
spatial patterns better match between collocated MODIS and OMI pixels-products when employing MODIS black sky albedo
with higher values over the high density population areas (i.e. North-East and South-West of selected Chinese region, South-
West of Korea) and lower values over South-East of China (see Fig. +2-13 and Fig. +314). These improvements may be due
to a more accurate atmospheric correction in the MODIS black sky surface albedo and potential remaining aerosol residuals
present in the OMLER database.

In spite of these improved precisions, using the MODIS black sky albedo does not always improve the accuracy of the
OMI 7 retrievals. In particular, summer and spring seasons present too high 7 values compared to the use of OMLER. This
emphasizes that applying the MODIS black sky albedo to OMI measurements may be not fully optimal as: 1) MODIS albedo
is the integral value over the full hemisphere which is not in line with the range of angles (6 and #) encountered by OMI, 2) the
MODIS black sky albedo is valid for local solar noon zenith angle of each location which does not match the 1345 ascending
node equator crossing time of OMI. An ideal surface albedo database should be aerosol and cloud free, and representative
of the viewing and solar angles encountered by the space-borne sensor. Problems related to uncertainties in surface albedo
ehimatologiesclimatology for the aerosol retrieval problem are well known, and has recently been highlighted by Sanders et al.
(2015), although a different spectral band is used (Oz—A at 758-770 nm).

As a conclusion, mostly because uncertainties on assumed aerosol wq parameter and prior surface albedo are dominant, our
retrieved OMI 7(550nm) show lower performances than MODIS 7(550nm) from the DT algorithm over land in Collection 6

cf. Sect. 2.2). Furthermore, errors in the phase function or not taking into account the effect of polarization, can play a role.
These aspects should be further investigated.

6.3 Long-term analyses of the aerosol layer pressure retrievals

Figure +4-shows-the-behavior-of-the-15 shows the retrieved OMI aerosol layer pressure as a function of collocated MODIS
7(550 nm). MODIS 7 (550nm) is considered for OMI ALP retrievals since, at this stage, they are considered as the best prior
information available with higher accuracy than OMI #see-7(550nm) (cf, Sect. 546.1). While ALP retrievals over scenes
with MODIS #7(550nm) < 0.5 exhibit large variability (more than 400 hPa) and are systematically very high, they start
converging to more realistic values with increasing MODIS 7. At MODIS +=+67(550nm) > 1.0, retrieved ALP lies in the
range of 800-1000 hPa depending on the season, with lower variability (between 50 hPa and 200 hPa maximum). As discussed
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in Sect. 4:25.2, scenes with 7 < (.5 are expected to present substantial large biases because of the minor impacts on the O2—O
changes. Part of the variability can be related to uncertainties of surface albedo and non-constant and inhomogeneous aerosol
properties from OMI pixel-to-pixel (e.g. aerosol wy in the OMI observations).

When considering the-N N, Ng,_o, eonfiguration-with MODIS 7(550 nm), from Park-target-Atgorithm-DT algorithm over
land, as input, the retrievals globally show a reduced variability, especially for 7 values in the range of 0.6:2:0--2.0 compared
to the NNg_, N3, o, configuration (see Fig. +416). Over scenes with MODIS 7 > 1.0¢see-Fig—15), the variability of the OMI
Aerosol Layer Height (ALH), derived from Eq. +6-11 as explained in the next subsection, greatly decreases from the range of
L1:27-2.7 km (NNR, Ng,__, )10 0.7:89-1.9 km (NN- n5 ) depending on the season. When the OMLER is replaced by
the MODIS black sky albedo database, the ALH variability eentinue-continues to decrease of about 0.1 km —(cf. Fig. 16).

6.4 Comparison of OMI aerosol layer height with LIVAS climatology

The results of 3 years of OMI ALP retrievals over North-East Asia can be statistically compared to a climatology. The

set-ideal-for-synergistic-use-with-other-satellite-produets—Although the years of the OMI "climatology" and LIVAS do not
strictly overlap, tt-is-assumed-that-the average aerosol layer height (ALH) dees-netstgnificantlyehange-is assumed not to
change significantly between both periods. The comparison is done per season. Spatial average of LIVAS ALH is done over

the same area where retrievals are performed. Since large biases are expected at low 7, only OMI retrievals acquired for
MODIS 7(550nm) > 1.0 are taken into account and then spatially and temporally averaged per season. About 17 % in summer
and spring, and between 5 % and 6 % in winter and autumn, of the OMI retrievals over the 3 years were then selected. As a
first and simple approximation, OMI ALP retrievals are converted into ALH in km above sea level, assuming the atmosphere

is in hydrostatic balance, scale height of 8 km and a surface pressure at the sea level of 1013 hpa:

ALH(OMI) = —8xIn(ALP/1013). (11)

other-hand; Al-Hretrievalsassuming-Assumptions on the forward aerosol model (used then in the creation of the supervision

database) lead to the highest impacts on the spatial-seasonal averaged ALH retrievals. This is mostly related to the ability of

the corresponding NN algorithm to interpret the scattering vs. absorption aerosol effects on the /N2 . Assuming OMLER
surface albedo, differences between average ALH retrievals with wg = 0.95 and wg = 0.9 already-show-aremarkable-agreement
with EIVAS(see Fig—16b)—The- OMI-ALH-eandifferupte1200-are in the range of 540-1200 m due-to-the-chosen—aerosel
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WWMMMMMMMM
vs. MODIS Black Sky Albedo) also affect the spatial-seasonal averaged ALH retrievals. Related differences are in the range
Wmfeé@@—wﬁh NN and 0- 180 m {seeFig—16b)-As-discussed-in-Seet—->S-2anexception-isnoticedfor-the

: : : at-ma : aining With NNz e ., . Note that a remarkable change

is noticed using MODIS Black Albedo in winter with N NV, s which is likely due to non-filtered snow covered pixels.
Associated impacts are then lower than those related to assumed wq. Since only scenes with MODIS 7(550nm) > 1.0 are

selected, aerosol scattering signal dominate over the surface brightness. Although not shown here, we remarked that applyin,

the temperature correction on /N2 is crucial as it correct the retrievals between 50 m and 300 m.
GvefaH—fefﬂeva}s—ffem%%vWeeﬂ-ﬁgufaﬂeﬂ—wrﬂa—Because MODIS 7(550 nm) as—mpu{—e*hlbﬁ—}ewer—bfases—mﬂ%
0 O € 1 = € S S ' l l Cl

MOBIS-as-inputaltows to-mitigate this problem=has a better accuracy than OMI 7(350 nmhmmm&ﬁ
retrievals from NNy s . combined with this first product shows a clear reduced impact and higher stability with respect
to uncertainties on surface albedo and aerosol model. This is because using the most accurate prior information on aerosol
amount provides then with the best ALH retrieval performance.
Applying-thetemperattre-correction-on V5, —q, (see-By comparing these best ALH results with the scasonal spatial
averaged LIVAS ALH values, maximum differences in the range of 260-800 m are obtained, depending on the seasons,
assuming wo = 0.95 and OMLER surface albedo. These differences are reduced to 180-310 m with wo = 0.9 regardless the
WMM +2Heads to-changes-between50
er-2) spatially averaged over the area, the results

+(550 nm) and prior MODIS black sky

Consistent seasonal patterns can be observed between averaged OMI and LIVAS ALH +-with higher values in spring and
summer, probably due to long-range transport aerosels—during-the-maximum—during the dust activity from the deserts—{see
desert (cf. Sect. 5:2)+-6.2) and smaller values in winter-and-autamn—{(see Fig—t6e-and-autumn and winter (cf. Fig. 16d17).
Nevertheless, while the LIVAS ALH depiet-that-aerosols-should-be-at-higher-altitade-depicts higher aerosol heights in spring

than in summer, the OMI ALH shew-shows the opposite. Several explanations are possible: 1) exclusion of OMI scenes with

strong aerosol peHutions-pollution episodes because of a too strict threshold applied on the OMI effective cloud fraction (see
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Sect. 5-46.1), 2) a more rigorous temperature correction should be applied on measured Ng, o, (assuming daily instead of
seasonal temperature profiles), 3) inaccuracies #-the-of MODIS 7+alues, etc... All these elements should be further investigated.

Fhese-Assuming that LIVAS ALH are here the reference, these results seem to present higher accuracy than the exercise of
Park et al. (2016) showing a bias of 1 km of between retrieved OMI and the CALIPSO AEH values over ocean, during the
Asian dust event on 31 March 2007. The reasons can be multiple: use of NNs instead of linear interpolation within a LUT,
aerosol retrieved over land instead of ocean surfaces, consideration of variable surface albedos as inputs instead of a single

value, application of a temperature correction on N¢g,_ _,, use of longer data records etc...

7 Conclusions

In this study, different Multilayer Perceptron Neural Network (NN) algorithms were developed and evaluated in order to retrieve
aerosol layer height (ALH) over land from the OMI 477 nm O;—0O5 spectral band. The aerosol height was here retrieved
as aerosol layer pressure (ALP) and defined as the mid-pressure of an homogeneous and-fixed-seatteringtayer-scattering
layer with a constant geometric thickness. The focus was on North-East Asia and cloud-free scenes dominated by scattering
aerosol partietes-with-fine particles with Angstrom coefficient oo = 1.5, single scattering albedo wy in the range of 0.9-0.95 and
asymmetry parameter g = 0.7. The algorithms were trained with a large ensemble of synthetic data set and several precautions
were taken into account to avoid problems-stueh-as-over-training or local minima problems. The key concept of OMI ALP
retrievals is the link between the measured O2—0O- slant column density (SCD) Vg, and the aerosol altitude as a restt
consequence of shielding effect applied by the particles on the O2—O2 dimer complexes that are at lower altitudes. ALP was
retrieved on 3 years €2005-2007 y-of OMI cloud-free observations collocated with MODIS-Aqua aerosol product in North-
East Asia. The main objective of this work is first to evaluate the feasibility of a direct retrieval of this key aerosol parameter
neeessary-to-ealeulate-air mass—factorsfor trace-gas retrievalsfrom a statistical point of view: i.e. over a long-time period
and large industrialized continental area, and therefore a high number of observations. All the evaluated performances are
summarized in Fab-Table 2

Aeeurate-Analysis show that a good ALP retrieval requires an accurate prior knowledge of aerosol optical thickness 7 is

reqtired-for-a-good-ALPretrievalas input information. Indeed, both 7 and ALP parameters simultaneously contribute to the
shielding of O2—Oz dimers. The analyses of the-measured-SED-N§, ) alone leads to an ambiguity since aerosol extinction

and aerosol altitude cannot be distinguished. Wi

Because low amount of aerosols have very little impacts on N&, _ . changes, large biases are expected over scenes includin
aerosol particles with 7(550 nm) < 0.5, This 7 an oth h selieh h)-an 5 5t 5

impaet-as-weH-value should be considered as a threshold for a good ALP retrieval quality. Moreover, the algorithms are
expected to present a very low sensitivity to particles located at an altitude higher than 4 km. This is because of the nature of
the O2—02 complex of which the absorption scales with the pressure-squared instead of being linear with pressure.
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Different NN configurations were tested. Sensitivity analysis on simulations-synthetic cases show that ALP accuracy with
the best NN configuration (i.e. NN y= algorithm with true 7 value as input) lies in the range of 50-+66-50-200 hPa (i.e.
about 500 m and 1 km) over aerosol scenes with #+=>1-0—Usingaeecurate-7(550nm) in the range of 0.5-1.0. The accuracy is

improved to 0-50 hPa over scenes with 7(550nm) > 1.0. Using the best available 7 information -instead-of FRredueesis
theoretically expected to limit the impact of uncertainties due to 1) aerosol model: bias frem—+06-in the range of 0-100 hPa te

almestzereif 7 < 1.0, for a difference of 0.05 in wy or for a difference of 0.1 in g, 2) surface albedo biasfrem34+=+96to
69=+79uncertainty in the range of 0.025-0.05 which leads to absolute ALP biases in the range of 50-100 hPa for asurface

HW%E&WL%MM&@A@QQ hPa for 7 > 1.0. Real ALH retrievals were performed over 3-year

of OMI O,—03, visible observations over cloud-free scenes with MODIS 7(550nm) > 1.0 and using N N y= combined

with MODIS-Aqua 7(550 nm) s, Comparison
of seasonal and spatial averages with the LIVAS climatology database shows maximum (minimum) differences in the range
of 260-800 (180-310) m, depending on the season and assuming wq = 0.95 —Asstmed-wy(either-0:9-0r-0:95)-impacts-ALH

they impact OMI seasonal-spatial averaged ALH in the range of 560-660 men-average;-while-ehanges-. Changes due to the the
asstmed-prior surface albedo database (OMLER or MODIS black sky) do-net-exeeed-have a second order impact, up to 200

m.

In addition, algorithms should take into account that the O5—QO2 SCD precision, resulting from the DOAS spectral fitting,
affects the ALP retrieval. Oa—O3 SCD precision lying in the range of 0.05-0.25 10~% mol2cm ~® leads to ALP bias-precision
between 19+ 29 and 57 £ 31 hPa. Due to the nature of the O2—O; collision complex, a temperature correction must be
applied ea-to the SCD prior to retrievals.
conststentseasonalpatterns—Other parameters should be further investigated such as polarization effects and assumptions about

the vertical distribution of particles.

accuracy better than 0.2 must be required on prior 7 (559—)49—0—Thﬁ—mf0rmatlon Indeed, a 7(550nm) bias of 0.25 is
expected to bias the retrieved ALP up to 50 hPa for 7 valu

The-capability-of-deriving-a-in the range of 0.6-1.0. For 7(550nm) > 1.0, related ALP impacts almost become almost null. If
no prior accurate 7 information, such as from the MODIS aerosol Dark Target algorithm, is available, then this input parameter

can be replaced by the OMI continuum reflectance Rc(475nm) (cf. the NN, s algorithm). Indeed, this parameter is
rimarily affected by the aerosol amount and therefore contains information on 7(550nm). It may then help to analyse N2

for retrieving ALP provided that we can retrieve 7 with a good quality.
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Similarly to ALP retrieval, a NN algorithm was also developped to retrieve 7(550nm) information from the OMI 477
nm Oy —0, spectral bandsvas-alse-nvestigated—-Aeecuracy-of-Fretrievalsrelies-, However, its capability is strongly affected b
uncertainties on the assumed parameters-affectingfi-aerosol model. An overestimation of aerosol single scattering albedo, from

wo = 0.9t0 0.95, induces a negative bias of 0.8 for 7 = 2. The impact is much lower for smaller 7 (lower than 0.1 for 75 < 0.5).
Similar conclusions were found regarding uncertainty of the asymmetry parameter and thus the phase function characterization.
Another major challenge when retrieving aerosol properties from passive satellite sensors is to separate the atmospheric and
surface contributions in the total observed reflectance. Similarly @s-to aerosol wp, an overestimation of surface reflection leads
to an underestimation of retrieved 7. Surface albedo uncertainty should-be-timited-to-below 0.025 to-ensure-should limit OMI
retrieved 7(550nm) bias-<6-2smaller than 0.5 for 7(550nm) in the range of 0.0-0.5, 0.25 for 7(530nm) = 2.0. Comparisons
of OMI retrievals with collocated MODIS 7 show agreements between —0.02 £0.45 and —0.18 £ 0.24 depending on the
seasons. Further improvements should be made before being able to use these OMI 7 products as prior information to ALP

retrievals.

Using the NN s algorithm for ALP retrieval is, in practice, similar to NN s combined with retrieved OMI
7(550nm). Since, the retrieved OMI 7 accuracy is lower than MODIS 7 accuracy from the Dark target Land algorithm

NN, s shows reduced performances and higher sensitivity to aerosol model and surface albedo uncertainties.
Associated 3-year OMI ALH retrievals over North-East Asia are impacted by wq uncertainties (0.9-0.95) in the range of
540-1200 m, and by surface albedo (OMLER vs. MODIS Black sky albedo) up to 730 m.

The NN approach presents, at this stage, quite promising results for a future operational processing of the OMI O2—05
spectral band and the next UV-Vis satellite missions such as the TROPOspheric Monitoring Instrument (TROPOMI) (Veefkind
et al., 2012). In spite of the high computing time due to the learning database creation and the training of these algorithms,
very fast operational processing is allowed. Such processing is much faster than approaches relying on the Optimal Estimation
Method and employs more optimized interpolation techniques than a classical linear interpolation within a LUT. For future
processing of the OMI data, the OMLER climatology database should be optimized by filtering out small aerosol residuals.

Fhe-results-deseribed-in-this-paper-indieate-Qur study indicates that it is worthwhile to design and evaluate aerosol height
retrieval algorithm exploiting the satellites 477 nm Oz —O; speetral-band-This-could-lead-to-areplacementof-absorption band.

Our long-term motivation is to evaluate the feasibility of replacing the effective clouds by more explicit aerosol parameters in
the computation of trace gas AMF. This has-te-be-evaluatedin-the-contextof-allis relevant not only for OMI but for most of the

UV-Vis satellite missions devoted to air quality monitoring. For that purpose, further analyses must be performed by focusin

on significant geophysical variability cases: e.g. pixel-by-pixel variability over smaller regions. Furthermore, single OMI ALH
retrievals should be compared with reference aerosol vertical profile measurements (ground-based and/or satellites) over some

remarkable case studies.
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Table 1. Ensemble of parameters and values associated with the simulated learning data set (see Sect. 3.2). Aerosols are simulated with a

Henyey-Greenstein scattering phase function (Hovenier and Hage, 1989)

Parameter List of values

Solar Zenith Angle (6o) [°] 9.267, 21.167, 32.892, 44.217, 54.940, 64.814
Viewing Zenith Angle (6) [°] 0.0, 9.267, 21.167, 32.892, 44.217

Relative azimuth angle (¢ — ¢o) [°] 0., 30., 60., 90., 120., 150., 180.

Surface pressure (Ps) [hPa] 1013., 963.

Surface albedo (A) 0.025, 0.05, 0.075, 0.1

T 0.0,0.05,0.1,0.2,0.4,0.5,0.6, 0.9, 1.25,2.0, 3.0

Aerosol layer pressure (ALP) [hPa] 975., 925., 850., 750., 700., 650., 550., 350., 150.
Aerosol Single Scattering Albedo (wo) 0.9, 0.95
Angstrﬁm coefficient () 1.5

asymmetry parameter (g) 0.7

Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) geometries calculated from different UV/visible radiative transfer
models, Atmospheric Chemistry and Physics, 7, 1809-1833, doi:10.5194/acp-7-1809-2007, http://www.atmos-chem-phys.net/7/1809/
2007/, 2007.

Wagner, T., Deutschmann, T., and Platt, U.: Determination of aerosol properties from MAX-DOAS observations of the Ring effect, Atmo-

1110 spheric Measurement Techniques, 2, 495-512, doi:10.5194/amt-2-495-2009, http://www.atmos-meas-tech.net/2/495/2009/, 2009.

Xiao, Q., Zhang, H., Choi, M., Li, S., Kondragunta, S., Kim, J., Holben, B., Levy, R. C., and Liu, Y.: Evaluation of VIIRS, GOCI, and
MODIS Collection 6 AOD retrievals against ground sunphotometer observations over East Asia, Atmospheric Chemistry and Physics, 16,
1255-1269, doi:10.5194/acp-16-1255-2016, http://www.atmos-chem-phys.net/16/1255/2016/, 2016.
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Feed forward transport

Input layer Hidden layers Output layer
Figure 2. Diagram of Multilayer Perceptron (MLP) Neural Network (NN) architecture designed for Aerosol Layer Pressure (ALP) and
aerosol optical thickness 7 retrieval algorithms from the OMI Oz —O spectral band at 477 nm. The input parameters are based on the list
given in Table 1. The different considered approaches for the MLP design and their applications are more detailed in Sect. 3. Each circle
represent a specific processor (named neuron) including either an input / output variable (in the input / output layer) or the activation function
(i.e. sigmoid function in the hidden layer). The synaptic weights w.. ensure the connections of neurons between two consecutive layers.
A weighted sum ) is performed before the transport through the activation function. Note the presence of the bias neurons, prior to the
activation functions in the hidden layers. For simplicity, bias neurons are commonly visualized as values added to each neuron in the input and
hidden layers of a network, but in practice are treated in exactly the same manner as other weights: all biases are simply weights associated
with vectors that lead from a single node whose location is outside of the main network and whose activation is always 1. While the synaptic
weights essentially change the steepness of the activation functions, the bias neurons allow to modity the origin of these functions from O to

positive or negative values.
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Figure 3. Box-whisker plots of the square of errors (see Eq. 7) obtained for different Neural Network (NN) configurations, at the end of

their training, over the supervised data set (training-validation-test). The NNs XX have one hidden layer where XX indicate the number of

neurons. The NNs YYXX have two hidden layers where YY and XX are the number of neurons in the 1st and 2nd hidden layer respectively:

(a) NN for 7 retrieval, (b) NNs for AL P retrieval. Note that errors are computed over normalized output and true =r—jA(/§§/QQrAnﬁ)Nand ALP

values (between -1 and 1) due to the definition of the sigmoid functions (see Sect. 3.1).
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Figure S. Simulated ALP retrievals, based on noise-free synthetic spectra with aerosols, as a function of true 7. All the retrievals are achieved
with the two NN configurations (NNRch%z_% and NNT,N(s)2_O2) (see Sect. 3.1) trained with wo = 0.95. The assumed geophysical
conditions are: temperature, H2O, O3, and NO2 from climatology mid latitude summer, 6y =25° and 6 =25°, Ps = 1010 hPa. The referent
reference aerosol scenario assumes fine scattering particles (o= 1.5, wo = 0.95, g= 0.7) located between 800 and 900 hPa: (a) and (b)
Sensitivity of ALP retrievals to the aerosol single scattering albedo (wo = 0.95 or 0.9) in the synthetic spectra, (c¢) (d) Sensitivity of ALP

retrievals to the aerosol asymmetry parameter (g = 0.6, 0.7 or 0.8) in the synthetic spectra.
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Figure 6. Simulated AL P retrievals vs. true ALP for 2 7 values (0.5 and 1.5) and the two NN configurations (see Sect. 3.1) and for the fol-

lowing conditions: temperature, HO, O3, and NO> from climatology mid latitude summer, 6y =25°, § =25°, surface pressure = 1010 hPa

and fine scattering aerosol particles (o = 1.5, wo = 0.95, g = 0.7): (a) NNRC,N(S)2_O2 and #7(550nm) = 0.5, (b) NN.F,N(S)2
#7(550nm) value as input and #7(550nm) = 0.5, (¢) NNRC,N(S)2_

value as input and +7(550nm) = 1.5
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Figure 7. Box-whisker plots of retrieved Aerosol Layer Pressure (ALP) biases as a function of true #7(550nm) from N Ng,_, NE, o,

configuration over the the whole learning data set
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Figure 8. Simulated ALP retrievals, based on noise-free synthetic spectra with aerosols, as a function of true 7. The retrievals are achieved

with the NN configurations (N N and / or NN,

) (see Sect. 3.1) trained with wo = 0.95. The assumed geophysical

conditions are: temperature, H20, O, and NO> from climatology mid latitude summer, 6o =25° and ¢ =257, Ps=1010hPa. The

reference aerosol scenario assumes fine scattering particles (o= 1.5, wo = 0.95, g = 0.7) located between 800 and 900 hPa: (a) and (b)
Sensitivity of ALP retrievals to a surface albedo bias (0Alb = 0.0, -0.025, 0.05) with NN, and NIV,

ALP retrievals to a 7(550nm) bias (97(550nm) = 0.0, -0.025, 0.05) with N N, s .

¢) Sensitivity of
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Figure 10. Collocated MODIS Aqua and retrieved OMI 7(550 nm) based on the OMLER surface albedo, over East China for cloud-free
scenes and summer, winter and spring seasons. Statistics are computed over 3 years {2005;-2006:-20072005-2007: (a), (c) and (d) assumed

aerosol model with wg = 0.95, (b), (d) and (f) assumed aerosol model with wy = 0.9.
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Figure 11. Collocated retrieved OMI retrieval and MODIS Aqua #5507 (550nm) from Dark Target algorithm over land, over East-China
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Figure 13. Spatial averages of 7(550 nm) values, over East-China-North-East Asia for cloud-free scene. Statistics are computed over 3 years

{2005:-2606;2667)-2005-2007 for summer.
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Figure 15. Collocated retrieved OMI ALP (assumed aerosol model with wo = 0.95 and based on the OMLER surface albedo) and MODIS

Aqua 7(550 nm), over North-East Asia for cloud-free scenes and summer, winter and spring seasons. Statistics are computed over 3 years

s s

from the NN.F,N(S)2

2005-2007: (a), (b) and (¢) OMI retrievals are from the N Ng,, N,

—0qy

—0o

configuration, (d), (e) and (f) OMI retrievals are

configuration with MODIS Aqua 7(550 nm), from Dark Target Land algorithm, as input (see Sect. 5.1).
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Figure 17. Comparison of the average of the OMI ALH retrievals obtained over scenes with collocated MODIS 7 > 1.0, with the LIVAS
ALH climatology database. The retrievals are achieved over North-East Asia for cloud-free scenes, over 3 years 2005-2007. and for the 4
seasons. OMIL and MODIS Black Sky surface albedos are altematively considered, The 2 NN OMI ALH algorithms are used (see Sect. S.1):
NNpeog, o, based on OML Ro(475 nm) and NNoyg, ., based on MODIS 7(550 nm), A temperature correction is applied to the

OMI N§,., rior to the retrievals (cf. Sect 6.1): (a) NN, s algorithm and OMLER surface albedo, (b) NV, s algorithm
and MODIS Black Sky surface albedo, (¢) NN, ns algorithm, and OMLER surface albedo, (d) NN, s algorithm and MODIS
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