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Abstract

This study presents a new concept for estimating the pollutant emission rates of a site and its main
facilities using a series of atmospheric measurements across the pollutant plumes. This concept combines
the tracer release method, local scale atmospheric transport modelling and a statistical atmospheric
inversion approach. The conversion between the controlled emission and the measured atmospheric5

concentrations of the released tracer across the plume places valuable constraints on the atmospheric
transport. This is used to optimize the con�guration of the transport model parameters and the model
uncertainty statistics in the inversion system. The emission rates of all sources are then inverted to
optimize the match between the concentrations simulated with the transport model and the pollutants'
measured atmospheric concentrations, accounting for the transport model uncertainty. In principle,10

by using atmospheric transport modelling, this concept does not strongly rely on the good colocation
between the tracer and pollutant sources and can be used to monitor multiple sources within a single
site, unlike the classical tracer release technique. The statistical inversion framework and the use of
the tracer data for the con�guration of the transport and inversion modelling systems should ensure
that the transport modelling errors are correctly handled in the source estimation. The potential of15

this new concept is evaluated with a relatively simple practical implementation based on a Gaussian
plume model and a series of inversions of controlled methane point sources using acetylene as a tracer
gas. The experimental conditions are chosen so that they are suitable for the use of a Gaussian plume
model to simulate the atmospheric transport. In these experiments, di�erent con�gurations of methane
and acetylene point source locations are tested to assess the e�ciency of the method in comparison20

with the classic tracer release technique in coping with the distances between the di�erent methane and
acetylene sources. The results from these controlled experiments demonstrate that when the targeted
and tracer gases are not well collocated, this new approach provides a better estimate of the emission
rates than the tracer release technique. As an example, the relative error between the estimated and
actual emission rates is reduced from 32% with the tracer release technique to 16% with the combined25

approach in the case of a tracer located 60 metres upwind of a single methane source. Further studies and
more complex implementations with more advanced transport models and more advanced optimizations
of their con�guration will be required to generalise the applicability of the approach and strengthen its
robustness.
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1 Introduction30

Atmospheric pollution due to anthropogenic activities is a major issue both for air quality and for climate
change. Industrial sites are known to emit a signi�cant part of the pollutants and greenhouse gases. For
instance in France, industrial emissions represent between 10 and 30% of major air pollutants, such as
carbon and nitrous oxide (Bort and Langeron, 2016). Currently, industries must list their emissions
through national inventory reports, and some of them commit to reducing these emissions. However, the35

choice of an appropriate mitigation policy and the veri�cation of its results require a good understanding
of the emitting processes and a precise quanti�cation of the emission rates. Industrial emissions are
di�cult to model and quantify because of the diversity and the temporal variability of the emitting
processes.

Many emitting industrial sites have a typical size of 100 m2 { 1 km2, and they emit pollutants40

from very speci�c locations within this area. Once emitted from a single or multiple point sources, the
transport of these pollutants in the atmosphere over distances from 0.1 to several kilometres forms a
distinct plume or multiple plumes eventually merging at larger distance downstream. One approach
developed to quantify the emissions from such sites involves atmospheric concentration measurements
around the site, particularly across these emission plumes, and proxies of the atmospheric transport.45

These proxies are used to characterise the link between the emission rate and the structure and amplitude
of the emission plume. The \inversion" of this link enables the estimate of the emission rates from the
observed concentrations. Among the di�erent techniques to estimate emissions from concentrations is
the tracer release method. It is often realised in the form of mobile continuous measurements across
the emission plumes of the studied pollutant and of a tracer purposely emitted with a known rate as50

close as possible to the suspected pollutant source (Lamb et al., 1995). In this method, the proxy
of the atmospheric transport is given by the relation between the tracer emission rate and the tracer
concentrations. In practice, it provides estimates of the emissions of a site over a relatively short time
window, i.e., typically few hours during a given day, which generally corresponds to the time during
which the tracer can be released or mobile measurement can be conducted.55

This approach is relatively simple to implement and enables instantaneous estimations for a large
number of sites. Nevertheless, this technique encounters some limitations, particularly (i) when it is di�-
cult to position the tracer emission close to the sources, (ii) when the sources are spread over a signi�cant
area compared with the distance between the sources and the location of the measured concentrations,
or (iii) when targeting individual estimates of the di�erent emission rates from multiple sources whose60

plumes overlap at a given site at the distances at which the measurements can be conducted (M�nster
et al., 2014; Roscioli et al., 2015). Typically, in industrial sites, pollutant sources may be sporadic and
di�usive over a large area, their location can be di�cult to reach and the spatial distribution of the
emissions is not always precisely known, e.g., when considering transitory leakages or widespread and
heterogeneous sources. In these cases, the tracer release method can induce errors in the ux estimation65

since the tracer plume by itself cannot be used as an accurate proxy of the local transport from the tar-
geted gas sources to the measurement locations. Moreover, this approach can hardly be used to provide
an estimate of the di�erent sources within a site.

Other techniques exploit atmospheric measurements using local atmospheric dispersion models to
simulate the transport of the targeted gas from its sources to the measurement locations (Lushi and70

Stockie, 2010). Micrometeorological measurements are often conducted in parallel with those of the
targeted gas concentrations in order to support the set-up of such models (Flesch et al., 2004, 2007;
Gao et al., 2009). In theory, the model and the inversion of this proxy of the atmospheric transport
can be applied for a point source or for a source whose spread is known. In principle, they can also be
applied to multiple sources. The principle of this technique is relatively simple, but the representation75

of the transport and emission spread by these models (even when they are constrained using microm-
eteorological measurements), and the separation of the di�erent plumes associated with the di�erent
sources when targeting multiple sources can bear large uncertainties. In particular, the transport over
short distances or time scales in a complex terrain can be characterised by complex turbulent structures
which are di�cult to match with a model even when the underlying processes are taken into account.80

Moreover, when targeting several sources, this technique relies on the mathematical inversion of a square
matrix characterising the atmospheric transport that links the set of sources to the observation data.
This arti�cially requires extending or limiting the number of observation data from the measurement
series to the number of sources to be quanti�ed. It can lead to a loss of information or it can hide the
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fact that the problem is underconstrained when the plumes overlap too much.85

The statistical inversion framework, which can be viewed as a generalised inversion technique, can
account for uncertainties in the model. It can also address under- or overconstrained mathematical
problems when constraining the source estimation with the correct number of observation data that
corresponds to the complementary pieces of information in the measurements. In such a framework, a
statistical estimate of the emission rates for the di�erent targeted sources is derived to optimize the �t90

to the measurements, accounting for the statistical uncertainties in the source and transport modelling,
in the measurements and in the prior knowledge about the source location and magnitude (Goyal et al.,
2005). Statistical inversions using atmospheric transport models and atmospheric concentration mea-
surements have been used for decades to infer surface sinks and/or sources of pollutants and greenhouse
gases at the continental to the city scales (Gurney et al., 2003; Br�eon et al., 2015). However, the skill95

of such approaches strongly relies on a good accuracy of the transport modelling and on the ability to
characterise the statistics of the modelling uncertainties. It can also strongly rely on the prior knowledge
of emissions, in particular on the spatial distribution of the multiple sources within an industrial site for
the type of applications considered in this study, and on the ability to characterise the uncertainties in
such a knowledge.100

This study describes a concept which combines the tracer release technique, local scale transport
modelling and the statistical inversion framework to improve the estimation of gas emissions from one
or several point sources in an industrial site-scale con�guration. It is based on the same measurement
framework as the tracer release technique. It consists of using the knowledge on the transport given by the
tracer controlled emission and concentration measurements to optimize the calibration of the transport105

model parameters and to assess the statistics of the model errors for the con�guration of the inversion
system. A practical implementation with a Gaussian plume model is demonstrated and its robustness is
evaluated to illustrate the principle and the potential of the concept. This practical implementation is
tested for the quanti�cation of methane emissions during a time window of several hours using acetylene
as a tracer gas and mobile measurements across the methane and acetylene plumes.110

Methane is an important greenhouse gas with poorly known point source emissions (Saunois et al.,
2016). Typical methane emitting sites due to anthropogenic activities include waste processing plants
(wastewater treatment plants and land�lls), oil and gas extraction and compressing sites and farms
(Czepiel et al., 1996; Yver Kwok et al., 2015; Marik and Levin, 1996). Such sites contain widespread
and heterogeneous sources (like the basins in waste water treatment plants, the cells in land�lls and115

the livestock in farms) and are prone to fugitive leakages (especially in the oil and gas sectors). Until
recently, there were no strong incentives to estimate site emissions using dedicated measurements. The
reported estimates were usually derived using standard bottom-up products of emission factors times
quantity of waste/wastewater/gas processed and/or relatively simple emission models (IPCC, 2013).
However, a precise estimate of the methane emissions from such sites based on atmospheric techniques120

could help their operators in their local action plans to mitigate their emissions in the context of climate
change. Instantaneous estimates of the emissions through a dedicated measurement campaign can help
to detect and provide a useful order of magnitude for such sources that are generally poorly known
(Yver Kwok et al., 2015). The results from series of campaigns can be extrapolated to estimates for long
timescales. However, a continuous monitoring of such emissions with permanent measurements would125

help characterise the dependence of such emissions on meteorological conditions and on changes in the
site processes through time.

Here, we conduct a series of controlled experiments with known emissions of methane from one
or two sources and of acetylene from one source, in meteorological and topographical conditions that
are compliant with the use of a simple Gaussian plume model. Concentrations are measured through130

the methane and acetylene plumes at an appropriate distance from the source, as described below. The
known emission of methane is used to validate the inversion results and thus to assess the e�ciency of our
inversion system. In particular, the �t between these results and the actual emissions is compared with
the one obtained with the more traditional application of the tracer release technique to demonstrate,
in our experimental conditions, the asset of the statistical inverse modelling framework. In section135

2, we detail the theoretical framework of the tracer release technique, the local dispersion modelling,
the statistical inversion, and our concept that combines these di�erent techniques. We also give some
practical guidance regarding their application to the monitoring of methane sources, and regarding the
use of a Gaussian plume model for suitable meteorological and topographical conditions. Then, we
describe the con�guration and the results of the experiments conducted in this study to evaluate the140
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potential of our approach (section 3). The results and perspectives of the study are discussed in section
4 and 5.

2 Methods

2.1 Instantaneous quanti�cation of pollutant sources using mobile measure-

ments across the atmospheric plumes145

The presentation of the atmospheric monitoring techniques below focuses on their speci�c con�guration
for the quasi instantaneous estimation of emission rates from gas sources within a targeted site. These
techniques apply to gases that can be considered inert (non-reactive) on the relevant atmospheric trans-
port and mixing timescales of the experiment. In this case, the representation of atmospheric transport,
linking the emissions to the gas concentrations, can be considered linear. Given that these timescales150

typically correspond to 1 to 10 hours, it applies to most pollutants in practice. In this con�guration,
several times over the course of a few hours and at an appropriate distance from the site, the concentra-
tions are measured along transect lines across the plumes of a gas emitted by the sources. The emission
plumes are associated with an increase of the gas concentrations above the "background" concentration.
This background concentration can be characterised by the gas concentrations in the vicinity of the155

measurement locations that has not been a�ected by the sources. The increase above the background
concentration is proportional to the emission rates (due to the linearity of the atmospheric transport)
and it can be identi�ed in the measurements across the plume. Ideally, there should be no other major
gas emitter in the vicinity of the targeted site to ensure that, due to the atmospheric di�usion over long
distances, the concentrations upwind the site are relatively constant. In such conditions the background160

concentration can be easily characterised.
The choice of the measurement distances should follow several criteria. On one hand, the distance has

to be large enough such that the transport from the source to the measurement is correctly characterised
with a local scale transport model or the proxy from the tracer release. This distance depends on the
spread of the single or multiple targeted sources and thus indirectly on the size of the industrial site, but165

also on the meteorological conditions like the wind speed and the atmospheric stability. On the other
hand, it should be short enough such that the amplitude of the measured concentrations is high enough
compared to the measurement and model precision. This criteria essentially depends on the emission
rates due to the linearity of the atmospheric transport from the sources: the larger the source, the larger
the ratio of the signal to the noise of the measurement, modelling and background and thus the higher the170

precision of the inversions. Finally, the choice of the distance is constrained by the need for conducting
measurements on roads located downwind of the site sources (depending on the speci�c wind directions
during the measurement campaigns) when using instruments onboard cars as in this study.

The simulated relation between the gas emission rates from the single or multiple sources of the site
and the atmospheric concentrations relies on the knowledge of the location and spread of each source175

and on the proxy of the atmospheric transport. It is linear and expressed by the observation operator
H. The relation between the measurement indices of the concentration increase in the emission plumes
or "plume indices" hereafter, called the observation vector p, and the targeted emission rates, called the
control vector f, is given by the observation equation:

p = Hf + "0 (1)

"0 represents the sum of errors from the observation operator, in the measurements and in the estimate of180

the background concentration. The observation vector is derived from the gas concentrations measured
for each cross-section of the gas plume(s). The atmospheric transport proxy can be derived using the
relationship between the known tracer emission collocated with the targeted sources and the tracer
concentrations in the tracer release technique (section 2.2) or using a local scale atmospheric transport
model (section 2.3). Inferring gas emissions from gas concentrations implies inverting the atmospheric185

transport to express f as a function of p. If the size of f is the same as that of p, i.e. if the number
of plume indices derived from the concentration measurements is set equal to the number of targeted
sources, the atmospheric transport matrix H is a square matrix. If H is mathematically invertible, i.e.,
if the problem is not under constrained due to using indices on plumes that overlap too much, and if
the measurement, background and observation operator errors "0 are ignored, f can directly be derived190
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as H�1p (sections 2.2 and 2.3). If the sizes of f and p di�er, or if the measurement, background and
observation operator errors "0 are to be accounted for, statistical inversion approaches can be performed
to retrieve an optimal estimate of f (sections 2.4 and 2.5).

2.2 The tracer release method

The tracer release method was developed to quantify pollutant emissions and has already been used in195

a wide range of studies to estimate the sources of various types of gases such as methane (Babilotte
et al., 2010), carbon monoxide (M�ollmann-Coers et al., 2002) and isoprene (Lamb et al., 1986). This
method consists of releasing a tracer gas with a known rate close to the targeted gas source when this
source is clearly localised and of measuring both the targeted and tracer concentrations in sections of
the downwind emission plumes. When targeting the total emissions of a site with multiple sources, the200

tracer release is generally located in the middle of these sources, assuming that the site is seen as a point
source from the measurement locations.

When both the released tracer and targeted sources are perfectly collocated and constant in time,
the tracer and targeted gas concentrations have the same spatial and temporal relative variations in the
atmosphere, i.e., the plumes of the targeted gas and of the tracer have the same structure. In such a205

con�guration, the knowledge of the ratio between the tracer plume index pt and the tracer controlled
emission rate ft provides a perfect (scalar) observation operator h. It thus provides a perfect estimate of
the ratio between the targeted gas plume index pm and the targeted gas emission rate fm. By ignoring
the measurement and background errors, the targeted emission rate can be estimated using the following
formula:210

fm = ft � pm

pt
(2)

Various types of plume indices p can be used (provided that they are consistently derived for the tracer
and targeted gas). The background concentration is generally derived from the measurements before
and after crossing the plumes. Then, the plume indices can typically be calculated using the di�erence
between the maximum concentrations (peak heights of the signals) and the background concentration. It
can also be derived from the areas between the plume signals and the background concentration (M�nster215

et al., 2014). When the sources of the released and targeted gases are perfectly collocated and when
their emission rates are constant, both of these approaches provide the same result given that the tracer
and targeted emission plumes have the same structure. However, if the collocation of both sources is not
perfect or if the targeted emissions vary in time, then the shapes of the emission plumes of the released
tracer and of the targeted gas can di�er. To minimize the impact of this di�erence, the ratio of the220

integrated plumes is generally chosen because this index is less sensitive to the impact of thin turbulent
structures than the peak height ratio (M�nster et al., 2014). Other indices have also been tested to
overcome this issue like the slope of the ratio between the targeted and released concentrations above
the background (Roscioli et al., 2015).

The measurement transects through the emission plumes and the computation from equation 2 are225

generally repeated several times, typically ntr = 10{15 times over an hour window. The mean and
standard deviation STDtr of the ntr di�erent results are used as the best estimate and uncertainty
assessment for the source quanti�cation. Of note is that strictly speaking, the exact quanti�cation of the
uncertainty in the mean estimate should be STDtr/

p
ntr, which will be used here, even though STDtr

is often used (Yver Kwok et al., 2015). Such statistics allow to account, at least partly, for the potential230

temporal variations of the emissions, for the measurement and background errors, and for the potential
impact of the non-perfect collocation of the sources in the selected measurement transects. In order to
strengthen the precision of the best estimate, measurement transects with low correlations between the
targeted gas and the released tracer are often ignored. The reason is that such low correlations are related
to critical sources of estimation errors. It can be due, for a range of local meteorological conditions, to235

relatively high background and measurement errors compared to the measured signal. It can also be due
to a strong di�erence between the structures of the tracer and targeted gas plumes arising from the fact
that the tracer emission is not perfectly colocated with the targeted gas emission.

A mislocation of the tracer source far from the targeted source or its location close to a targeted
source whose spread is large compared to the distance to the measurements can also generate signi�cant240

biases in the series of computations. Such biases can impact the average estimate of the source without
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being reected in the standard deviation of the individual emissions computations nor in the correlation
between the tracer and targeted gas concentrations. The impact of the mislocation of the tracer source
can be decreased by increasing the distance between the sources and the measurements (Roscioli et al.,
2015) but the choice of this distance is often constrained by other considerations as discussed in section245

2.1. Approaches based on atmospheric transport models have been used to account for errors arising
from this mislocation (Goetz et al., 2015).

Moreover, the tracer release technique provides an overall estimate of the emissions of a site. However
when the site has several sources located quite close to each other, it can hardly be used to provide
individual estimates of these sources. More speci�cally, even with the use of di�erent tracer release250

points, the technique in itself hardly provides solutions to separate overlapping tracer or targeted gas
plumes associated with di�erent point sources.

2.3 Using local scale transport models

Many types of transport models are used to simulate the dispersion of pollutants at the local scale,
i.e. typically over distances from a few metres to 1 or 2 kilometres, from simple Gaussian models255

to Lagrangian dispersion and sophisticated CFD (Computational Fluid Dynamics) models that allow
to determine turbulent patterns for complex terrain through an explicit representation of reliefs and
obstacles (e.g. Baklanov and Nuterman, 2009; Hanna et al., 2011). Beyond the large range of possible
model complexity, a common feature of these transport models is their ability to represent sources of any
geometry. Therefore, the local scale transport models allow for addressing multiple sources or sources260

with a signi�cant spread far better than proxies based on collocated tracers. In a con�guration similar
to that of the tracer release technique where concentration measurements are conducted across the N
plumes of N targeted gas sources, the local dispersion models can be used to infer the linear relationship
between the emission rates and plume indices in each of the measurement transects. The models are
run with a zero background concentration unless a strong signal from neighboring sources outside the265

targeted site need to be accounted for, which is not the case in this study.
In practice, for a given measurement transect, simulations with such models for each individual

source (ignoring the other ones), with a unitary emission rate can be used to compute each column
of the H matrix in equation 1. If the plumes of the N sources do not overlap too much and are all
discernable in the measurement transect, an appropriate selection of N plume indices can be used to270

disentangle these di�erent sources. In such cases, H is invertible and the derivation of H�1 from matrix
H is straightforward. Consequently, if ignoring the measurement, background and observation operator
errors "0, H

�1 can be directly used for the inversion of the emission of the N di�erent sources as a
function of the N plume indices for each measurement transect:

f = H�1p (3)

As with the tracer release technique, statistics of the results from multiple inversions associated with275

the di�erent measurement transects can be used to derive a best estimate and its uncertainty. The
correlations between the modeled and measured concentrations along the measurement transects can be
used to select the most robust inversion cases.

However, the local scale transport models can bear large uncertainties that are ignored by this
inversion. These errors can be directly projected onto the estimate of the emissions through equation280

3, and thus strongly weaken the con�dence in the results. Furthermore, such an inversion can hardly
account for the amount of useful information provided by the measurements. Typically, limiting the
number of plume indices to the number of targeted sources prevents from analyzing the shape of each
emission plume. Such a shape can be an indicator of the measurement, background and observation
operator errors "0 which can highly impact the inversion results. Finally, with such an inversion, the285

level of separation between the source plumes has to be evaluated before de�ning the number of sources
that can be inverted separately within a site without solving for an under-constrained problem. When
this level of separation is weak, the inversion �nds a mathematical solution to equation 3 that can be
highly uncertain. The lack of exibility of such an inversion is thus problematic.
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2.4 Statistical inversion290

The statistical inversion techniques can address the issues associated with equation 3 that are discussed
above. The Bayesian principle of statistical inversion is to update prior statistical knowledge (i.e. a
prior estimate fb and the uncertainties in it) of the emission rates f with statistical information from
observations p. This update accounts for the statistical uncertainties in the observations (here the
measurement and background errors) and in the observation operator H (Tarantola, 2005). In order to295

account for several sources within a site, the statistical inversion needs to rely on a local scale transport
model to derive theHmatrix. This theoretical framework allows for a control vector f and an observation
vector p with di�erent sizes to be taken into account. All sources can thus be \inverted" even if there
is not enough information to separate the plumes of some of them. Furthermore, the system can make
use of all the information in the measurements to �lter the measurement, background and observation300

operator errors and any signal from the di�erent emissions plumes associated with the di�erent sources.
Assuming that during the measurement campaign the source emission rates are constant, this frame-

work can also be used to assimilate the data from all plume transects to compute the optimal estimate
of the emission rates at once. In such a case, the observation vector p gathers plume indices from all
the measurement transects and the H observation operator represents the transport, with various mete-305

orological conditions, from the sources to all the transects. This combination presents advantages over
repeating computations for each measurement transect and deriving statistics for the emission estimates
out of the ensemble of computations as for the other techniques presented above. In particular, this
helps accounting for the fact that the sources of errors do not have the same statistical distribution, e.g.,
amplitude for each transect. The previous techniques require a selection of the cases when the con�-310

dence in the observation operator is good enough to enhance the robustness of the average. By assigning
model and measurement uncertainties as a function of the measurement transect and/or meteorological
conditions, the statistical inversion allows the information from each transect to be weighted di�erently
according to its uncertainty.

The prior estimate of the emission fb has to be independent of the atmospheric observations and315

can be provided by expert knowledge, emission inventories or process-based models. In practice, it is
generally assumed that the uncertainties in fb, in the observations p and in the observation operator have
unbiased and Gaussian distributions. The prior uncertainty and the sum (henceforth called observation
error) of the uncertainties in the observations p (from the measurement and background errors) and on
the observation operator H are thus characterised by their covariance matrices B and R, respectively.320

Following these assumptions, the "posterior" statistical distribution of the emission rate knowing fb and
p is Gaussian and is characterised by its optimal estimate fa and its covariance matrix A given by
equations (Bocquet, 2012):

fa = fb +BHT (R+HBHT )�1(p�Hfb) (4)

A = (B�1 +HTR�1H)�1 (5)

The matrix A characterises the unbiased and Gaussian uncertainty in fa. If the plume from a source
cannot be separated from the other ones, or if the observation errors on the plume indices related to this325

source are very large, the posterior uncertainty in this source will be large. The A matrix can thus be
used to evaluate the level of constraint on the di�erent sources or on their sum provided by the selection
of plume indices, and the robustness of the corresponding emission estimates. One di�culty associated
with this method is the need for providing a realistic estimate of the observation error statistics which
in practice are di�cult to evaluate. Another issue is that even if the system correctly accounts for the330

transport modelling errors when being well informed about their statistics, it will derive very uncertain
emission estimates if these transport errors are large.

2.5 A statistical inversion based on tracer release and local scale transport

modelling

Here, we propose a new concept for the estimation of the gas emission rates combining the tracer release335

method, local scale transport modelling, and a statistical inversion framework to overcome the issues
associated with these di�erent approaches and tools as discussed above. The basis of this new concept is
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the statistical inversion framework described above assimilating the plume indices from all measurement
transects altogether, where the H matrix is derived from local scale transport model simulations for each
point or spread source of a targeted site and each measurement transect.340

The main idea is to use the very accurate information on the atmospheric transport in the area of
interest from the tracer release method to adjust parameters of the local scale transport models and to
assess the statistics of the transport errors. The "optimized" transport model and the statistics of the
transport errors are then used for the con�guration of the observation operator and of the observation
errors in the statistical inversion system outlined in the previous section. The optimization of the345

transport model parameters can rely on a range of methods, from a simple comparison between an
ensemble of tracer simulations with di�erent sets of parameters and the tracer measurements, to complex
tracer data assimilation.

The statistics of the mis�ts between the tracer measurements and the model-based concentrations
when using the optimal transport model con�guration are used to set up the covariances of the observation350

(measurement, background and observation operator) errors R. This requires the conversion of the error
statistics for the tracer gas into statistics of the errors for the targeted gas. Therefore, the statistics of the
variability of the measured tracer and targeted gas concentrations are used to normalize the transport
errors for the two species as "relative errors", and the assumption is made that the relative transport
errors are the same for both species.355

This optimization of the model parameters and/or characterization of the transport errors can be
performed for each individual crossing of the plume or for all plume crossings together. The use of a
speci�c optimization of the model for each plume crossing may be preferable if the local meteorologi-
cal conditions evolve rapidly. Using general statistics of the tracer model-data mis�ts from all plume
crossings would prevent weighting the transport error and thus the information for each plume crossing360

depending on the modelling skills. Deriving di�erent transport errors for each plume crossing requires
the extrapolation of the single set of tracer model-data mis�ts into statistics for each plume crossing.
These di�erent options need to be chosen depending on the experimental case.

In order to investigate the potential of this approach in a �rst real test case, we propose a relatively
simple practical implementation using a Gaussian transport model. CFD models remain sophisticated365

tools. The choice of a Gaussian plume model is more appropriate for the introduction and �rst test of
our concept but we are aware that it restrains the range of situations that can be investigated.

2.6 Practical implementation for the monitoring of the methane sources us-

ing a Gaussian plume model and acetylene as tracer

2.6.1 The Polyphemus Gaussian plume model370

Gaussian plume models provide a stationary and average view of the pollutant plumes driven by meteoro-
logical conditions that are stationary in time and homogeneous in space. This is a decent approximation
for the dispersion over 1{2 minutes (i.e. the typical timescale associated with our experiments) and an
area of approximately 1 km2 when the wind speed is relatively high. These models cannot account for the
e�ects of complex local topography and buildings. However, they are suitable for many con�gurations375

of industrial sites located in nearly at suburban to rural areas, and they are easily set up and applied
for the simulation of local-scale transport.

In this study, the Gaussian plume model of the Polyphemus air quality modelling system (Mallet
et al. (2007) http://cerea.enpc.fr/polyphemus/) is used because it has been proven to be adapted for
estimating gas emissions from local sites (Korsakissok and Mallet, 2009). Gaussian plume models are380

based on a simple formula that provides the concentration of the pollutant at a location generated by a
point source depending on the weather conditions. The Gaussian plume formula is expressed as:

C(x; y; z) =
Y

2��y�z�u
exp

�
� (y � ys)

2

2�2y

�

�
�
exp

�
� (z � zs)

2

2�2z

�
+ exp

�
� (z + zs)

2

2�2z

�� (6)

where C is the concentration of the pollutant at a location of coordinates (x,y,z), Y is the source emission
rate, and �u is the wind speed. In this formula, the x axis corresponds to the wind direction, ys is the
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pollutant source ordinate (for a single source usually set to zero) and zs is the release height above the385

ground. As both studied gases are poorly soluble and chemically inert for the considered dispersion time
scale, it is appropriate to neglect the mass loss due to dry deposition and assume a total reection from
the ground as expressed by the last exponential term in the equation. The values �y and �z are the
horizontal and vertical Gaussian plume standard deviations and characterise the atmospheric conditions
during the measurements. The modelled concentrations are strongly dependent on these two parameters.390

Within the Polyphemus system, several ways to parameterize these constants are available: the Doury
formulas (Doury, 1976), the Pasquill-Turner formulas (Pasquill, 1961) and the Briggs formulas (Briggs,
1973).

The parameterization according to Briggs is the most exible one. This parameterization considers
the stability of the atmosphere via the six classes of the Pasquill classi�cation from A (extremely unstable)395

to F (extremely stable) by taking into account wind speed and solar irradiance. It also considers the
type of environment with an urban mode when the emission source is surrounded by buildings and a
rural mode for isolated sites (by changing the roughness factors). The standard deviations with this
parameterization are given by the following equations:

�y =
�xp
1 + �x

and �z = �x(1 + �x) (7)

where x is the downwind distance from the source and �, � and  are coe�cients that are dependent on400

the stability classes. All these coe�cients can be found in Arya (1999).
Di�erent source spatial extensions can also be created in this model. However, its con�guration

imposes the emission fi of a given source to be spread homogeneously over its extension. The Gaussian
plume model cannot represent the instantaneous turbulent structures at �ne spatial and temporal scales
but rather represents a time-averaged view of a plume. Therefore, it is expected that by using a high405

number of measurement transects, the Gaussian plume model should be appropriate for catching such
an average plume and that the transient turbulent patterns in the measurements would generate a sort
of noise on the emission estimates without biasing it.

2.6.2 Adjustment of the stability class underlying the Briggs parameters and estimate of
the Gaussian model errors using the tracer data410

The application of the new statistical inversion strategy described in section 2.5 in connection with the
Polyphemus Gaussian transport model relies on the optimization of the stability class underlying the
Briggs parameters and of the plume direction as a function of the tracer measurement transects. Since
wind was measured directly in our experiments, a correction of the Gaussian plume direction should not
be needed, but the section 3.2 will describe practical issues which require such a correction.415

For each measurement transect, the method consists in running multiple model tracer simulations
with di�erent stability classes. They are all forced with the known tracer emission rate. The model
plume direction is adjusted so that the measured and simulated plumes are aligned. The stability class
whose simulation of the tracer concentrations best �ts the measurements is taken as the optimal one.
The �t is quantitatively checked for the plume indices chosen for the de�nition of p, but it is also checked420

in a qualitative way by analyzing the shape of the modelled and measured signals. The estimate of the
Gaussian model errors is based on statistics of the mis�ts between the modeled and measured tracer
plumes indices.

2.6.3 Monitoring of the methane sources using controlled release of acetylene

This method is tested for the quanti�cation of methane sources using acetylene as a tracer gas. The425

lifetimes of methane and acetylene are approximately 10 years and 2{4 weeks, respectively (Logan et al.,
1981). Both of these gases can be considered inert at the time scale corresponding to the time between
the release of molecules at the source and the measurement of concentrations downwind in the plume.

In this study, the methane and acetylene concentrations are measured in a continuous manner along
a line crossing the emission plumes using a sensitive analyser placed in a car. Our preliminary analysis430

shows that we obtain satisfying results when concentrations are typically measured at a distance of 100
to 1000 metres from methane sources of 1500 to 100000 gCH

4
.h�1and spread within an area of 100�100

m2 to 500� 500 m2.
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3 Evaluation of the concept with controlled release experiments

3.1 General principle of the controlled experiments435

The following sections describe the experiments under controlled conditions for both acetylene and
methane used to evaluate the statistical inversion framework detailed in section 2.6 and more generally
to give insights in the potential of the approach proposed in this study in section 2.5. A campaign was
organized during two days of March 2016 at the Laboratoire des Sciences du Climat et de l'Environnement
(LSCE) in France (longitude: 48.708831�, latitude: 2.147613�, altitude asl: 163 m). The experimental440

conditions were selected to be favorable for the use of a Gaussian plume model to simulate the atmospheric
transport. One or two methane sources and one acetylene point release were generated with cylinders
in the parking lot of the LSCE, which is located in a rural area in the southern region of Paris. The
topography of this area is very at, and only few low buildings can potentially inuence the atmospheric
transport from the parking lot to the road where the concentrations are measured. This road is located445

approximately 150 metres away from the controlled sources. No major methane or acetylene sources
in the vicinity of the LSCE could disturb the measurements. Each measurement day was selected by
taking the weather forecast into account and choosing days with a strong enough wind from the north to
be able to measure the emissions from the parking lot on the measurement road. The average weather
conditions of each measurement series are summarized in table 1.450

During this campaign, the methane and acetylene sources were dispersed in four di�erent con�gura-
tions to estimate the accuracy of the proposed method and the uncertainties depending on whether the
tracer gas is perfectly collocated with the methane source or not. For each con�guration, the methane
and acetylene emission plumes were crossed 20{40 times (see table 1), and each series of crossings was
performed on the same day on a timescale of 1-2 hours. The observed increases in the acetylene and455

methane concentrations within the plumes ranged between 3{15 ppb and 50{500 ppb, respectively. Con-
�gurations 1, 2 and 4 were tested in the afternoons between 13:30 to 16:30 UTC while con�guration 3
was tested in the morning between 10:00 and 12:00 UTC (see Figure 1).

The following sections describe the di�erent components of the experimental and modelling systems
used for the inversion of the methane sources and the results from both the tracer release technique and460

the combined statistical approach. These results are compared with the known methane emission rate to
test the ability of each method to estimate the emissions. Statistics of uncertainties are also derived for
the two methods based on the statistical frameworks described in section 2 but also based on Observing
System Simulation Experiments (OSSEs) with pseudo-data.

3.2 Analytical equipment465

Downwind gas concentrations were measured using a G2203 cavity ring-down spectrometer (Picarro,
Inc., Santa Clara CA), which continuously measures acetylene (C

2
H
2
), methane (CH

4
) and water vapor

(H
2
O). Based on infrared spectroscopy, the high precision of the system (precisions of 3 ppb and < 600

ppt for methane and acetylene, respectively, on 2 second interval) is due to its very long path length
(' 20 km) and the small size of its measurement cell (< 35 mL). Mobile measurements with such470

an instrument have already been successfully performed and published in previous studies (M�nster
et al., 2014; Yver Kwok et al., 2015), demonstrating the potential of this method. The measurement
error encompasses the precision stated above but also the fact that the acetylene and methane are not
measured at the exact same time and frequency. Indeed, acetylene is measured every second while
methane is measured every other second. At the scale of our measurement (less than a minute to cross475

a plume), this can impact the error signi�cantly.
Before the experiment, the instrument has been tested in the laboratory. It showed a good linearity

over a large range of mixing ratios and a good stability over time with small dependency to pressure and
temperature. To control for a drift, we measured a gas with a known mixing ratio (calibrated with a
multi-point calibration in the laboratory) before each series of measurements in order to ensure the good480

analytical performance of our instrument. Moreover, in the tracer released method and the combined
approach presented in this study, we are interested in the increase of concentrations due to the tracer and
targeted point sources above the background signal (i.e. the plume indices) more than in the absolute
value of the measurements. Thus, an o�set of the measured concentrations will not impact our estimates.

During the �eld campaign, wind speed and direction were taken from the meteorological station485
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installed on the roof of the nearby laboratory at about 7 m high. The mobile system was set up in a car
and powered by the car's battery. The air sampler was placed on the roof at approximately 2 metres above
the ground with a GPS (Hemisphere A21 Antenna) to provide the location of the measurements. The
sampled air was sent into the instrument by an external pump system allowing an inlet lag between the
sample inlet and the measurements of less than 30 seconds. This more or less constant inlet lag introduced490

a spatial o�set when comparing the measured and modelled tracer or methane concentrations. This
spatial o�set is the same for methane and acetylene and is well characterised by the comparison between
the modelled and measured acetylene plumes. In our combined statistical approach, it is thus well
accounted for when comparing the modelled and simulated methane plumes thanks to the correction of
the Gaussian plume direction according to the acetylene data. Therefore, this o�set is ignored hereafter.495

3.3 Tracer and target gas release

Acetylene is commonly used as a tracer. Due to its low concentration in the atmosphere (' 0.1{0.3
ppb), any release is easily detected. Acetylene also presents the bene�t of being relatively inert, and
thus, negligible loss during the transport process is expected (Whitby and Altwicker, 1977). Other
gases are suitable as tracers, such as SF

6
, but acetylene is preferred because it is not a greenhouse gas.500

However, due to its ammability, its use requires speci�c precautions.
An acetylene cylinder (20 L) containing acetylene with a purity > 99:6% was used as the tracer

source. A methane cylinder (50 L) with a purity of 99.5% was used for the controlled methane release.
The ows of both gases were controlled by a 150 mm owmeter (Sho-rate, Brooks) able to measure
uxes between 0 and 1500 L.min�1. The di�erent acetylene and methane emission rates were checked505

by weighing the cylinders before and after each test and timing the release duration. The ow rate
calculated with the mass di�erence was systematically in good agreement with the ow rate read on the
owmeter since their relative di�erence was between 1 and 3 %. Therefore we believe that there was
no important variability of the acetylene and methane release during our experiments. The amount of
acetylene emitted was adjusted such that its emission plume can be detected on the roads where the510

measurements were performed while keeping it at the lowest rate possible to limit the risks associated
with its ammability. In this study, we used emission rates from 65 to 90 g:h�1 for acetylene. During the
measurement campaign, the cylinders were attached with straps to a �xed frame to avoid any accidents.

3.4 Tested con�gurations of the gas releases

This section details the four con�gurations used during this campaign (�gure 2). The �rst con�guration515

consisted of a collocated emission of acetylene and methane. This con�guration enabled us to estimate
the accuracy of the method and our system under optimal conditions. One cylinder of methane and one
cylinder of acetylene were placed on the parking lot and connected together by a tube with a length of a
few metres. This system aimed at ensuring optimal mixing of both gases and was designed to be as close
as possible to the ideal situation in which methane and acetylene are emitted at the same location and520

under the same conditions. In principle, under such conditions, the tracer concentration to emission ratio
should provide a perfect proxy of the methane transport and the tracer release technique should provide
better estimates than the statistical inversion that relies on an imperfect, although optimized, modelling
of the methane plume. Still, both techniques should be hampered by measurement and background
errors.525

In reality, in industrial sites, methane source locations are not always well known, or it may be di�cult
to access these sources and place a tracer cylinder next to them. The second and third con�gurations
tested the impact of non-collocated emissions of tracer and methane. To represent this situation, one
cylinder of methane and one cylinder of acetylene were used, and the methane cylinder was moved i)
approximately 60 metres downwind from the acetylene bottle location (second con�guration) and ii)530

approximately 35 metres laterally compared with the wind direction (third con�guration). During these
two experiments, the wind was blowing from the North, i.e. it was perpendicular to the measurement
transects along the road, south of the sources.

Finally, within real industrial sites, several sources of methane may be encountered. The fourth
con�guration tested the inuence of having two methane sources on the estimation of their uxes when535

one tracer source is used. With this con�guration, we also evaluate the ability of the combined statistical
approach to estimate the emissions for each individual methane source. For this purpose, a system of
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two tubes was connected to the methane cylinder, splitting its exhaust into two locations approximately
35 metres apart. During this experiment, the wind was blowing from the North-East, i.e. it was not
perpendicular to the measurement transects along the road. The acetylene cylinder was collocated with540

one of the exhausts.
The advantage of the combined method proposed in this study over the traditional tracer release tech-

nique (which relies on the collocation of the target and the tracer gas sources) to infer the total emissions
from a site should be revealed in the second and fourth experimental con�gurations. In homogeneous
meteorological conditions, and when the wind direction is perpendicular to the measurement transects,545

a shift of the methane sources in a direction perpendicular to the wind and parallel to the measurement
transects should only result in a shift of the emission plumes along the measurement transects. It should
not impact the plume indices from the measurement transects and thus the results from the tracer re-
lease technique. Therefore, in idealistic conditions, in the third experimental con�guration, the tracer
release technique should still provide better estimates than the combined approach. However, in prac-550

tice, during experiments with the third emission con�guration, neither the shift between the cylinders
nor the measurement transects (along the slightly curvilinear road) were perfectly perpendicular to the
wind direction, and they were not perfectly parallel between them. Therefore, the combined approach
has potential to yield better estimates also in this con�guration. Finally, it can provides estimate for
both sources in the fourth con�guration, while this cannot be achieved with the tracer release technique555

in our experimental framework due to the strong overlapping of the plumes from the individual sources
(see section 3.8).

The time series of acetylene and methane measurements for each tracer release experiment are shown
in �gure 1.

3.5 De�nition of the background concentration and of the plume indices560

In this study, two di�erent de�nitions of the plume indices to build the observation vector p are used
but they are both based on the integral of areas between the concentrations within the plumes and the
background concentration.

The portions of plume concentrations and of background concentrations in the measurement transects
are de�ned "by eye". The portions of background concentration are restricted to ' 5 s before and after565

the plumes. In many cases, the increase of the concentrations due to the plumes is clear and the portions
of plume and background concentration easy to de�ne. However, in other cases the background variations
near the plumes and the turbulent patterns at the edge of the plumes can have comparable amplitude
so that the de�nition of these portions is more di�cult (Figure 1). For each plume, the background
concentration value used to compute the plume index is taken as the average concentration over the570

background portions of the transect.
When we investigate the tracer data or when we estimate the emission rate of a single source of

methane, i.e. in con�gurations 1, 2 and 3, and in con�guration 4 for the tracer release technique only, the
plume indices are de�ned as the integral over the entire plume of the concentrations above background.
In this case, the observation scalar p (when applying the tracer release technique to each transect) or575

vector p when conducting the combined statistical inversion by gathering data from all transect into a
single vector, are denoted pent and pent respectively.

When we estimate the emission rates of the two sources of methane with the combined approach in
con�guration 4, the portion of observed methane and acetylene increase within the plumes is divided
into �ve slices of equal time (and identical for methane and acetylene). For each slice of a given transect,580

an index pslc is de�ned as the integral of the concentrations above the background in this slice. The
observation vector pslc gathers all these indices.

3.6 Optimization of the Gaussian plume model parameters

In the Polyphemus Gaussian plume model, the de�nition of the plume indices is consistent with the one
in the measurements, and in particular it follows the same de�nition of the plume portions or slices along585

the measurement transects.
For each measurement transect, the optimization of the stability class underlying the Briggs param-

eterisation of this model is based on the �t to the acetylene plume index only. Since no measurements
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of solar irradiance were available, comparing the selected stability class to the theoretical one is not pos-
sible. According to the table of Pasquill which is used for the Briggs parameterisation, there are three590

stability classes that correspond to the 2 to 4 m � s�1 measured wind speed during our experiments: the
classes A and B and C. However, for a given wind speed, there is only two choices, A and B, or B and C.
We have veri�ed for each measurement transect that the selected stability class is consistent with these
two theoretical options. Choosing one over the other can modify the simulated plume indices by a factor
2 to 3.595

We also checked for each measurement transect that the model error is not too large. In some cases,
the model cannot "reasonably" reproduce the observations due to the presence of pronounced turbulent
structures or due to transport conditions that are extremely unfavorable for the model (due to swift
wind change or low wind conditions). In such situations, there is no Briggs stability class that allows for
the model to �t approximately the acetylene plume index. Finally, we decided to remove transects from600

the analysis when the relative error between the modelled and measured acetylene plume indices was
higher than 70%. This value of 70% is an empirical choice corresponding to very large modelling errors.
All cases kept for the analysis had relative uncertainties well below this 70% threshold. In theory, the
strategy of computing the statistics of the model error as a function of such mis�ts should ensure that
the weight given to these transects in the inversion is low. However, in practice, we conservatively prefer605

to remove transects for which the con�dence in the model is extremely low. This evaluation leads us to
ignore 30% of measurement transects when applying the combined statistical approach.

Figure 3 illustrates the results of the model parameterization selection. In this example, which
corresponds to the 5th transect of the measurements for the con�guration 2 when the wind speed was 2.9
m:s�1, the tracer concentrations modelled with the stability class B best �t the measured concentrations,610

which are represented in black.

3.7 Estimation of the biases of the tracer release method due to the mislo-

cation of the tracer with theoretical model experiments

When using the tracer release technique, de�ning the optimal estimate of the emissions and the un-
certainty in the estimate from the ntr selected transects respectively as the average estimate from the615

application of equation 2 and using STDtr/
p
ntr, fully ignores any potential bias in the method. How-

ever, in our experiments, the mislocation of the tracer emission does not only generate random errors
that are caught by the variations of the results between the di�erent measurements transects. It also
has a strong potential to generate a bias in the computations since the measurements are taken in a
relatively narrow range of positions south of the sources. Such a problem applies to many of the tracer620

release experiments where the measurements are always taken from the same area (e.g., due to the need
for using roads).

Here, we use OSSEs (Rayner et al., 1996; Chevallier et al., 2007) with the Gaussian plume model
whose stability class is optimized with the tracer data to estimate the bias that can arise from the
spatial o�sets between the tracer and methane sources. The bias estimates will be used to complement625

the assessment of uncertainty in the results from the tracer technique, except for the �rst con�guration of
the experiments, for which there is no o�set between the methane and acetylene sources. As discussed in
section 3.4, the "lateral" (i.e. orthogonal to the wind direction and parallel to the road) o�sets between
the methane and tracer sources in the third experimental con�gurations is expected to have a relatively
weak impact on the tracer release computations. There should be a far larger bias associated with the630

downwind shift of the unique methane source in the second con�guration and with the complex shift of
one of the methane source when the wind was not blowing perpendicular to the measurement transects
in the fourth experimental con�guration.

In the OSSEs, we assume that the true methane and acetylene emission rates are those used for the
experiments with real data. The synthetic methane and acetylene concentrations are simulated with635

the Gaussian plume model forced with these emission rates and similar weather conditions as during
the campaign. The corresponding emission plume transects for both gases are extracted along the same
paths as during the campaign. Finally, equation 2 is applied with the acetylene and methane plume
indices from these simulations and the acetylene emission rate, and the resulting methane emission rate
is compared with the actual one. The comparison provides a direct estimate of the bias associated with640

a spatial o�set between the acetylene and methane sources since in these computations (i) stationary
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conditions are implicitly assumed, (ii) the same model con�guration is used to simulate the acetylene
and methane concentrations, and (iii) we ignore the background and measurement errors.

In the following, we characterise the biases by their absolute value and the fraction of the actual
source that they represent. The bias is estimated to be 69% for con�guration 2, 12% for con�guration 3645

and 56% for con�guration 4. Considering the amplitude of these errors, we can expect that our combined
statistical approach has a high potential for providing better estimates than the tracer release approach
for con�gurations 2, 3 and 4.

Additional OSSEs are conducted to better characterise the biases as a function of the upwind or
downwind shifts of the tracer source compared to the targeted source and as a function of the distance650

between the sources and the measurement locations. They correspond to the theoretical experimental
con�gurations with one methane and one acetylene source only, and they use northern wind conditions as
was measured during the �rst experimental con�guration. Upwind and downwind o�sets from 20 to 200
metres between the methane and tracer sources are tested with OSSEs, with hypothetical measurement
transects perfectly orthogonal to the plumes (wind) directions at di�erent distances from 100 to 2750655

metres from the methane source. The corresponding estimates of biases are presented in �gure 4, with
the results for the downwind and upwind shifts of the acetylene source provided in �gures 3a and 3b
respectively.

When the tracer is released upwind of the methane source, the emission rate is overestimated because
of the vertical atmospheric di�usion, which makes the integral of the released tracer concentrations660

through the emission plume near the ground lower than if both sources were collocated. The opposite
occurs if the released tracer is placed downwind of the methane emission location. When the tracer source
is either upwind or downwind of the methane source by more than 100 metres and the measurements
are taken at less than 300 metres, the bias exceeds 40% . The biases due to upwind shifts are generally
similar to the biases due to downwind shifts over the same distances. When the measurement distance665

increases, the impact of the shift between the sources decreases. When the measurements are taken at
more than 1200 metres, the bias becomes less than 20%. However, at such distances, with the emission
rates used in our experiments, the signal to measurement and background noise ratio would likely be too
small for our instruments to derive precise estimates of the emissions.

3.8 Tracer release method estimates670

Figure 5 presents one example of the measured acetylene and methane cross-sections used for calculating
the methane emission rate for each campaign. For the �rst series, both the acetylene and methane
pro�les are similar due to the collocation and the mixing of the sources, but we can still observe a
signi�cant di�erence between both emission plumes due to measurement and background errors. The
shift between the sources is reected by a smaller relative amplitude and a higher relative width of675

the acetylene plume compared to the methane plume in con�guration 2 than in con�guration 1 and
by a lateral shift of the acetylene plume compared to the methane plume in con�guration 3. The two
overlapping methane emission plumes, one superimposed with the acetylene plume, can be distinguished
in the fourth con�guration.

In this section, the uncertainties in the optimal (i.e., average) estimates of the sources are characterised680

by the random uncertainty which is given by (i) the variations of the results between the measurement
transects, STDtr/

p
ntr, (ii) the bias due to the mislocation of the tracer (see section 3.7 above), and (iii)

the standard deviation of the total uncertainty being taken as the root sum square of these two terms.
Table 2 lists the estimated methane emission rates and the methane emission rates actually released for
each tested con�guration.685

These results con�rm that the estimates closest to the actual methane rates are obtained for the
�rst and the third con�gurations with a relative di�erence of 14% and 11% respectively. However,
surprisingly they are slightly higher for the �rst con�guration than for the third one. Furthermore, these
errors are relatively high for the tracer release technique. They are mainly due to the variations in the
background concentrations for methane, but also in some cases for acetylene. For example, the methane690

background can range between 2079 and 2099 ppb from one crossing to another for the �rst con�guration
or between 2012 and 2031 ppb between transects for the third con�guration. Moreover, the standard
deviations within the background portions used to compute the background concentration can reach
9 ppb for methane and 1 ppb for acetylene. These variations characterise the level of uncertainty in
the background concentration and they are signi�cant compared to the amplitude of the plumes. The695
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measurement errors associated with the lagtime between the methane and tracer concentrations may
also play a signi�cant role in the level of error associated with the estimates from the tracer release
technique. Instrument precision, on the other hand, should not signi�cantly contribute to the error since
its amplitude is much smaller than the typical signals measured throughout the experiments (�gure 1
and 5).700

The relative di�erences between the actual rates and the tracer release estimates are much more
important for the second and the fourth con�guration, 32% and 67% respectively. The comparison
between these results and those estimated in the �rst and third con�guration indicates that in the
latter cases, the observation operator errors associated with the mislocation of the tracer are much more
important than the impact of the measurement and background errors. These error estimations based on705

direct comparison of the known emission rates are relatively well reected by the uncertainty estimates,
which are much lower for con�gurations 1 and 3 than for the second and fourth one, both in terms of
random error and in terms of biases.

3.9 Combined approach

3.9.1 Con�guration of the statistical inversion parameters710

In this section, we provide details on our de�nition of the prior estimate of the sources fb, of the covariance
matrix of its uncertainties B, and of the covariance matrix of the observation errors R that are needed
for the application of equation 4 underlying the statistical inversion.

Here, we assume that the measurement and background errors are negligible compared to the trans-
port errors, and thus that the observation errors can be represented solely by the transport errors. This715

assumption arose from the relatively high values taken by the transport error estimates. The modelled
vs. measured tracer plumes indices, and their product with the ratio between the measured methane
and tracer plume indices are thus used to set up the variances of the observation error in the inversion
con�guration, i.e., the diagonal of the covariance matrix R. In the case of a unique methane source,
we use the absolute value of the di�erence between the modelled vs. measured plume indices to de�ne720

the standard deviation of the observation error for the corresponding transect. When there are several
methane sources within a site, we use the absolute value of the di�erence between the modelled vs. mea-
sured plume indices for each slice of the measurement transects (see section 3.5). We assign a minimum
value for these standard deviations to prevent one transect or slice of a transect to dominate the others in
the inversion process. In the least squares minimization process associated with the statistical inversion,725

a data assimilated with a considerably lower observation error than the others may fully drive the inver-
sion results. For some transects, an excellent �t may occur between the model and the measurements
in terms of plume indices (i.e., integration of the emission plume concentrations over the background)
despite the shapes of the modelled and measured tracer plumes being signi�cantly di�erent, revealing
some signi�cant observation errors. Applying a threshold to the observation errors limits the impact730

of their underestimation through the objective comparison between the modelled and measured plume
indices. We make the assumption that there is no correlation of the transport errors, and thus of the
observation error (assuming that it is dominated by the transport errors) from one slice to the other slice
of a given transect or from one transect to another one such that the R matrix is set up diagonally.

The typical prior knowledge fb on the emission rate, from waste treatment sites, farms, or gas ex-735

traction or compression sites from process models, typical national- to regional-scale factors is generally
highly uncertain. It can bear more than 100% uncertainty and for many of these sites not even the order
of magnitude is known. Despite working in the framework of a controlled release experiment, we attempt
to set up the inversion system to have the same conditions as when monitoring the emissions from such
sites. We thus set up the prior estimate of the methane emission rates to 1800 g:h�1 and the standard740

deviation of the prior uncertainty in these rates to 80% of this prior value. This ensures that the prior
has a weak impact on the results. In general, there is no correlation between the prior uncertainties in
the methane emissions from di�erent targeted sources within a site since they generally correspond to
di�erent processes (e.g. the aeration process and the clari�cation process in wastewater treatment plants
(Yver Kwok et al., 2015)). Therefore, here, the B matrix is set up diagonally.745
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3.9.2 Results

Figure 6 presents examples of results obtained using the combined statistical approach with one or
several methane sources. The behaviour of the inversion system and the values in the concentration and
observation space are illustrated for one transect only (for the 3rd transect of the �rst con�guration and
for the 38th transect of the fourth con�guration). It shows that the posterior estimates of the emissions750

have a much better �t of the simulated concentrations and plume indices than the prior emissions.
Table 2 presents the methane emission rates estimated with the combined approach for each tested

con�guration. We also analyse the covariance matrix A of the theoretical uncertainty in the emission
estimates when using the statistical approach (equation 5), which provides a complementary assessment
of the reliability of the results and of the level of separability between the two methane sources when755

using several of them in the experiments.
For the �rst and the third con�gurations, the statistical inversion gives similarly good estimates

of the methane emission rates as the tracer release method, with relative deviations from the actual
rates of 15% and 7% respectively. As expected, the tracer release technique provides better results
for the �rst con�guration. However the corresponding di�erence or relative error is very small and760

the combined statistical approach provides better results in the third con�guration. Furthermore, the
combined approach derives relatively good estimates for the second and the fourth con�gurations as well,
contrary to the tracer release method. Indeed, for both of these experiments, the relative di�erences
between the actual rates and the combined approach estimates are 16% and 4% respectively. Since being
impacted by the background and measurement errors, this approach sill provides relative errors around765

15% for con�gurations 1 and 2 but they get lower than 10% for the third and fourth con�guration.
In all cases, the statistical inversion predicts a very low posterior uncertainty in the emission estimates

for each con�guration. For the fourth con�guration with two methane sources, the approach fails at
deriving precise estimates of each source due to the important overlapping of their emission plumes
during most of the crossings. Indeed the system attributes almost all the emissions to one of the two770

sources and none to the other one. The diagnostic (through the computation of A) of negative correlation
(-0.41) of the posterior uncertainties in these two sources supports the assumption that there is a weak
ability to separate the signal from each source due to their overlapping, and that it is the main source
of error in their individual estimates.

4 Discussion775

The general results from these experiments indicate that both the tracer release technique and the
combined statistical inversion system can provide good orders of magnitude of the total methane emission
rates for each of the four source con�gurations that we have considered. However, the results when
using the most favorable con�gurations of controlled emission where the methane source is collocated
(con�guration 1) or nearly aligned with the tracer source in the direction orthogonal to the wind direction780

(con�gurations 3) can still bear more than 10% relative errors. This is relatively high for the tracer
release technique compared to what has been obtained, e.g., by Allen et al. (2013). For both the tracer
release technique and the combined statistical inversion, the best results are not obtained for the most
favorable controlled emission con�guration when the acetylene and methane sources are collocated. This
is surprising, since in such a con�guration, the acetylene should provide a very precise (perfect if ignoring785

the measurement and background uncertainties) proxy of the atmospheric transport of methane. In the
con�gurations with non-collocated sources, the results in the other con�gurations should be hampered
by larger uncertainties in the representation of the atmospheric transport due to the local variations of
the wind between the methane and the acetylene sources.

Actually, the variations of the atmospheric conditions from one experimental con�guration to the790

next reveal to be the strongest driver of the precision of the results in our study. It changes the turbulent
patterns and thus the transport errors when using the model or when using the tracer with a mislocated
source. It also changes the typical amplitude of the tracer and methane signals, and thus the signal
to measurement and background noise ratio. The signal to measurement and background noise ratio
is critical and strongly inuences the inversion precisions since for many measurement transects, our795

measurement and background errors appear to be signi�cant compared to the amplitude of the mea-
surements. The measurement precisions are a negligible source of error given the typical concentrations
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measured in this study. However, the small timelags between the acetylene and methane measurements
are presumed to raise signi�cant uncertainties in the comparison between acetylene and methane data.
The variations in the background concentrations for methane, but also in some cases for acetylene, also800

prove to be high enough to raise uncertainties in the single "background value" used for the computation
of the so-called plume indices, i.e. the integral of the increase of the concentrations above the background
within the plumes.

We anticipate that the results would have been better and more robust if the methane emission rates
had been larger due to the increase of the signal to measurement and background noise ratio. In real805

application cases, the methane industrial emissions are de�nitely higher than the controlled emissions
used in our experiments and we can thus expect the issue of the measurement and background errors
to be less critical. Furthermore, we ignored these errors when deriving the covariance of the observation
errors in the statistical inversions while several indicators could have been used to characterise their
statistics. We could thus help the combined statistical inversion system better account for them when810

they are signi�cant.
Despite these issues, this set of experiments clearly con�rmed our expectations regarding the tracer

release technique and the combined statistical inversion. In the con�guration with the methane and acety-
lene sources collocated, the tracer release method provides better results than the statistical inversion
since the latter is impacted by signi�cant transport errors in addition to background and measurement815

errors while the tracer release technique is impacted by the last two sources of errors only. The opti-
mization of the Gaussian plume model using the acetylene data still proves to be e�cient to limit the
transport errors so that the accuracy of the statistical inversion is still close to that of the tracer release
technique for the �rst experimental con�guration.

In the other experimental con�gurations, which are representative of frequent situations in industrial820

sites when the tracer cannot be released close to the single or multiple targeted sources, the combined
statistical inversion provides better results than the tracer release technique. Our OSSE demonstrates
that the mislocation of the released tracer can induce large errors when considering moderate distances
between the tracer and the targeted sources even with much larger distances between the measurements
and the sources. In these cases, our experiments with real data illustrated that the calibration of a825

Gaussian plume model using the tracer release method and the integration of the calibrated model in a
statistical inversion framework help to reduce this error. The better behavior of the statistical inversion
compared to the tracer release technique cannot be explained by a stricter selection of the measurement
transects by the former. We recomputed the results from the tracer release technique when limiting
the selection of the transects to that of the combined statistical approach and found very similar results830

(33% of error instead of 32% for the second con�guration). On the opposite, the need for using a stricter
selection of measurement transects that �t with the Gaussian plume model can be seen as a weakness
of the combined inversion approach. The reduction of the transport error when using the model rather
than the tracer with a mislocated source is the best explanation for the improvement of the results with
the statistical inversion. These critical results demonstrate, in practice, the potential of our new method835

to provide better estimates than the traditional tracer release technique.
However, our results from the experiment with the fourth con�guration of the controlled emissions

fails to demonstrate the skills of the atmospheric inversion for providing precise estimates of the di�erent
emission rates from the multiple sources within our site. At least, it shows that the statistical inversion
could diagnose by itself, with the estimate of the posterior uncertainty covariance matrix, indications840

that the two targeted sources of methane were too close such that their plumes were hardly separated
by the inversion in this fourth con�guration.

The much lower uncertainties associated with the statistical inversion results seem to con�rm that
they are more robust than those from the tracer release method. However, even though the uncertainty
estimates in both methods are supposed to cover all sources of uncertainties, they rely on very di�erent845

assumptions regarding these sources of uncertainties and on very di�erent theoretical derivations. In
particular the statistical inversion ignores biases while we explicitly accounted for biases in the tracer
release technique. Furthermore, unlike the estimate of uncertainties for the tracer release technique, the
statistical inversion ignores the variations of methane model data mis�ts from one transect to the other
one, while these mis�ts could be an indicator of the uncertainties in the emissions. It strongly relies on850

our characterization of the transport errors and prior uncertainties. We tried to rely on an objective
quanti�cation of the transport errors and we used such a high uncertainty in the prior ux estimates
that this estimate did not have a large weight in the statistical inversion. However, the derivation of
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the transport error still relied on strong assumptions regarding its structure, and in particular regarding
its spatio-temporal correlations. Actually, the computation of transport uncertainties using model-data855

mis�ts for tracer plume indices that are integrated over the whole plumes, i.e. for the same tracer
plume indices as that used to optimize the transport model con�guration, raises theoretical issues in
the �rst three experimental con�gurations. It assumes that the dominant source of transport model
errors is related to the inability of the transport model, in the range of parameterization that are tested,
to �t perfectly these plume indices. This does not account for the inability of the transport model to860

catch the turbulent patterns and the variations of the wind conditions in space and time. Assessing
the transport model errors based on statistics of model-data mis�ts for slices of the tracer plume as in
con�guration 4 may help better account for such sources of transport errors. However, in general, the
information on the transport model errors from the tracer data may have to be complemented by other
sources of information on such transport errors, in addition to information about the background and865

measurement uncertainties (as discussed above) to avoid under-estimating the overall observation errors,
and thus, consequently, the posterior uncertainties. All of this makes the comparison of the error bars
for the two methods di�cult and weakens the reliability on the quanti�cation of the uncertainties in the
results from the statistical inversions, especially since they appear to be very low for all experiments.
These uncertainties should be used cautiously as an indicator of the relative behavior of the system870

rather than an absolute indicator of the result precision.
The promising results of this study should be seen as a proof of concept rather than as a comprehen-

sive evaluation and assessment of its applicability in di�erent situations. In particular, more complex
situations with buildings and other obstacles disturbing the ow will require the application of more
sophisticated transport models than the simple Gaussian plume model applied here, even though the875

overall concept of the combined statistical approach would still be valid.
Furthermore, as indicated above, the turbulent patterns induced signi�cant transport errors that

contributed to the uncertainties in the inversion results. The strict selection of the measurement transects
that can be exploited by the inversion system is strongly related to the poor ability of the Gaussian plume
model to simulate many of them. This is demanding in terms of measurements, many transects being880

needed to ensure that a signi�cant set will be used for the statistical inversion.
At last, for the optimization of the Gaussian plume model settings, the variable selection of stability

classes representative of less than 15 minutes measurement transects is questionable. In the method, the
�t of the model to the tracer data is the only critical criteria while the consistency between the stability
class and the meteorological conditions according to the Pasquill table is just checked as a diagnostic that885

does not have any weight in the model optimization. However, the changes in the resulting stability classes
over short timescales question whether the Gaussian plume model is appropriate for such a combined
inversion technique. A direct optimization of the typical di�usion length of the Gaussian plume or of the
parameters of the Briggs formulation, instead of the selection of the optimal stability class underlying
such parameters, would allow a better, if not perfect, �t to the tracer plume indices. However, such an890

optimization could increase the lack of physical consistency between the resulting model parameters and
the actual meteorological conditions due to the limitation of the Gaussian representation of the plumes.

All these problems contributed to the signi�cant errors in the statistical inversions in this study and
could make such errors too large in complex cases of actual industrial emission quanti�cation. Therefore,
while the choice of the Gaussian plume model for the initial tests to evaluate our new concept was895

appropriate, future studies should investigate how more complex models could be integrated in this
inverse modelling framework. However, the control of CFD driven dispersion models to �t the tracer
data will not be straightforward even if attempting at extracting far more information from these data
than simple plume indices. Even if modelling turbulent structures, the CFD models would be hardly
controlled to �t that of the measurements. In general, the appropriate control techniques could be as900

complex as tracer data assimilation in these models which would make the method far more di�cult
to apply than in our study. This increase of complexity may make the method quite di�cult to apply
while there is a need for precise and easy-to-implement method for estimating methane emissions from
the industrial sector. From this point of view, the tracer release technique de�nitely appears to be the
most e�cient technique.905

Our concept faces another type of challenge. During measurement campaigns on actual industrial
sites, the locations of the methane sources are not exactly known as in our tests. This lack of information
could induce additional uncertainties to our estimates. Another source of uncertainty is the fact that in
the tested con�gurations, methane point sources were used whereas during �eld campaigns, spread out
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and fugitive sources may be encountered while their spatial distribution could be poorly known. The lack910

of knowledge on the emission spatial distribution may decrease the advantage of the combined approach
(which, in its present form strongly relies on this knowledge) compared to the release technique.

5 Conclusions

We propose a new atmospheric concentration measurement-based concept for instantaneous estimates of
gas emissions from point sources or more generally from industrial sites. This concept combines the tracer915

release technique, local scale transport modelling and a statistical inversion framework. The idea is to
optimize the model parameters based on the knowledge provided by the tracer release and concentration
measurement and to exploit tracer model-measurement mis�ts to prescribe the statistics of the modelling
error in the statistical inversion framework. Compared to the traditional tracer release technique, the
method has the advantage of exploiting the knowledge on the atmospheric transport provided by the920

known tracer release and measured concentration without relying on the collocation of the tracer emission
and of the targeted gas emission. This is a critical advantage since the tracer can hardly be collocated
with the targeted sources in much of the real industrial cases. The statistical framework can account for
the di�erent sources of uncertainties in the source estimate, can solve di�erent targeted sources together
and can consider any valuable number of pieces of information in the measurement of the targeted gas925

for such an inversion.
We also propose a relatively simple implementation of this concept using a Gaussian plume model.

Finally, we apply it to a series of controlled release experiments with methane and acetylene taken
respectively as targeted and tracer gas and we compare its results to that of the tracer release technique
to demonstrate the added bene�t of our new approach. The results indicate that when the tracer and930

targeted gas sources are collocated, the combined statistical approach yields results that are nearly
as good as that from the tracer release technique, even though, the former can be impacted by the
transport modeling errors which do not apply to the latter. More importantly, the results con�rm that
when the tracer and targeted gas sources are not collocated, the combined statistical approach provides
better results than the tracer release technique. Such results with a rather simple implementation of the935

combined statistical approach using a Gaussian plume model are highly promising for our concept.
Our experiments fail to demonstrate the potential of this approach to estimate the di�erent emission

rates from the multiple sources within a site. Furthermore, as highlighted by section 4, the robustness
of the method and its assessment of the uncertainties need to be improved. The generalization of the
method for applications to complex sites and meteorological conditions, based on more realistic transport940

models, will confront di�cult technical and scienti�c challenges. However, at least, our experiments
promotes further studies and development of our combined approach, and even applications of our simple
implementation framework to the instant quanti�cation of real industrial sites emissions for which the
conditions that are favorable to the use of a Gaussian plume model can be met.
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Table 1 { Weather conditions during the four tests and con�guration of the observation vector for the
statistical inversion.

Trace gas
con�guration

Weather conditions (avg.) Total
number of
transects

Number
of selected
transects

Con�guration of the
observation vector for the

statistical inversion
Temperature

(�C)
Wind direction

Wind speed
(m.s�1)

Con�guration 1 9.9 � 0.3 N 3.2 � 0.6 29 11 Integration of the entire plume
Con�guration 2 9.2 � 0.1 N 3.7 � 0.8 20 9 Integration of the entire plume
Con�guration 3 8.4 � 0.8 N 2.5 � 0.7 35 10 Integration of the entire plume
Con�guration 4 11.3 � 0.3 NE 2.0 � 0.7 40 8 Integration of slices of the plume

Table 2 { Methane emission rates of the di�erent controlled release con�gurations estimated with the
di�erent approaches and methane uxes actually emitted during these tests. The uncertainties given
with the tracer release method are detailed as follows: standard deviation of the random uncertainty
derived from the variabilty of the results from one transect to the other one (bias due to the mislocation
of the tracer ; total uncertainty).

Con�guration 1 Con�guration 2 Con�guration 3 Con�guration 4
(collocated tracer) (upwind tracer) (lateral tracer) (multiple sources)

Controlled methane release (g.h�1) 382 � 7 428 � 7 360 � 7 482 � 7

Tracer release method estimates (g.h�1) 434 � 23 (0 ; 23) 564 � 120 (295 ; 415) 321 � 51 (43 ; 94) 804 � 160 (270 ; 430)
Relative di�erence to the control release (%) 14 32 11 67

Combined approach estimates (g.h�1) 441 � 6 358 � 2 386 � 2 462 � 34
Relative di�erence to the control release (%) 15 16 7 4
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Figure 1 { Concentrations of methane and acetylene during the four tracer release experiments.
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Figure 2 { The four tracer release con�gurations tested. Triangles represent the tracer source locations,
and the circles mark methane sources. Each colour represents a con�guration: blue is con�guration 1
(collocated tracer), red is con�guration 2 (upwind tracer), green is con�guration 3 (lateral tracer) and,
yellow is con�guration 4 (multiple sources).
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Figure 3 { Example of the Briggs parameterization selection with the acetylene data for peak 5 of
con�guration 2. The measured concentrations are presented in black, and the modelled concentrations
with di�erent stability classes are shown in colors.

Figure 4 { Error in plume estimation with the tracer method depending on the measurement distance
to the methane source and a shift of 20, 60, 100 150 and 200 m of the tracer location relative to the
methane source using our Gaussian plume model.
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Figure 5 { Examples of cross-sections of the measured emission plumes of acetylene and methane (in red
and blue, respectively) for each con�guration.

Figure 6 { Examples of prior, posterior and measured values of emission rates, concentrations and values
of the observation vector for cases in con�guration 1 and 4 (observations from a single transect shown).
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