Referee 1

In the following, the referee’s comments are reproduced (black) along with our replies (blue) and changes made to the text (red) in the revised manuscript.

General statement:

General Comments: Liebmann et al. describe the development and first deployment of a cavity-ring-down instrument to measure total reactivity of NO3. The authors provide a detailed overview of the methodology used to develop and characterize the instrument. The necessity of generating a stable NO3/N2O5 source is described, along with descriptions of several possible interferences and the steps taken to address them. In particular, several methods are used to derive the reaction time of NO3 in the flow tube system, taking into account the production and loss pathways of NO3. NO3 reactivity is then derived by iterating numerical simulations. The experiment was validated using an isoprene standard, and there was good agreement between experimental and calculated results. The authors also describe the dynamic range, limit of detection, and uncertainties of the experiment. Finally, the authors describe the first field deployment of the instrument during the NOTOMO campaign in 2015. The experimental setup used during the campaign is described, along with potential interferences present in the sampled air. The authors note a broken thermostat during the measurement period that may have impacted their reactivity measurements and describe other challenges to effective measurements in ambient air. There is clearly more to learn and I look forward to reports of field measurements using this technique. This manuscript should be published in AMT after attention to the minor issues below.

We thank the referee for this overall positive assessment of our manuscript. The manuscript has been improved in line with the comments listed below.

The color schemes utilized in several of the figures are difficult to see when printed and nearly impossible to interpret in greyscale.
The Figures have been re-drawn.

References should be listed in a consistent manner. I prefer chronologically or reverse chronologically.
References are now listed chronologically.

Line 30 (and throughout): a hyphen is not needed in the word daytime.
Corrected

Line 30: a hyphen is not needed in the word photochemically.
Corrected

Lines 60-80: The paragraph could be clearer in its description of the competition for NO3 between reaction with NO2 and reaction with VOC. We now write: “Summarizing, NO3 reactivity with respect to gas-phase losses is a direct indication of night-time oxidation rates of VOCs, with direct impacts on NOx levels by forming long-lived reservoir species (alkyl nitrates) some of which will partition to the particle phase. Via modification of N2O5 concentrations (formed in an association reaction of NO3 with NO2, R3), the NO3 reactivity indirectly controls heterogeneous NOx losses and ClNO2 formation rates.”
Line 248: “ln([NO3]t” is missing a right parenthesis.
Corrected

Line 340: “In Fig. 7a. . .” The word “in” does not need to be capitalized.
Corrected

Lines 456-461: Could simulations or modeling be done to indicate that the decision to neglect temperature dependence of reactivity with NO3 is reasonable?
We have added an example to illustrate the effect of divergent ambient and reactor temperatures and now write: “To illustrate this, we consider the reaction between NO₃ and the usually most abundant monoterpene, α-pinene. The rate constant at flow-tube temperature (20 °C) is 6.4×10^{-12} cm³ molecule⁻¹ s⁻¹ increasing to 7.0×10^{-12} cm³ molecule⁻¹ s⁻¹ at 5 °C and decreasing to 5.9×10^{-12} cm³ molecule⁻¹ s⁻¹ at 35 °C, which are changes of < 10 %. Note also that for many monoterpenes, the temperature dependence of the rate constant is not known, but expected to be weak (IUPAC, 2016).”

Figure 5: The 1:1 line is not solid, it is dashed.
Corrected.
In the following, the referee’s comments are reproduced (black) along with our replies (blue) and changes made to the text (red) in the revised manuscript.

General statement:

General Comments This paper describes the first demonstration of NO3 radical reactivity and its use in ambient air. Reactivity measurements for HOx radicals have become a routine feature of instruments that measure ambient HOx concentrations, yet no analogous instrument has been developed for NO3 until now. As such, the paper represents an important contribution that will be of interest to the readership of AMT and that may serve as a seminal work that stimulates a new generation of atmospheric instrumentation. With one exception (see below), the development is thorough and convincing. It should be published in AMT.

We thank Steven Brown for this thorough review and overall positive assessment of our manuscript. The manuscript has been improved in line with his comments listed below.

The major general comment is the lack of discussion of secondary chemistry in the NO3 flow tube. While the authors thoroughly consider the effect of the NO3-N2O5 equilibrium and the potential production of NO3 from NO2 + O3 in the flow tube, they do not comment (unless I missed this point) on the potential perturbation to the NO3 reactivity by the addition of NO3 itself to the ambient air in the flow tube. For example, at the lower end of the measurement range, $k = 0.005 \text{ s}^{-1}$, only about 30 pptv of a typical monoterpene (α-pinene) would be required to produce this reactivity, smaller than the added NO3. The procedure calls for addition of 50 pptv NO3 at that start of the flow tube (and in some experiments, more was used). The NO3 reaction would lead to $\sim8\%$ reduction of the initial α-pinene mixing ratio during the 10.5 s flow tube residence time (taking kinetics as first order for simplicity, even though in this example they are actually second order), placing some bias on the derived reactivity.

Furthermore, the rapid VOC degradation induced by NO3 addition would presumably lead to formation of peroxy radicals and/or HOx that could further react with NO3 or the ambient VOC levels. If reactivity were dominated by even more reactive VOCs (e.g., sesquiterpenes), these effects could become significant. The authors should consider the potential for such secondary chemistry to bias the NO3 reactivity measurement under the chosen level of added NO3.

We now address this briefly in section 2.1: “We later assess the potential change in air-mass reactivity (i.e. by depletion of reactive trace gases of formation of reactive radicals) following addition of NO3 at these levels to ambient air.”

And in detail in section 5 in which we write: “We now examine the potential bias caused by use of NO3 concentrations as large as 50 pptv, which may change the reactivity of the air either by removing a significant fraction of gas-phase reactants or via formation of peroxy radicals (RO2), which may also react with NO3. In a first scenario, we assume that the reactivity is caused by a single species, namely the generally dominant terpene, α-pinene and consider both low ($k_{RTG} = 0.005 \text{ s}^{-1}$) and high reactivity regimes ($k_{RTG} = 0.1 \text{ s}^{-1}$). A value of $k_{RTG} = 0.005 \text{ s}^{-1}$ would result if 34 pptv of α-pinene were available for reaction. In a first approximation, assuming first-order kinetics, we calculate that 2.5 pptv of the initially available 50 pptv of NO3 are lost in the 10.5 s
reaction time, and consequently a change in α-pinene of 2.5 pptv would also occur. This is only 7% of the initial concentration, indicating an upper limit to a negative bias of 7%. This is an upper limit as the assumption of first order kinetics is not entirely appropriate. As NO₃ reacts with α-pinene in air to form a nitroxy peroxy radical (RO₂) we also consider a positive bias due to reaction of NO₃ with this RO₂. To do this we assume a rate constant of 1.2×10^{-12} cm³ molecule⁻¹ s⁻¹ for the reaction as observed for NO₃ + CH₃O₂ (Atkinson et al., 2006) and assume that this rate constant is independent of the nature of the organic fragment (R) as is the case for reactions of RO₂ with NO. The 2.5 pptv RO₂ thus generated results in an incremental NO₃ reactivity of 7×10^{-5} s⁻¹, a positive bias of 1.5%. Again, this is an upper limit, as the calculation assumes that this concentration of RO₂ is constant and available for the whole 10.5 s of reaction time. For higher reactivity (0.1 s⁻¹) a similar calculation shows that the 670 pptv required would reduce the NO₃ concentration to 17.5 pptv, a change of just 5%. The 32.5 pptv RO₂ generated would result in a loss rate constant for NO₃ of -9×10^{-4} s⁻¹, a positive bias of ~1%. In conclusion, for reactive systems in which a large concentration of reactive trace gases with moderate reactivity towards NO₃ are encountered, we expect no significant bias. The only scenario, in which a large bias can ensue, is when a low reactivity is caused by a very low concentration of an extremely reactive trace gas. Taking the example of 1 pptv of a highly reactive terpenoid ($k = 2 \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹) it is easy to show that it would be reduced to just a few percent of its initial concentration when mixed with 50 pptv of NO₃ for 10.5 s. In this case a large negative bias would result. In the real atmosphere, this situation is however unlikely to occur as such reactive species are usually substantially reduced in concentration compared to the generally dominant biogenics such as α-pinene.”

And in the conclusions where we write: “Reduction in the initial NO₃ concentration used would also reduce any potential bias caused by depletion of reactants or secondary chemistry.”

Aside from this comment, the authors should consider the following more specific comments prior to publication.

Line 32: should add the phrase “at elevated NOx”, since in the absence of NOx, O₃ is the major nighttime oxidizing agent for these compounds.
We have added the phrase to the text: “As OH levels are vastly reduced in the absence of sunlight, the NO₃ radical (formed by reaction of NO₂ with O₃, R1) is the major oxidizing agent at elevated NOx for many biogenic terpenoids and other unsaturated compounds at night-time…..”

Line 66: Equation appears to be inverted. Units as written would be s, not s⁻¹, so this should be Tau_ss, not 1/Tau_ss. Corrected

Lines 99-100: Both Fuchs et al. (Anal. Chem. 80, 6010, 2008) and Wagner et al. (AMT, 4, 1227, 2011) describe the use of crystalline N₂O₅ for calibration of NO3 and C₂ N₂O₅ instruments in the field in which there is no significant NO₂ impurity. In-field synthesis and sample stability have also been achieved, albeit with some difficulty. While this reviewer agrees that the method is difficult and the in-situ generation source may be superior, it may be worth pointing out that it is not impossible. If achievable, the crystalline source would have the advantage of no O₃ and reduced NO₂.
We have amended the text accordingly: “The generation of NO₃ from gas-phase N₂O₅ eluted from samples of crystalline N₂O₅ (at -80 °C) was found to be insufficiently stable for the present
application and is also difficult (though not impossible, see e.g. (Fuchs et al., 2008; Wagner et al., 2011)) to use during field campaigns where adequate laboratory facilities for the safe generation and purification of N₂O₅ are frequently not available. In addition, generation of NO₃ from N₂O₅ was also accompanied by an NO₂ impurity of several parts per billion (ppbv).

Lines 104-105: Is the 0.93 ppbv mixing ratio of NO₂ before or after its dilution into the O₂ flow? Presumably after, but not clear from the way it is written. There was an error in the units, it should have been 0.93 ppmv. This has been corrected.

Lines 108-111: The termolecular reaction of NO₂+NO₃ is not rate limiting in this system, so it is difficult to see (intuitively) why high pressure would make N₂O₅ production more efficient, or why the reactor would be sensitive to fluctuations in external pressure. The termolecular reaction with NO₂ competes with loss of NO₃ to the walls. Increasing the pressure increases the fraction of NO₃ that forms N₂O₅. Higher pressures compared to ambient (∼ factor 2) help to decouple from pressure fluctuations as the flow rate through the orifice coupling the two vessels tends towards critical operation.

Line 114: Reaction does not go to completion in 5 minutes at 400 ppbv O₃, correct? Correct. We add text to explain that only a small fraction of the NO₂ is initially converted to NO₃: “The approximate reaction time for the stepwise conversion of NO₂ to N₂O₅ in the darkened reactor is ∼ 5 min. Based on the O₃ concentration and the rate constant for R1, the initial conversion of NO₂ to NO₃ is about 15%.”

Line 122: NO₂ (1 ppbv) lower after the reactor than before? (see comment above) Must be an error in the numbers given above. Yes, the units of the NO₂ mixing ratio were wrong. See answer above (lines 104-105).

Line 229: “non-isothermal effects” is not clear. This refers to temperature inhomogeneities in the flow-tube and is described in detail by Huang et al.

Line 252-262: The role of the N₂O₅ equilibrium and the excess O₃ in the flow tube should be obvious enough that explicit discussion of equation (6) and deviations from it are not really needed. Suggest omitting this simple expression in favor of the discussion of the more accurate numerical simulations to simplify the paper. The deviation from ideal behaviour is often a clue to the quality of a more complicated numerical model. We show that deviation if small when NOₓ levels are low indicating that any errors in the numerical procedure are likely not to result in large systematic errors. We feel this makes the paper more readable and prefer to keep the “ideal case” in.

Lines 291-292: Is there any degradation of kw observed during field sampling in ambient air? If NO₃ has a large wall loss rate constant on glass, it would presumably also be lost readily to FEP coatings there were not pristine. kw was not measured by injector movement during field campaign. However, there was no indication of enhanced wall loss rate constants after the campaign compared to before indicating no significant degradation of the FEP coating. “We write: Similar experiments performed before and after the NOTOMO campaign (see below) indicated that the FEP coating did not degrade
significantly following sampling of filtered, ambient air.” In order to avoid ambiguity, we have removed the sentence describing loss of NO3 on the uncoated wall.

Line 297: Does expression (7) take radial diffusion limitation into account? Also, r and c are presumably the tube radius and mean molecular speed of NO3, but should be defined in the text. We have changed the text to clarify: “Using expression (7) where r is the flow-tube radius, \(\bar{c} \) the mean molecular speed and which assumes laminar flow and no diffusive limitation to uptake, this value of \(k_w \) can be converted to an approximate uptake coefficient for NO3 to the FEP-coated tube of \(\approx 5 \times 10^{-7} \).”

Line 360-362: Statement could be stronger than “we prefer”. The numerical simulation C3 is obviously more accurate and more general, and can be described as such. Agreed. We now simply state that we use the numerical simulations.

Line 371: Is this really the time for flushing reactive gases? Several minutes for a system with 10.5 s residence time? Normally, \(\sim \)3 times the residence time (\(\sim \)32 s) are commonly used to flush 95% of gases from a cylindrical flow tube. This is also apparent from the NO3 behaviour when adding NO via the syringe (section 2.3.1). This time can be extended if the geometry is not ideal (e.g. presence of dead volumes in fittings) and if the gases have finite residence times on the inlet surfaces (i.e. are sticky). We now write: The data show that a plateau in the NO3 signal with zero-air is observed after about 2-3 titration cycles are complete, which is the result of slow flushing through the inlet of reactive gases, which have extended surface residence times on the inlet material and fittings.

Line 369-382: The authors may elect to shorten this section, which could be conveyed in a sentence or two to state that an iterative fit was used. We prefer to keep detail where possible in an instrumental paper of this nature.

Line 410: Is the 0.2 pptv 1-sigma? That is correct. We now write: The instrumental noise on the NO3 signal was reduced by averaging over \(\approx 3 \) s per data-point (\(\approx 1800 \) ring-down-events) to give a noise limited detection limit (1 \(\sigma \)) of \(\approx 0.2 \) pptv.

Line 514, Figure 12a: Figure would be much more effective with the y-axis on a log scale to illustrate the difference between night and day. It is difficult to see the nighttime reactivity on this scale, and the quantitative day/night contrast should be of interest to the readers. We have added a Figure to the supplementary information in log format.
Measurement of ambient NO₃ reactivity: Design, characterization and first deployment of a new instrument

Jonathan M. Liebmann¹, Gerhard Schuster¹, Jan B. Schuladen¹, Nicolas Sobanski¹, Jos Lelieveld¹ and John N. Crowley¹

¹Atmospheric Chemistry Department, Max-Planck-Institut für Chemie, 55128 Mainz, Germany.

Correspondence to: John N. Crowley (john.crowley@mpic.de)

Abstract. We describe the first instrument for measurement of the rate constant (s⁻¹) for reactive loss (i.e. the total reactivity) of NO₃ in ambient air. Cavity-ring-down spectroscopy is used to monitor the mixing ratio of synthetically generated NO₃ (≈ 30-50 pptv) after passing through a flow-tube reactor with variable residence time (generally 10.5 s). The change in concentration of NO₃ upon modulation of the bath gas between zero-air and ambient air is used to derive its loss rate constant, which is then corrected for formation and decomposition of N₂O₅ via numerical simulation. The instrument is calibrated and characterized using known amounts of NO and NO₂ and tested in the laboratory with an isoprene standard. The lowest reactivity that can be detected (defined by the stability of the NO₃ source, instrumental parameters and NO₂ mixing ratios) is 0.005 s⁻¹. An automated dilution procedure enables measurement of NO₃ reactivities up to 45 s⁻¹, this upper limit being defined mainly by the dilution accuracy. The typical total uncertainty associated with the reactivity measurement at the centre of its dynamic range is 16 %, though this is dependent on ambient NO₂ levels. Results from the first successful deployment of the instrument at a forested mountain site with urban influence are shown and future developments outlined.
Large amounts of biogenic and anthropogenic trace gases are emitted annually into the atmosphere. Recent estimates (Guenther et al., 2012) suggest that about 1000 Tg of biogenic volatile organic compounds (bVOC), especially isoprene (contributing 50%) and monoterpenes (15%) are emitted annually by vegetation. The global burden of anthropogenic emission is dominated by CO₂, CO, N₂O, CH₄, SO₂, NO₂ and organic carbon, the latter contributing about 11 Tg (Huang et al., 2015). In particular, nitrogen oxides from combustion and microbial activity in soils have a major impact on the chemistry of the natural atmosphere (Crutzen, 1973). Most VOCs are oxidized efficiently in the Earth’s boundary layer, the oxidizing capacity of which represents 15% of that of the entire atmosphere (Lelieveld et al., 2016). Biogenic and anthropogenic VOCs have a significant impact on air quality and human health and knowing and understanding their lifetimes, which are determined by the oxidizing capacity of the atmosphere, is prerequisite to predicting future atmospheric composition and related climate phenomena (Lelieveld et al., 2008).

During daytime, photochemically formed OH radicals represent the dominant contribution to the oxidative capacity of the atmosphere. As OH levels are vastly reduced in the absence of sunlight, the NO₃ radical (formed by reaction of NO₂ with O₃, R1) is the major oxidizing agent at elevated NOₓ for many biogenic terpenoids and other unsaturated compounds at night-time (Wayne et al., 1991; Atkinson, 2000; Atkinson and Arey, 2003a, b; Brown and Stutz, 2012; Ng et al., 2016).

\[\text{NO}_2 + \text{O}_3 \rightarrow \text{NO}_3 + \text{O}_2 \] \hspace{1cm} \text{(R1)}

\[\text{NO}_3 \] reacts rapidly with NO (R2, rate constant 2.6×10^{-11} cm3 molecule$^{-1}$ s$^{-2}$ at 298 K (Atkinson et al., 2004)) and undergoes rapid photolysis (R5, R6) so that its lifetime is usually of the order of seconds during the day and its concentration too low for it to be considered an important oxidant.

\[\text{NO}_3 + \text{NO} \rightarrow 2 \text{NO}_2 \] \hspace{1cm} \text{(R2)}

\[\text{NO}_2 + \text{NO}_3 + \text{M} \rightarrow \text{N}_2\text{O}_5 + \text{M} \] \hspace{1cm} \text{(R3)}

\[\text{N}_2\text{O}_5 + \text{M} \rightarrow \text{NO}_3 + \text{NO}_2 + \text{M} \] \hspace{1cm} \text{(R4)}

\[\text{NO}_3 + h\nu \rightarrow \text{NO}_2 + \text{O} \] \hspace{1cm} \text{(R5)}

\[\text{NO}_3 + h\nu \rightarrow \text{NO} + \text{O}_2 \] \hspace{1cm} \text{(R6)}

\[\text{N}_2\text{O}_5 + \text{surface} \rightarrow \text{NO}_3^- \text{ (and/or CINO}_2) \] \hspace{1cm} \text{(R7)}

At night, NO₃ can react with NO₂ forming N₂O₅, which thermally decomposes to set up a thermal equilibrium between NO₂, NO₃ and N₂O₅ (R3, R4) with N₂O₅ formation favoured by lower temperatures. As both NO₃ and N₂O₅ are formed from NOₓ (NOₓ = NO + NO₂) the loss of either NO₃ via gas-phase losses or N₂O₅ via heterogeneous uptake to particles or deposition implies a reduction in NOₓ, and thus a reduction in the rate of photochemical O₃ formation (Dentener and Crutzen, 1993). In addition, heterogeneous loss of N₂O₅ can also result in release of CINO₂ from chloride containing particles (R7) (Osthoff et al., 2008; Thornton et al., 2010; Mielke et al., 2011; Phillips et al., 2012; Riedel et al., 2012). The main loss processes of NO₃ are summarised in Fig. 1.
In rural and forested areas reaction with biogenic VOCs can dominate the loss of NO₃ (Mogensen et al., 2015). Especially terpenoids like limonene \((k = 1.2 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}) \), α-pinene \((k = 6.2 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}) \) and isoprene \((k = 6.5 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}) \) have high rate constants for reaction with NO₃ (IUPAC, 2016; Ng et al., 2016). Under such conditions, when NOₓ levels are low, NO₃ mixing ratios may be sub-pptv and below the detection limit for most instruments (Rinne et al., 2012).

The reaction of NO₃ with traces gases containing unsaturated C=C bonds proceeds via addition to form nitroxy-alkyl radicals that undergo rapid reaction with O₂ to form nitroxy-alkyl peroxy radicals. The peroxy radicals react further (with HO₂, NO, NO₂ or NO₃) to form multi-functional organic nitrates, which can contribute to generation and growth of secondary organic aerosols (Fry et al., 2014; Ng et al., 2016) or be lost by deposition.

The role of NO₃ as an oxidizing agent may be assessed via its total reactivity (or inverse lifetime). Whereas for OH, experimental methods for measuring total reactivity in ambient air exist (Kovacs and Brune, 2001; Sinha et al., 2008), NO₃ reactivity has not yet been directly measured. Stationary-state approximations have often been used to calculate NO₃ lifetimes from its mixing ratio and production rate, the latter being given by: \(k_1 \left[\text{NO}_2 \right] \left[\text{O}_3 \right] \) (Heintz et al., 1996; Geyer and Platt, 2002; Brown et al., 2007a; Brown et al., 2007b; Brown et al., 2009; Sobanski et al., 2016b). Thus the stationary-state turnover lifetime, \(\tau_{ss} \), can be calculated according to expression 1.

\[
k_{ss} = \frac{1}{\tau_{ss}} = \frac{k_1 \left[\text{O}_2 \right] \left[\text{NO}_2 \right]}{k_{31} \left[\text{O}_3 \right] \left[\text{NO}_2 \right]} \quad (1)
\]

This method is applicable when the chemical lifetime of NO₃ is sufficiently short so that stationary-state can be achieved within transport time from emission to measurement location (Brown et al., 2003). Formally it is achieved when the production and loss of NO₃ and N₂O₅ are balanced (Brown et al., 2003; Crowley et al., 2011). The time to acquire stationary-state depends on production and loss rates for NO₃ and N₂O₅ and can take several hours. This approach can break down under conditions of moderate to high NO₂ levels, strong sinks, low temperatures, or very clean air masses in which the sinks for NO₃ and N₂O₅ become small (Brown et al., 2003). Indeed, Sobanski et al. (2016b) observed much lower stationary-state loss rates compared to those calculated from measured VOC mixing ratios during the PARADE 2011 campaign and concluded that this was mainly the result of sampling from a low lying residual layer with VOC emissions that were too close for NO₃ concentrations to achieve stationary-state. They also considered the possibility that NO₃ may be formed by the oxidation of NO₂ by Criegee Intermediates, which would bias calculations of its reactivity.

Summarizing, NO₃ reactivity with respect to gas-phase losses is a direct indication of night-time oxidation rates of VOCs, with direct impacts on NOₓ levels by forming long-lived reservoir species (alkyl nitrates) some of which will partition to the particle phase. Via modification of N₂O₅ concentrations (formed in an association reaction of NO₃ with NO₂, R3), the NO₃ reactivity indirectly controls heterogeneous NOₓ losses and ClNO₂ formation rates.

In this paper we describe a newly developed instrument that enables point measurements of NO₃ reactivity in ambient air. After introducing the methodology in section 2, we show the results of extensive laboratory characterization of the
instrument along with discussion of the uncertainties associated with those measurements in section 3 to 5. In section 6 we present a dataset of ambient NO$_3$ reactivity obtained at a forested / urban location in south-western Germany.

2 Methodology

Our experiments to measure NO$_3$ reactivity involve comparison of loss rates of synthetically generated NO$_3$ in zero-air and in ambient air introduced into a flow-tube reactor. In zero-air, the loss of NO$_3$ is due to its reaction with NO$_2$ (present as a necessary component in the generation of NO$_3$, see below) and losses on surfaces of the flow-tube. When zero-air is replaced by ambient air, NO$_3$ is additionally removed by reaction with reactive gases present and its mixing ratio reduced accordingly. An analysis of the change in signal for a fixed reaction time enables the NO$_3$ reactivity to be derived once certain corrections have been applied (see below).

Figure 2 displays a schematic diagram of the experimental set-up. The three central components are a dark reactor for generation of NO$_3$, the flow-tube in which NO$_3$ reacts with trace gases in ambient air samples and the detection system for NO$_3$.

2.1 Generation of NO$_3$

Many laboratory studies of NO$_3$ kinetics have used the thermal decomposition of N$_2$O$_5$ as NO$_3$ source (R4) (Wayne et al., 1991). The generation of NO$_3$ from gas-phase N$_2$O$_5$ eluted from samples of crystalline N$_2$O$_5$ (at -80 °C) was found to be insufficiently stable for the present application and is also difficult (though not impossible, see e.g. (Fuchs et al., 2008; Wagner et al., 2011)) to use during field campaigns where adequate laboratory facilities for the safe generation and purification of N$_2$O$_5$ are frequently not available. In addition, this method of NO$_3$ generation of NO$_3$ from N$_2$O$_5$ was also accompanied by an NO$_2$ impurity of several parts per billion (ppbv).

We therefore generate NO$_3$ and N$_2$O$_5$ in situ, via the oxidation of NO$_2$ by O$_3$ (R1, R3). For this purpose, 400 standard cm3 min$^{-1}$ (scm) of synthetic air from a zero-air generator (Fuhr Cap 180) are passed over a Hg lamp (low-pressure, Penray type) at a pressure of 1200 Torr. The photo-dissociation of O$_2$ at 184.95 nm results in formation of oxygen atoms that recombine with O$_2$ to form ≈ 400 ppbv O$_3$. The O$_3$ / air flow is then mixed with NO$_2$ in synthetic air (0.93 ppmv, 1-10 scm) and directed into a temperature stabilized (30 °C), darkened, FEP coated reactor (length 70 cm, diameter 6 cm) also at a pressure of 1200 Torr. The reactor is darkened to prevent the photolysis of NO$_3$ by room lights. Operation at above-ambient pressure extends the reaction time for a given flow rate, thus optimising the conversion of NO$_2$ to NO$_3$ via the reaction between NO$_2$ and O$_3$, which has a low rate constant of 4.05 × 10$^{-17}$ cm3 molecule$^{-1}$ s$^{-1}$ at 30 °C. The use of high pressures also optimises the formation of N$_2$O$_5$ in the termolecular reaction R3, and reduces the rate of diffusion and loss of NO$_3$ to the walls of the reactor. A high pressure in the darkened reactor also has the advantage of decoupling it from fluctuations in ambient pressure which influence the formation of N$_2$O$_5$. Heating the reactor to above room-temperature is carried out to stabilise the formation of N$_2$O$_5$, which otherwise shows strong fluctuations owing to variations in laboratory temperature, typically about
3-5 degrees within the course of a day or night. The approximate reaction time for the stepwise conversion of NO₂ to N₂O₅ in the darkened reactor is \(\approx 5 \) min. Based on the O₃ concentration and the rate constant for R1, the initial conversion of NO₂ to NO₃ is about 15%.

The gas exiting the darkened reactor passes through a pin-hole (Ø \(\approx 250 \mu m \)) to reduce the pressure to roughly ambient level and then enters a \(\approx 30 \) cm long piece of \(\frac{1}{4} \) inch (\(\approx 6.4 \) mm) PFA tubing (residence time \(\approx 0.5 \) s) which is heated to 140 °C in order to thermally decompose N₂O₅ to NO₃. Calculations using the thermal decomposition rate constant for N₂O₅ (lifetime = 0.001 s at 140°C) indicate that after \(\approx 0.1 \) s the N₂O₅ is stoichiometrically converted to NO₃. The temperature is measured on the outside of the PFA tubing and does not necessarily reflect the temperature of the gas flowing through it. The value of 140 °C is chosen based on a series of experiments in which the tubing temperature was varied and the yield of NO₃ monitored. A PFA T-piece located immediately behind the heated tubing is used to add a 2900 sccm flow of either zero- or ambient-air to the synthetic NO₃ sample. After this dilution step the air contains \(\approx 50 \) pptv NO₃, \(\approx 1 \) ppbv NO₂ and \(\approx 50 \) ppbv O₃. As described later, keeping NO₂ and O₃ levels as low as possible has important consequences for the data analysis. Low levels of NO₃ also help to ensure that the addition of NO₃ does not significantly change the reactivity of the air, i.e. by removing a large fraction of the reactive trace gases. We later assess the potential change in air-mass reactivity (i.e. by depletion of reactive trace gases of formation of reactive radicals) following addition of NO₃ at these levels to ambient air.

As described below, the present instrument is a modification of one designed to measure ambient mixing ratios of NO₃ and N₂O₅ and is equipped with a second cavity connected to a heated inlet that measures the sum of NO₃ and N₂O₅. Experiments in which both cavities were used to analyze the flow out of the heated piping indicated that there was no residual N₂O₅.

2.2 Detection of NO₃ using cavity-ring-down spectroscopy

For detection of the NO₃ radical we used Cavity Ring-Down Spectroscopy (CRDS), a sensitive technique for measurements of atmospheric trace gases and often used for measurement of ambient NO₃ (Brown et al., 2002). In essence, CRDS is an extinction measurement in a closed optical resonator (cavity) where light is trapped between mirrors with high reflectivity to generate a very long absorption path. Ring-down refers to the decay of light intensity (monitored behind the cavity exit mirror) and the general expression to derive the concentration of an absorbing or scattering gas is given by (Berden et al., 2000):

\[
[X] = \frac{1}{c\sigma_{(X\lambda)}} \left(\frac{1}{\tau_x} - \frac{1}{\tau_0} \right)
\]

(2)

Where \(\tau_0 \) and \(\tau_x \) correspond to decay constants in the absence and presence of an absorbing or scattering trace gas X, respectively and \(\sigma_{(X\lambda)} \) is the absorption cross-section / scattering coefficient of X at wavelength \(\lambda \).

The instrument used is a two-channel CRDS that was previously used to measure ambient levels of N₂O₅ and NO₃ (Schuster et al., 2009; Crowley et al., 2010). Important modifications to the previous set-up include use of FEP coated glass cavities of equivalent size and fibre-optics for the coupling of the laser to the cavity. The thermal dissociation cavity previously used for detection of atmospheric N₂O₅ is not necessary for the measurement of NO₃ lifetimes but was used for calibration and
characterization experiments. Only the central features and important modifications compared to the prototype described in Schuster et al., (2009) are described in detail here.

The light source is a 625 Hz, square-wave modulated, 100 mW laser-diode located in a Thor Labs TCLDM9 housing and thermally stabilized at 36°C using a Thor Labs ITC 502 Laser-Diode Combi Controller to produce light at 661.95 nm (0.5 nm full width at half maximum) and therefore close to the NO₃ absorption maximum. The effective cross section of NO₃ was calculated as 2.09×10^{-17} cm2 molecule$^{-1}$ by convoluting the temperature dependent NO₃ absorption spectrum (Orphal et al., 2003; Osthoff et al., 2007) with the laser-diode emission spectrum. Coupling between the laser-diode and the cavities is achieved by using either optical fibres (0.22 NA, 50 µm core, 400-2400 nm) for measuring NO₃ reactivity or using fibre-optics with a beam splitter (Thor Labs FCMM50-50A-FC, 50:50 ratio) in order to operate both cavities. The beam was collimated (Thor Labs FiberPort Collimator PAF-X-18-PC-A) and directed through an optical isolator (Thorlabs IO-3D-660-VLP), focused by a lens (Thorlabs A230TM-A) into the optical-fibre and then collimated again to a beam diameter of about 6 mm before entering the cavity.

The NO₃ cavity (Teflon-coated glass (DuPont, FEP, TE 9568), length 70 cm, volume 79 cm3) was operated at room temperature, while the N$_2$O$_5$ cavity was operated at 80°C with a pre-cavity section heated to 85°C in order to convert N$_2$O$_5$ to NO₃. The NO$_3$-cavity was connected to the flow-tube using 1/8” (≈ 3.2 mm) PFA tubing that lined the 1/4” (≈ 6.4 mm) injector. The use of small diameter tubing results in short transport times between the flow-tube and CRDS and also induces a pressure drop of 133 mbar, so that the pressure in the cavity was 880 mbar. Gases entered the middle of the cavity via a T-piece and were pumped from the ends via a flow controller into the exhaust. The flow rates in both cavities were 3000 cm3 (STP) min$^{-1}$ (sccm) resulting in a residence time of approximately 1.6 s as calculated from the volume flow. Gas entering the CRDS detector was always passed through a 2 µm membrane filter (Pall Teflo) to remove particles. Light exiting the cavities through the rear mirror was detected by a photomultiplier (Hamamatsu E717-500) which was screened by a 662 nm interference filter. The pre-amplified PMT signal was digitized and averaged with a 10 MHz, 12 bit USB scope (Picoscope 3424) which was triggered at the laser modulation frequency of 625 Hz.

The ring-down constant in the absence of NO₃ was obtained by adding NO (1-3 sccm of a 100 ppmv mixture NO in N₂) every 40 points of measurement for approximately 15 s. Titration with NO took place at the inlet of the T-shaped glass cavity giving the gas mixture sufficient time to react with NO₃. The L/d ratio (the ratio of the distance between the cavity mirrors (L) and the length of the cavity that is filled by absorber (d)) was determined as described previously (Schuster et al., 2009; Crowley et al., 2010) and was 1.01 ±0.03. Values of τ_0 in dry zero-air at 760 Torr were usually between 140 and 160 µs indicating optical path lengths of \approx 42-48 km. When operated at a flow of 3000 sccm, the noise levels on the NO₃ signal are such that the precision (3s integration interval) is better than 1 pptv. As we describe later, the NO₃ reactivity is derived from measurements of the relative change in the NO₃ mixing ratio, so that the precision rather than total uncertainty in the NO₃ mixing ratio defines the accuracy of the reactivity measurement.
2.3 Flow-tube for NO₃ reactivity measurement

The flow-tube, thermostatted to 20 °C by flowing water through an outer jacket, is an FEP-coated glass tube of length 50 cm and internal diameter 4 cm. Gas enters the flow-tube at one end via a conical section with a 3/8 inch (≈ 9.5 mm) glass fitting through which ¼ inch (≈ 6.4 mm) PFA tubing could be inserted. The total flow through the flow-tube was 3300 sccm, consisting of 400 sccm from the darkened reactor and 2900 sccm zero-air / ambient air. The flow and pressures indicated above, result in a Reynolds number of ≈ 123 (i.e. laminar flow) in the cylindrical part of the flow-tube, but with an entrance length (Le) to acquire laminar flow of 27 cm indicating that the flow-tube operates in a mixed turbulent / laminar flow regime.

\[Le = 0.112 \rho Re \]

Gases exit the flow-tube via a length of 1/8 inch PFA tubing supported in an axially centred stainless-steel tube (length 50 cm, diameter ¼ inch) which could be translated along the major flow-tube axis thus changing the contact (reaction) time between NO₃ and any reactive species or the flow-tube wall. In principal, this enables the dynamic range of the measurement to be adjusted (i.e. long contact times for low reactivity, short contact times for high reactivity) though we found that reactivity-dependent dilution of the ambient air was a better method to extend the dynamic range to high reactivities as very short reaction times were not possible due to a finite residence time in the CRDS detection system and also due to mixing effects in the flow-tube. In order to prevent formation of a “dead volume” at the back of the flow-tube beyond the tip of the outlet, 400 sccm were removed via a critical orifice to the exhaust pump. During measurement of NO₃ reactivity the extraction point was usually set for a reaction time of about 10.5 s, which was determined as described below.

As described later, to derive the NO₃ reactivity we compare its concentration in zero-air to that in ambient air samples. We found that when switching between sampling ambient air and dry, zero-air, the resulting change in relative humidity caused an abrupt change in NO₃ which then slowly recovered towards its original value. Measurement of the wall loss rate of NO₃ in dry and humidified zero-air by moving the injector (see below) revealed no substantial difference and we conclude that the change in NO₃ is due to wall loss at the point of mixing of NO₃ flows and the zero-air flow, which is very turbulent. In order to eliminate data loss while waiting for signals to stabilise following zeroing, we humidify the zero-air to the same absolute humidity (±2 %) as ambient. To do this, the ambient relative humidity was monitored by passing 100 sccm air over a sensor that recorded both temperature and relative humidity. The zero-air was humidified by directing a variable fraction of the (constant) total flow through a 2 l gas wash-bottle filled with HPLC grade water. The relative humidity of the resulting mixture was matched to ambient levels by dynamic adjustment of the fractional flow passing through the wash-bottle. The zero-air used for purging the mirrors as well that used for NO₃ generation was not humidified.

In order to ensure that air from the zero-air generator was free of reactive gases that survived the catalytic purification process, we compared it to hydrocarbon-free, bottled synthetic air (Westfalen). No change in the concentration of [NO₃] could be observed when switching between zero-air and bottled air, indicating that the zero-air generator was suitable.
However, poisoning of the catalyst of the zero-air generator by amines, sulphides or thiols or contamination of the filters could potentially become problematic when using compressed, highly polluted ambient air.

2.3.1 Derivation of the effective reaction time and wall loss rate constant for NO₃

In flow-tubes where radial, diffusive mixing of gases is rapid (i.e. at low pressures of He and “plug-flow” conditions), the effective reaction time can be close to that calculated from the volumetric flow rate once axial diffusion is accounted for (Howard, 1979). At higher pressures and laminar flow, reactions times are defined by the parabolic velocity distribution and extent of radial mixing whereas high pressure flow-tubes operated under turbulent conditions (Reynold numbers > 3000) plug-flow can be achieved (Seeley et al., 1993; Donahue et al., 1996). According to the calculations of Reynolds numbers outlined above, our flow-tube is not operated in either a pure laminar or turbulent regime, which can make accurate calculation of the reaction time difficult. Using the volumetric flow rate and flow-tube diameter, we calculate an average, linear velocity of the gas of 4.78 cm s⁻¹ at 760 Torr and 298 K in the cylindrical section of the flow-tube. This enables us to calculate the injector position dependent reaction time in the flow-tube, which for 45 cm is 9.5 s. This should be regarded as an initial estimate of the true reaction time as it does not consider the non cylindrical section of the flow-tube (2.5 % of total volume), the radial distribution of velocities in the flow-tube or mixing effects. A further additional 1.6 s must be added to this to take the average reaction time in the cavity into account (calculated from the cavity volume and the flowrate) resulting in an approximate, total reaction time of 11.1 s.

A further method to derive an “effective” or averaged reaction time is to add a short pulse of gas to the flow-tube and monitor its arrival time at the detector. However, as NO₃ cannot be easily stored, we instead add a pulse of a reactant that removes NO₃. A syringe was therefore used to add a short pulse (0.1 cm³ in < 0.5 s) of NO diluted in N₂ (0.22 ppbv) to the flow-tube at the T-piece where the NO₃ source and zero-air are mixed.

The resultant depletion in the NO₃ signal (measured at a time resolution of 0.35 s) displayed an inverted Gaussian form with an elongated flank after the minimum (Fig. 3) which can be attributed to non-isothermal effects, secondary flows and recirculation processes in the flow-tube (Huang et al., 2016) which require fluid dynamics simulations to be fully characterised. The average reaction time, \(t \), can however be derived from:

\[
 t = \frac{\sum I_j t_j}{\sum I_j}
\]

where \(I_j \) is the signal recorded at each time step \(t_j \).

In total, 25 experiments were conducted, resulting in an effective reaction time of 11.4 ± 0.5 s determined via expression (4). The two methods outlined above thus provide approximate values for the reaction time which are in good agreement (< 3 % deviation).

As the reaction time is a central parameter for calculating the NO₃ reactivity, a third method was employed, in which a known amount of NO was added at the usual mixing point and the depletion in NO₃ observed. As the rate constant for reaction of NO with NO₃ is known with an uncertainty (at room temperature) of 13 %, this should enable derivation of an
effective reaction time that also takes all mixing effects (both in the flow-tube and cavity) into account. In a series of experiments, known amounts NO were added to the 2900 sccm flow of zero-air (via a calibrated mass flow controller) at the usual mixing point. In the absence of other processes which remove or form NO₃, its change in concentration upon adding NO is described by:

\[
[\text{NO}_3]_t = [\text{NO}_3]_0 \exp^{-(k_2[\text{NO}]+k_w+k_3[\text{NO}_2])t}
\]

(5)

Where \([\text{NO}_3]_0\) and \([\text{NO}_3]_t\) are the concentrations of NO₃ before and after addition of NO, respectively. \(k_2\) and \(k_3\) are the rate constants for reaction of NO₃ with NO and NO₂, respectively at the flow-tube / cavity temperature, \(k_w\) is the rate constant (s⁻¹) for loss of NO₃ at the flow-tube walls and \(t\) is the desired parameter. Rearranging, we get a simple expression (6), which shows that a plot of ln([NO₃]ₜ) versus [NO] should yield a slope of \(k_2t\), from which \(t\) can be derived using an evaluated and recommended value of \(k_2\) (Atkinson et al., 2004). Once corrected for the contribution from \(k_5[\text{NO}_2]\), the intercept should, in principal, give a value of \(k_w\).

\[
\ln\frac{[\text{NO}_3]_0}{[\text{NO}_3]_t} = k_2[\text{NO}]t + k_w + k_3[\text{NO}_2]
\]

(6)

A plot of \([\text{NO}_3]_t\) versus [NO] is displayed in Fig. 4a for three different amounts of added NO₂. Although the curve follows roughly exponential behaviour as expected, the slopes and thus the value of \(t\) obtained was found to depend on the initial NO₂ concentration, with values of 5.7, 5.1 and 4.5 s obtained for NO₂ mixing ratios of 2.94, 5.88 and 8.82 ppbv, respectively. This indicates that the kinetics of NO₃ formation and loss are more complex than defined by expression (6) and the relative rates of reaction of NO₃ with NO (R2) and NO₂ (R3) and its formation via N₂O₅ decomposition (R4) and reaction of O₃ with NO₂ (R1) in the flow-tube all impact on the NO₃ mixing ratio. In Fig. 4b we display the results of a similar experiment in which NO₂ as added. In this case, there is obvious curvature in the plot of \([\text{NO}_3]_t\) versus \([\text{NO}_2]\), which is not predicted by expression (5). The decomposition of N₂O₅ formed by reaction R3 as well as oxidation of NO₂ by O₃ (R1, see section 3.1) both lead to the formation of NO₃ and are the causes of this behaviour, especially at high \([\text{NO}_2]\) and low \([\text{NO}]\).

At the flow-tube and cavity temperature (circa 298 K), the rate constant for decomposition of N₂O₅ (\(k_4\)) is 4.4x10⁻² s⁻¹ (Atkinson et al., 2004).

Extraction of the reaction time thus required numerical simulation of the data obtained by adding various amounts of NO, to the flow-tube in the presence of different NO₃ and NO₂ concentrations. The impact of reactions R2, R3 and R4 was assessed by numerical simulations using FACSIMILE (Curtis and Sweetenham, 1987) and considering the reactions listed in Table 1. The input parameters for the simulations were the concentrations of NO, NO₂ and O₃ and the rate constants, which were taken from IUPAC recommendations (Atkinson et al., 2004). The total reaction time (\(t\)) and the wall-loss rate constant for NO₃ (\(k_w\)) were adjusted until each of the six datasets could be reproduced with a single value for each parameter. The initial concentration of \([\text{NO}_3]_0\), was allowed to float until best agreement was achieved. This way, the reaction time was determined to be 10.5 s, which is in good agreement with that derived by pulsed addition of NO. As our reactivity derivation relies on the change in NO₃ signal upon adding a reactant to the flow-tube, we consider the value of 10.5 s, which takes mixing,
diffusion etc. into account to be the most appropriate value but assign an uncertainty (± 1 s) that overlaps with the other methods. The wall loss rate of NO₃ (which is independent of the NO and NO₂ concentrations) was found to be 4 × 10⁻³ s⁻¹.

For analysis of ambient reactivity we use a reaction time of 10.5 s as derived from the addition of NO. This means that our ambient reactivities are directly tied to the rate constant for reaction between NO₃ and NO. As described later, during ambient measurements we periodically add a known amount of NO to the zero-air to monitor a known reactivity under real operating conditions.

Figures 5a and 5b show the correlation between simulated and measured NO₃ concentrations in these experiments. In both cases the slope is close to unity (0.97-1.02) with an intercept close to zero. A set of similar experiments performed at 30 % and 80 % humidity also showed excellent agreement using the same values of \(t \) and \(k_w \). We conclude that the behaviour of NO₃ in this system can be very accurately predicted by numerical simulations using a simple reaction scheme under a variety of conditions (initial NO₃, NO and NO₂ varied), giving us confidence in our ability to extract loss rates for NO₃ in ambient air.

When gas-phase reactivity is low, a substantial fraction of NO₃ may be lost via collisions with the walls rather than due to reactive gases. For this reason, we re-measured the value of \(k_w \) obtained above in a further set of experiments in which the NO₃ concentration was measured as a function of injector position (contact time in the flow-tube) at a constant initial mixing ratio of NO₃ and NO₂ and in the absence of NO. For this we calculate the reaction time for each of the three injector positions from pulsed addition of NO as described above, but normalized to the reaction time derived from addition of NO with numerical simulation. The results of such an experiment are displayed in Fig. 6 and we draw attention to the fact that, even at maximum reaction time (10.5 s), the change in the NO₃ concentration is only about 10 %. This reflects the low efficiency of reaction of NO₃ with the FEP coated glass walls. Similar experiments performed before and after the NOTOMO campaign (see below) indicated that the FEP coating did not degrade significantly following sampling of filtered, ambient air. The numerical simulation was initialised with the same set of rate parameters described above, a fixed NO₂ concentration and only \(k_w \) and the initial NO₃ concentration were varied. The best fit was obtained when \(k_w \) was 4 × 10⁻³ s⁻¹, in agreement with the simulations at fixed time and variable NO and NO₂. Using expression (7) where \(r \) is the flow-tube radius, \(\bar{c} \) the mean molecular speed and which assumes laminar flow and no diffusive limitation to uptake, this value of \(k_w \) can be converted to an approximate uptake coefficient for NO₃ to the FEP-coated tube of \(\approx 5 \times 10^{-7} \).

\[
\gamma = \frac{2r k_w}{\bar{c}}
\]

\((7) \)

3 Data analysis and derivation of NO₃ reactivity

We first consider the passage of NO₃ through the flow-tube in a flow of zero-air. If NO₃ is lost in one or more pseudo-first-order processes, its decay should be exponential and its concentration, \([\text{NO₃}]_{TA}\) after a reaction time \(t \), is given by expression (8).
\[[\text{NO}_3]_t^{ZA} = [\text{NO}_3]_0^{ZA} \exp(-k_{ZA}t) \]

(8)

Where the superscript “ZA” refers to use of zero-air. As NO\textsubscript{3} is lost only via reaction with NO\textsubscript{2} and to the wall, \(k_{ZA} = k_{wall} + k_{NO2} \) where \(k_w \) is the first-order loss rate constant for wall-loss and \(k_{NO2} \) is the first-order loss rate constant for reaction with NO\textsubscript{2} and is equal to \(k_3[\text{NO}_2] \). When zero-air is switched for ambient air containing reactive trace gases (RTG), we have:

\[[\text{NO}_3]_t^{Amb} = [\text{NO}_3]_0^{Amb} \exp(-k_{Amb}t) \]

(9)

where \(k_{Amb} = k_w + k_{NO2} + k_{RTG} \) and \(k_{RTG} \) is the first-order loss rate constant for reaction of NO\textsubscript{3} with trace gases present in ambient air other than NO\textsubscript{2}.

If \([\text{NO}_3]_0^{ZA} \) and \([\text{NO}_3]_0^{Amb} \) are equivalent, expression 10 is obtained.

\[\frac{[\text{NO}_3]_t^{ZA} \exp(-k_{ZA}t)}{[\text{NO}_3]_t^{Amb} \exp(-k_{Amb}t)} = \]

(10)

Rearranging and substituting for \(k_{ZA} \) and \(k_{Amb} \) leads to

\[k_{RTG} = \frac{\ln \left(\frac{[\text{NO}_3]_t^{ZA}}{[\text{NO}_3]_t^{Amb}} \right)}{t} = \frac{1}{\tau} \]

(11)

Where \(\tau \) is the NO\textsubscript{3} lifetime. In principal, it should thus be possible to calculate the reactivity of NO\textsubscript{3} in ambient air by measuring \([\text{NO}_3]_t^{ZA} \), \([\text{NO}_3]_t^{Amb} \) and knowing the reaction time \(t \). Later we discuss the applicability of this expression and show that corrections are necessary to take the re-formation of NO\textsubscript{3} into account, especially when dealing with air-masses with high NO\textsubscript{2} content. This is similar to the laboratory experiments described above and required numerical simulation, which we present below.

The concentration of NO\textsubscript{3} in zero-air measured when the injector is positioned for maximum reaction time, \([\text{NO}_3]_t^{ZA} \), was measured by flushing the inlet with 3000 sccm zero-air creating an overflow of \(\approx 100 \) sccm. When switching to ambient measurements, the zero-air overflow was redirected via a flow controller, F\textsubscript{3}, that connected the zero-air overflow line to the exhaust and which was set to 3500 sccm. This setup has the advantage of enabling dynamic dilution of ambient air. If the reactivity is so high that the NO\textsubscript{3} levels approached the detection limit, F\textsubscript{3} does not withdraw the entire 3500 sccm overflow but allows e.g. 2000 sccm to be added to the inlet, resulting in sampling 900 sccm of ambient air plus 2000 sccm of zero-air, a dilution factor of 2900/900 which is slightly increased by the 400 sccm flow from the darkened reactor. A five point dynamic dilution with zero-air is implemented in the software, which changes the set point for F\textsubscript{3} and dilutes the ambient air with zero-air if \([\text{NO}_3]_t^{Amb} \) decreases below 10 pptv for an average time period of 30 s. Conversely, the dilution can be decreased again if \([\text{NO}_3]_t^{Amb} \) becomes \(\geq [\text{NO}_3]_t^{ZA} - 10 \) ppt. Dilution factors (\(D_i \)) were determined using a Gilibrator flow meter (Gilian Gilibrator-2) and were: \(D_1=1.14 \) for the measurement of pure ambient air (here the small dilution effect is caused by the 400 sccm zero-air used in the production of NO\textsubscript{3}) \), \(D_2=1.74 \), \(D_3=3.71 \), \(D_4=8.98 \), \(D_5=14.07 \) when diluting ambient air. With increasing dilution, errors in the measurement will increase as well (see later).

The analytical expression given above to derive the NO\textsubscript{3} reactivity is an ideal case in which NO\textsubscript{3} is lost by a number of first-order processes and is not formed in the flow-tube to a significant extent. However, as we already demonstrated in the
laboratory experiments to examine the effects of varying NO, NO₂ and NO₃ concentrations, the formation of N₂O₅ in the
reaction of NO₃ with NO₂ (R3) and its thermal decomposition back to NO₃ can impact on the NO₃ concentration as NO₂ is
present both in the mixture used to generate N₂O₅ and NO₃ and also in ambient air. While the formation of N₂O₅ from NO₂
and NO₃ (R2) is, to a good approximation, independent of temperature between about 280 and 305 K, the rate constant for
thermal decomposition of N₂O₅ (R3) varies by a factor of 26 over the same temperature range. The simple, analytical
approach outlined above thus fails at temperatures where the decomposition of N₂O₅ is important and when sufficient NO₂ is
present to account for a significant fraction of the loss of NO₃. This is illustrated in Fig. 7a, in which simulations of the NO₃
concentration at a reaction time of 10.5 s and at different temperatures and amounts of NO₂ (as reactant) are displayed and
compared with the simple exponential behaviour (black data points) calculated from expression (11). The simulations show
that the dependence of the NO₃ concentration on NO₂ is non-exponential, indicating that re-generation of NO₃ from the N₂O₅
formed is significant, especially at higher temperatures. Figure 7b plots the ratio of the true reactivity (i.e. that used as input
into the numerical simulation) versus that obtained by analyzing the simultaneous change in NO₃ concentration using
expression (11). It is evident that the use of this expression generally results in underestimation of the true reactivity due to
the formation and decomposition of N₂O₅. The bias will be largest when sampling polluted air where the reactivity has a
large component due to NO₂ and small under conditions of low NO₂ and high \(k_{RTG} \) typical for remote, forested areas.
However as previously mentioned the decomposition of N₂O₅ is strongly temperature dependent so that the bias will increase
with rising temperature and decrease with sinking flow-tube temperature.

Apart from the formation and thermal dissociation of N₂O₅, the reaction of NO₂ with O₃ may, under some conditions,
represent a further potential source of NO₃ in the flow-tube despite the low rate constant for (R1). Due to the in-situ method
of production of N₂O₅ and NO₃ in the dark reactor, NO₂ (0.6-3 ppbv) and O₃ (40-50 ppbv) are always present in the flow-
tube. NO₃ generated in the flow-tube was therefore simulated for different amounts of O₃ and NO₂ corresponding to the
minimum and maximum mixing ratios used in our experiments. Figure 8 indicates that with 50 ppbv of O₃ and 2 ppbv NO₂,
< 0.5 pptv of NO₃ is formed in the 10.5 s available for reaction in the flow-tube, which would not strongly impact on the
results if the analytical expressions above were used to derive the NO₃ reactivity. Under highly polluted conditions (e.g. 100
ppbv O₃ and 20 ppbv NO₂) the effect is however measureable (> 2 pptv).

The discussion above indicates that the use of expression (11) can, under certain circumstances (e.g. low NOₓ, high NO₃
reactivity to VOCs) give a reasonable representation of the NO₃ reactivity. However, in order to be able to derive NO₃
reactivities from any air mass we prefer to use numerical simulation take NO₃ reformation into account and enable extraction
of accurate values in any conditions.

3.1 Numerical simulations for extraction of ambient reactivity

In this section we outline the experimental procedure and the associated data analysis for extracting the NO₃ reactivity from
an ambient dataset as exemplified by the data shown in Fig. 9. This data covers a 1 hour period in which several phases of
inlet-overfilling with humidified zero-air and titration with NO are apparent as are periods of mixing NO₃ with ambient air.
The dataset has already been corrected for baseline drift in the NO₃ zero during titration, hence each titration-zero is scattered around 0 pptv NO₃. The periods marked “ZA” (zero-air) were used to extract the NO₃ concentration after a residence time of 10.5 s in flow-tube in the absence of ambient reactive trace gases. The data show that a plateau in the NO₃ signal with zero-air is observed after about 2-3 titration cycles are complete, which is the result of slow flushing through the inlet of reactive gases, which have extended surface residence times on the inlet material and fittings. Once a stable signal is acquired, [NO₃]_{ZA}^{t=10.5} can be taken as an average value for each 300 s zero-air phase. These values are then used to calculate the initial NO₃ concentration [NO₃]_{0}^{ZA}, i.e. before NO₃ enters the flow-tube. This was done in an iterative procedure using numerical simulation with FACSIMILE embedded in a separate program. Input values are the O₃ and NO₂ concentration (from the darkened reactor), a first estimate for [NO₃]_{ZA}^{t=0} and the rate coefficients for the NO₃ reactions listed in Table 1. At the end of the simulation (a few seconds of computing time) the simulated and measured values of [NO₃]_{ZA}^{t=10.5} are compared and the ratio used to adjust the next input value for [NO₃]_{ZA}^{t=0}. The iteration continued until convergence was reached. Convergence was considered satisfactory when the deviation between measured and simulated values of [NO₃]_{ZA}^{t=10.5} was less ≤1 %. This usually took only 5 simulations per data point as the initial value for each new time point was chosen to be the final value for the preceding time point. Ideally, [NO₃]_{ZA}^{t=0} should be constant over long periods of time. In fact, deviations of several pptv, especially during field measurements, were observed over periods of hours and so values of [NO₃]_{ZA}^{t=0} were linearly interpolated to each time point in which ambient reactivity was recorded.

Once initial NO₃ concentrations had thus been obtained a new set of simulations was started to simulate the measured values of [NO₃]_{Amb}^{t=10.5}. In this case, the simulation was initialized with the values of [NO₃]_{t=10.5}^{ZA} obtained as described above and the total NO₂ concentration and O₃ concentrations, which contained a constant contribution from the dark-reactor and a variable concentration from ambient NO₂ and O₃ once corrected by the dilution factor (see above). An initial estimate of the total NO₃ reactivity, k_{RTG}, was made and the simulated value of [NO₃]_{Amb}^{t=10.5} compared to that measured. The simulation was iterated, with incremental adjustment of k_{RTG} until agreement between simulation was ≤1 %. For ambient datasets, in which the reactivity can be highly variable this sometimes took several iterations, though as each simulation took less than a second this is not a particularly time consuming procedure.

4 Reactivity of an isoprene standard.

To validate our experimental and analytical procedure, we performed reactivity measurements on a bottled isoprene standard (0.933 ± 0.09 ppmv, Westfalen), diluted in zero-air. Isoprene was chosen as it is an important biogenic reactant for NO₃ in the troposphere and also because the rate coefficient, k_{isoprene}, for its reaction with NO₃ has been studied on many occasions (Atkinson et al., 2006; IUPAC, 2016) and therefore has a low associated uncertainty (k_{isoprene} = 6.5 ± 0.15 x 10^{-13} cm³ molecule⁻¹ s⁻¹ at 298 K).
Experiments were carried out at various isoprene and NO₂ mixing ratios and the results are summarized in Fig. 10, which indicates excellent agreement between the measured reactivity and that calculated from the isoprene mixing ratio and rate coefficient, the slope of an unweighted fit being 1.00 ± 0.03. The error bars on the calculated reactivity represent total uncertainty in the isoprene and NO₂ mixing ratio, the reaction time and the rate coefficient. These results confirm that the instrument and data analysis procedure measure accurate values of NO₃ reactivity in the presence of NO₂ and organic reactants.

5 Detection Limit, dynamic range and overall uncertainty

While the overall uncertainty associated with absolute NO₃ concentration measurement are influenced by factors such as uncertainty in the cross-section as well as in the measurement of the laser emission spectrum the fractional change in concentration used to derive the NO₃ reactivity is not impacted. The detection limit for measuring NO₃ reactivity is defined by the minimal detectable change (MDCNO₃) in the NO₃ mixing ratio. This depends on noise levels and drift in ring-down-time, i.e. on the precision of the NO₃ signal and also on the stability of the synthetically generated NO₃. The instrumental noise on the NO₃ signal was reduced by averaging over ≈ 3 s per data-point (≈ 1800 ring-down-events) to give a noise limited detection limit (1 σ) of ~ 0.2 pptv. Precision is limited by the stability of the CRDS setup where changes in the mirror reflectivity induced by thermal or mechanical stress can lead to a drift in the ring-down time. The precision can be estimated from the standard deviation of the signal from one zeroing period to the next over the measurement period. Under typical laboratory conditions this was normally ≈ 0.7 pptv.

Since [NO₃]₀ZA is interpolated onto the measured [NO₃]Amb time series to calculate the reactivity, the stability of the NO₃ source is of great importance. Changes in the amount of synthetically generated NO₃ are caused by fluctuations in the temperature or pressure of the dark-reactor, the flow of NO₂ and changes in the intensity of light from the O₃ generator. In general, the poorer the stability of the NO₃ source chemistry, the more frequently the NO₃ mixing ratio in zero-air has to be measured. In laboratory conditions, changes of ±1 pptv within one hour were typical, making [NO₃]ZA measurements every 1200 s more than sufficient. In field conditions, where the instrument housing may be subject to larger temperature fluctuations, more frequent determination of [NO₃]ZA may be necessary. The NO₃ source stability was obtained from the standard deviation of the averaged [NO₃]ZA concentrations and propagating this with the standard deviation of two consecutive [NO₃]ZA measurements, for which typical values in laboratory conditions were ≈ 1 ppt. To define an overall, minimal detectable change in NO₃ (MDCNO₃), the noise and drift limited precision was combined with the NO₃ source stability to result in MDCNO₃ = 2.5 pptv.

An MDCNO₃ of 2.5 pptv results in a lower limit for the measurement of NO₃ reactivity of 0.005 s⁻¹ (obtained from expression (11) with [NO₃]ZA = 50 pptv and [NO₃]Amb = [NO₃]ZA − MDCNO₃ = 47.5 pptv, at the lowest dilution factor of 1.14). An upper limit for the measurable reactivity is 45 s⁻¹, largely defined by the uncertainty of the dilution factor. Dilution factors
were obtained by measurements of the actual flows going into the flow-tube using a Gilibrator flow meter (Gilian Gilibrator-2, stated accuracy ±1%). The total uncertainty in the dilution factor is defined by the accuracy of the measurement of the dilution flows as well as by the accuracy of the flow controllers used for flow regulation (± 2 %) and was calculated to be 2.5 %. The error in the calculated reactivity is lowest for the lowest dilution but if the \([\text{NO}_3]^\text{amb}\) gets close to the detection limit this will also have a strong influence on the calculated reactivities making a higher dilution factor favourable. Dilution factors were chosen to keep the instrument operating in a region (10 pptv < \text{NO}_3 < 40 pptv) where both effects are minimized.

A minimum detectable change in \text{NO}_3 of 2.5 pptv leads to an uncertainty of ≈ 15 %, when \text{NO}_3 varies between ≈ 10 and 30 pptv (starting from 50 pptv in zero-air). The uncertainty increases dramatically when \text{NO}_3 levels are close to 50 pptv (i.e. very low reactivity) or less than 5 pptv (very high reactivity without dilution). This is illustrated in Figure S1 of the supplementary information. As mentioned in section 2.3.1 the uncertainty in the reaction time (10 %) also contributes to the overall uncertainty.

To assess the uncertainty associated with derivation of the \text{NO}_3-reactivity from numerical simulation, uncertainties associated with the input parameters have to be considered. As previously demonstrated (Groß et al., 2014) this is best assessed in a Monte-Carlo approach in which the key parameters are varied within a range reflecting their uncertainty limits. The parameters that most sensitively influence the derived value of \text{NO}_3 reactivity are the \text{NO}_2 mixing ratio and the rate coefficients for \text{N}_2\text{O}_5 formation \((k_3 = 1.2 ± 0.1 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})\) and decomposition \((k_4 = 4.4 ± 0.4 \times 10^{-2} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})\). The rate coefficients listed are for 1 bar and room temperature as appropriate for the experimental conditions, the uncertainties quoted (≈ 10 %) are based on assessment of kinetic data (Burkholder et al., 2016). The Monte Carlo simulations were initiated with a \text{NO}_3 mixing ratio (in zero-air) of 50 pptv, decreasing to 20 pptv upon reaction with air. In total, 6 sets of ≈ 1200 simulations were carried with variation of the initial \text{NO}_2 mixing ratio between 1 and 5 ppbv and the associated error in \text{NO}_2 mixing ratio was taken as 8 %. For any given simulation, the output value of the \text{NO}_3 reactivity \((k_{\text{RTG}})\) was stored. The 2σ uncertainty was derived from the Gaussian fits to histograms of \(k_{\text{RTG}}\) (insets at \(\text{NO}_2 = 1.0, 3.0\) and 5.0 ppbv) and is plotted (as a percent of \(k_{\text{RTG}}\)) versus \(k_{\text{RTG}} / \text{NO}_2\). The latter may be considered a measure of whether \text{NO}_3 reacts predominantly with \text{NO}_2 to form \text{N}_2\text{O}_5 \((k_3)\) or with reactive trace gases. Fig. 11 shows that the uncertainty associated with the simulations is very sensitive to ambient \text{NO}_2 levels, varying between > 100 % (at 5 ppbv \text{NO}_2 and a reactivity of 0.017 s\(^{-1}\)) to 3.1 % (at 1 ppbv \text{NO}_2 and a reactivity of 0.092 s\(^{-1}\)) of the extracted \(k_{\text{RTG}}\). Clearly, the extraction of \(k_{\text{RTG}}\) is most accurate in conditions of low \text{NO}_x and when \text{NO}_3 lifetimes are short (e.g. forested regions far from anthropogenic activity).

Another potential bias in the measurement is the temperature dependence of the rate constant of the reactions of trace gases with \text{NO}_3. Measurements were normally conducted at 20 °C in the flow-tube whilst outside temperature can differ from this. However, (unlike \text{OH}) the \text{NO}_3 reactions which dominate its reactivity involve addition to double bonds (e.g. of terpenes) and are only weakly temperature dependent. Therefore, to a good approximation, this error can generally be neglected. To illustrate this, we consider the reaction between \text{NO}_3 and the usually most abundant monoterpene, \(\alpha\)-pinene. The rate
constant at the flow-tube temperature (20 °C) is \(6.4 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\) increasing to \(7.0 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\) at 5 °C and decreasing to \(5.9 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\) at 35 °C, which are changes of < 10 %. Note also that for many monoterpenes, the temperature dependence of the rate constant is not known, but expected to be weak (IUPAC, 2016).

Under circumstances where the reactivity is known to be driven by reaction with reactive trace gases for which NO3 has large temperature dependence this error has to be taken into consideration.

We now examine the potential bias caused by use of NO3 concentrations as large as 50 pptv, which may change the reactivity of the air either by removing a significant fraction of gas-phase reactants or via formation of peroxy radicals (RO2), which may also react with NO3. In a first scenario, we assume that the reactivity is caused by a single species, namely the generally dominant terpene, \(\alpha\)-pinene and consider both low \((k_{RTG} = 0.005 \text{ s}^{-1})\) and high reactivity regimes \((k_{RTG} = 0.1 \text{ s}^{-1})\). A value of \(k_{RTG} = 0.005 \text{ s}^{-1}\) would result if 34 pptv of \(\alpha\)-pinene were available for reaction. In a first approximation, assuming first-order kinetics, we calculate that 2.5 pptv of the initially available 50 pptv of NO3 are lost in the 10.5 s reaction time, and consequently a change in \(\alpha\)-pinene of 2.5 pptv would also occur. This is only 7 % of the initial concentration, indicating an upper limit to a negative bias of 7 %. This is an upper limit as the assumption of first order kinetics is not entirely appropriate. As NO3 reacts with \(\alpha\)-pinene in air to form a nitroxy peroxy radical (RO2) we also consider a positive bias due to reaction of NO3 with this RO2. To do this we assume a rate constant of \(1.2 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\) for the reaction as observed for NO3 + CH3O2 (Atkinson et al., 2006) and assume that this rate constant is independent of the nature of the organic fragment (R) as is the case for reactions of RO2 with NO. The 2.5 pptv RO2 thus generated results in an incremental NO3 reactivity of \(7 \times 10^{-5} \text{ s}^{-1}\), a positive bias of 1.5 %. Again, this is an upper limit, as the calculation assumes that this concentration of RO2 is constant and available for the whole 10.5 s of reaction time. For higher reactivity (0.1 s\(^{-1}\)) a similar calculation shows that the 670 pptv required would reduce the NO3 concentration to 17.5 pptv, itself being diminished to ~640 pptv, a change of just 5 %. The 32.5 pptv RO2 generated would result in a loss rate constant for NO3 of ~9 \times 10^{-4} \text{ s}^{-1}, a positive bias of ~ 1%. In conclusion, for reactive systems in which a large concentration of reactive trace gases with moderate reactivity towards NO3 are encountered, we expect no significant bias. The only scenario, in which a large bias can ensue, is when a low reactivity is caused by a very low concentration of an extremely reactive traces gas.

Taking the example of 1 pptv of a highly reactive terpenoid \((k = 2 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})\) it is easy to show that it would be reduced to just a few percent of its initial concentration when mixed with 50 pptv of NO3 for 10.5 s. In this case a large negative bias would result. In the real atmosphere, this situation is however unlikely to occur as such reactive species are usually substantially reduced in concentration compared to the generally dominant biogenics such as \(\alpha\)-pinene.

The overall uncertainty thus derives from a combination of measurement errors (cavity instability, drift in NO3 source etc.) and the need to correct for NO3 reactions with NO2. Under ideal conditions (e.g. as described above for laboratory operation) the former can be reduced to \(\approx 16 \%\). For a scenario in which biogenic VOCs dominate NO3 reactivity in a low NOx (< 1 ppbv) environment an additional uncertainty of \(\approx 6-10 \%\) from the numerical simulations results in a total uncertainty of
\[\approx 17-20\%\]. In a high NO\textsubscript{x} environment, the total uncertainty will be dominated by that associated with the simulations. For example, at 5 ppbv NO\textsubscript{2} and a reactivity of 0.03 s-1 the total error would be close to 45-50%.

6 Deployment in the NOTOMO campaign, 2015

The NO\textsubscript{3} reactivity set-up described above was deployed for the first time in the field during the NOTOMO campaign (NOcturnal chemistry at the Taunus Observatorium: insights into Mechanisms of Oxidation) in the Taunus mountains (S.W. Germany) in 2016. The site, previously described in detail (Crowley et al., 2010; Sobanski et al., 2016b), is situated on top of the “Kleiner Feldberg” mountain (850 m above sea level) in a forested area with urban influence. The site is impacted by biogenic emissions from forested regions (mainly in the north/west) and by anthropogenic emissions from the local urban centres of Frankfurt, Mainz and Wiesbaden in the south-east to south-west.

6.1 Reactivity measurements during NOTOMO

The NO\textsubscript{3} reactivity instrument was located in a research container and sampled from a common, high-flow inlet together with other instruments. The high-flow inlet was driven by an industrial fan drawing 10 m3 min-1 through a 15 cm diameter stainless steel pipe with its opening about 8 m above the ground. This flow was sub-sampled with a 4 m length of \(\frac{1}{4}\)-inch PFA tubing that extracted the required 3300 sccm air from the centre of the stainless steel pipe and directed it through a 1 \(\mu\)m PFA filter to the NO\textsubscript{3}-reactivity instrument. Due to thermostat break-down during NOTOMO, the NO\textsubscript{3}-reactivity measurements were performed with the flow-tube at container temperature, which was variable (14 - 31 °C).

Previous campaigns at the Taunus Observatory have revealed occasionally high night-time mixing ratios of NO\textsubscript{3} and N\textsubscript{2}O\textsubscript{5} (Sobanski et al., 2016b). As sampling NO\textsubscript{3} and N\textsubscript{2}O\textsubscript{5} from ambient air would bias the NO\textsubscript{3}-reactivity measurements to low values, a 2 l glass flask heated to \(\approx 40-50\) °C was placed at night in the ambient air stream to decompose N\textsubscript{2}O\textsubscript{5} to NO\textsubscript{3} and NO\textsubscript{2}. Based on its thermal dissociation rate coefficient (0.75 s-1 at 50 °C), N\textsubscript{2}O\textsubscript{5} completely decomposes within the \(\approx 40\) s residence time in this glass vessel, and the NO\textsubscript{3} formed is expected to be lost on the uncoated glass walls, thus preventing reformation of N\textsubscript{2}O\textsubscript{3}. Measurements with \(\approx 200\) pptv of N\textsubscript{2}O\textsubscript{5} added directly to the heated vessel and measured by the ambient and heated channels of the two-cavity CRDS (see section 2.2) confirmed that neither NO\textsubscript{3} nor N\textsubscript{2}O\textsubscript{5} survived. As the N\textsubscript{2}O\textsubscript{5} mixing ratio was measured during NOTOMO it is in principal possible to correct the data for the additional NO\textsubscript{2} thus generated. However, on most nights N\textsubscript{2}O\textsubscript{5} levels were too low for this to have a significant effect. Further experiments with isoprene and \(\alpha\)-pinene indicated that there was no significant change in NO\textsubscript{3}-reactivity when the glass vessel was used or not, indicating no significant losses of these VOCs in the glass flask. We cannot exclude that other, less volatile organic trace gases including e.g. acids or peroxides may be lost in the glass vessel, but these are not expected to contribute significantly to NO\textsubscript{3} losses as their rate coefficients for reaction with NO\textsubscript{3} are generally too low. A further potential bias related to the use of the glass trap is the thermal decomposition of PAN and related peroxy nitrates, which can acquire concentrations of up to a few ppb at this site (Sobanski et al., 2016c; Thieser et al., 2016). If PAN decomposes in the glass vessel NO\textsubscript{2} will form,
thus contributing to the measured reactivity. Simulations indicate that during the 40 s residence time in the heated flask (at 50 °C) only a small fraction (∼2.6 %) of the PAN decomposes to form NO2. For future experiments in environments of high NOx with N2O5 and NO3 present, the system will be operated at a lower temperature (e.g. 35 °C, τPAN = ~500 s, τN2O5 = ~6 s) to make sure all of the N2O5/NO3 is removed but PAN is preserved. We note that when measuring NO3-reactivity in regions with large biogenic emissions, the use of the glass vessel to remove NO3 and N2O5 is generally not necessary as high levels of biogenic VOCs and the low levels of NOx often found in forested / rural environments remote from anthropogenic influence will result in very low levels of NO3 or N2O5.

During NOTOMO, ambient levels of NO2, NO3, N2O5 and organic nitrates were measured with the CRDS instruments previously described by Sobanski et al. (Sobanski et al., 2016a; Thieser et al., 2016). The uncertainty in the measurements was 8 % for NO2, 20 % for NO3 whereas the uncertainty for PAN was highly variable for each data point (Sobanski et al., 2016c). The O3 mixing ratios were measured using a dual beam ozone monitor (2B-Technology Model 202) with an uncertainty of 2 %. [NO] was not directly measured but its day-time concentration was calculated assuming photo-stationary-state via expression (12):

\[
[\text{NO}]_{\text{calc}} = \frac{J(\text{NO}_2)}{k_{(\text{NO} + \text{O}_3)}[\text{O}_3]}
\]

(12)

where J(\text{NO}_2) is the photolysis frequency of NO2 and \(k_{(\text{NO} + \text{O}_3)}\) is the rate constant for reaction of NO with O3. This expression ignores the oxidation of NO to NO2 via e.g. reactions of peroxy radicals and thus overestimates NO. J(\text{NO}_2) was measured using a spectral radiometer located close to the inlet (MetCon).

In this manuscript we focus on a three-day period, during which NO3-reactivity was measured (Fig. 12a). The NO3 reactivity, \(k_{RTG}\), varied from 0.005 to 0.1 s\(^{-1}\) during night-time but reached values as high as 1.4 s\(^{-1}\) during day-time.

The total uncertainty of the measurement is depicted by the amber, shaded area. The red line indicates that, as expected, day-time losses are dominated by reaction with NO (up to 1.3 s\(^{-1}\)). Night-time values of \(k_{RTG}\) were between 0.005 and 0.1 s\(^{-1}\). Assuming that NO levels are close to zero as measured previously at this site during night-time (Crowley et al., 2010), \(k_{RTG}\) is then expected to be dominated by VOCs.

In Fig. 12b, we compare values of \(k_{RTG}\) obtained by rigorous data correction (black curve), to those calculated directly from expression (11) (blue curve). The simple analytical expression (blue line) results in an underestimation of the reactivity, especially during night, when the overall reactivity is low, and in periods of high [NO2]. Owing to lack of temperature stabilization of the darkened reactor (at this time not yet incorporated) and break-down of the flow-tube thermostat during the campaign, temperature fluctuations in the container resulted in MDC_{NO3} = 5.6 pptv and hence an average, measureable reactivity of ∼0.01 s\(^{-1}\) during the campaign. As described in section 5 the minimum detectable change in NO3 was combined with the uncertainty associated with the dilution factor, reaction time, [NO2], [PAN] and rate constants used to calculate the overall uncertainty for the reactivity at every data point. The overall uncertainty for the measurement period illustrated in Fig. 12 was ∼25 %.

In Fig. 13a/b we compare the measured night-time NO3-reactivity with that obtained from the stationary-state analysis using expression (1). For the two nights in the period analysed, NO3 mixing ratios were between 5 and 37 pptv ([NO3]>> 5 pptv)
and the calculated stationary-state loss rate coefficients varied between 0.03-0.003 s\(^{-1}\) compared to the measured reactivity which was between 0.05-0.006 s\(^{-1}\) with a short time period in which \(k_{RTG}\) fell below the detection limit of the instrument. Within the total uncertainty, the measured and stationary-state reactivities are in reasonable agreement for most of the night from the 17\(^{th}\) to the 18\(^{th}\). From the night 18\(^{th}\) to the 19\(^{th}\) the stationary-state reactivity is much lower (up to a factor of eight) than that measured. This difference and also the higher variability can be attributed to rapid variations in concentrations of VOCs at the inlet (due e.g. to emissions from nearby trees) that are not considered in the stationary-state approach; i.e. very local emissions of reactive gases will result in breakdown of the stationary-state assumption leading to the underestimation of the reactivity of the local mixture of VOCs and NO\(_x\). As the direct measurement of the NO\(_3\) reactivity with this device sums over all VOCs present in the air mass sampled, it should give the same result as summing each VOC concentration multiplied by the individual rate coefficients for reaction with NO\(_3\), i.e. NO\(_3\) reactivity = \(\sigma [\text{VOC}]k_i\). As demonstrated previously for this mountain site (Sobanski et al., 2016b), summed losses based on measurement of VOCs can significantly exceed the reactivity based on a stationary-state analysis especially under some meteorological situations in which a low-lying residual layer (with high NO\(_3\) concentrations) influences the measurement.

7 Conclusion and outlook

We present the first instrument for measurement of NO\(_3\) reactivity in ambient air. The flow-tube based instrument, utilizes the depletion of synthetically generated NO\(_3\) when mixed with ambient air and has a dynamic range of 0.005 s\(^{-1}\) to 45s\(^{-1}\). Following intensive laboratory characterization to determine the effective reaction time, the wall loss constant of NO\(_3\) and the effect of NO\(_3\) formation and reformation in the flow-tube, it was successfully tested against an isoprene standard. The overall uncertainty depends on the relative rate of reaction of NO\(_3\) with NO\(_2\) or with other traces gases (e.g. VOCs or NO) that do not generate N\(_2\)O\(_5\) and which, under ideal conditions, is close to 15 \%. The instrument is thus best suited for measurement of NO\(_3\) reactivity in regions with high biogenic activity and relatively low direct anthropogenic emissions of NO\(_x\), i.e. regions where the measurement of NO\(_3\) concentrations is difficult owing to low production rates and a high loss term.

First deployment of the instrument was during the NOTOMO observational experiment in summer 2015 at a forested, mountain site with urban influence. The measured NO\(_3\) reactivity ranged from 0.006 to 0.1 to s\(^{-1}\) at night-time and reached values as high as 1.4 s\(^{-1}\) during daytime. As expected, daytime reactivity was dominated by reaction with NO while night-time reactivity involved other (presumably organic) trace gases. A comparison with stationary-state calculations of the NO\(_3\) reactivity revealed poor agreement on occasions, presumably related to very local emissions causing a breakdown of the stationary-state assumption.

Improvements to the dynamic range of the instrument require further stabilization of the NO\(_3\) source and cavity-optics to reduce the minimal detectable change in NO\(_3\) (presently MDC\(_{NO3}\) = 2.5 pptv). This could also be achieved by the use of larger volume flow-tubes. Reduction in the initial NO\(_3\) concentration used would also reduce any potential bias caused by
depletion of reactants or secondary chemistry. Future deployment with simultaneous measurements of NO₃, NO₂, O₃ and
VOCs will be conducted to compare direct measurements of NO₃ reactivity with those obtained from the stationary-state
approach and also those calculated from summing losses to individual VOCs.

Acknowledgements

We would like to thank Heinz Bingemer and the staff and department of the Johann Wolfgang Goethe–University, Frankfurt
am Main for logistical support and access to the Taunus Observatory during NOTOMO. We also would like to thank Eva
Pfannerstil for providing the isoprene standard. We thank DuPont for the sample of FEP used to coat the walls of the flow
tube and darkened reactor. This work was carried out in partial fulfilment of the PhD (Johannes Gutenberg University,
Mainz, Germany) of Jonathan Liebmann.
References

Table 1: Facsimile Simulations

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate Constant (k_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{NO}_2 + \text{O}_3 \rightarrow \text{NO}_3 + \text{O}_2$</td>
<td>$k_1 = 3.52 \times 10^{-17}$ cm3 molecule$^{-1}$ s$^{-1}$</td>
</tr>
<tr>
<td>$\text{NO}_3 + \text{NO} \rightarrow 2 \text{NO}_2$</td>
<td>$k_2 = 2.60 \times 10^{-11}$ cm3 molecule$^{-1}$ s$^{-1}$</td>
</tr>
<tr>
<td>$\text{NO}_3 + \text{NO}_2 + \text{M} \rightarrow \text{N}_2\text{O}_5 + \text{M}$</td>
<td>$k_3 = 1.24 \times 10^{-12}$ cm3 molecule$^{-1}$ s$^{-1}$</td>
</tr>
<tr>
<td>$\text{N}_2\text{O}_5 + \text{M} \rightarrow \text{NO}_2 + \text{NO}_3 + \text{M}$</td>
<td>$k_4 = 4.44 \times 10^{-2}$ cm3 molecule$^{-1}$ s$^{-1}$</td>
</tr>
<tr>
<td>$\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2$</td>
<td>$k_5 = 1.89 \times 10^{-14}$ cm3 molecule$^{-1}$ s$^{-1}$</td>
</tr>
<tr>
<td>$\text{NO}_3 + \text{wall} \rightarrow \text{NO}_2$</td>
<td>$k_w = 4 \times 10^{-3}$ s$^{-1}$</td>
</tr>
<tr>
<td>k_{RTG}</td>
<td>variable / fitted</td>
</tr>
</tbody>
</table>

For all simulations FACSIMILE-CHEKMAT (Release H010 DATE 28.04.87 Version 1) was used. The rate constants (k_i) listed were taken from the IUPAC recommendations (Atkinson et al., 2004; IUPAC, 2016) at 298 K and 1 bar.
Figure 1: Gas-phase formation and loss of tropospheric NO₃.
SOA = secondary organic aerosol, RONO₂ are alkyl-nitrates.
Figure 2: Schematic diagram of the NO₃-reactivity measurement. F₁-F₇ are mass flow-controllers: F₁ = mirror purge flow, F₂ = zero-air for O₃ generation, F₃ = dilution / inlet overflow (switching between zero-air and ambient), F₄ = NO₂ for NO₃ / N₂O₅ generation, F₅ = NO titration of NO₃, F₆ = cavity flow to pump, F₇ = NO flow for online reactivity calibration. CrO = critical orifice. TD = heated tubing for thermal decomposition of N₂O₅ to NO₃ at 140 °C.
Figure 3: Derivation of effective reaction time by addition of a pulse (at t = 26 s) of NO using a syringe. The subsequent depletion in the NO$_3$ signal was analysed using expression 4.
Figure 4: Characterisation of the flow-tube by numerical simulation of the NO$_3$ change following addition of NO and NO$_2$ at different mixing ratios. The symbols are measured NO$_3$ mixing ratios, the lines are the results of numerical simulations. The reactivity scales were calculated from $k_2[NO]$ and $k_3[NO_2]$ using the rate constants listed in Table 1.
Figure 5: Left: Measured versus simulated NO₃ for different amounts of added NO (67, 134, 201, 268, 402 pptv) and at three different mixing ratios of NO₂. Right: Measured versus simulated NO₃ (initially 77, 128 or 249 pptv) at different amounts (1.5, 3, 4.5, 6 ppbv) of added [NO₂]. The solid lines represent 1:1 agreement.
Figure 6: Determination of the NO$_3$ wall loss constant by variation of the reaction time (injector position). The simulation indicates a wall loss constant of $k_w = 0.004$ s$^{-1}$.
Figure 7: Influence of N$_2$O$_5$ formation and decomposition in the flow-tube. a) simulated (red, blue and green) mixing ratio of NO$_3$ versus added NO$_2$ at a reaction time of 10.5 s at various temperatures and thus thermal decomposition rates of N$_2$O$_5$. The simple exponential decay of NO$_3$ (expression 9) is given by the black line. b) Effect of NO$_2$ level on the ratio of true reactivity / reactivity calculated from expression (8) for different loss rate constants for NO$_3$ reacting with reactive traces gases.
Figure 8: Simulated NO$_3$ production in the flow-tube at different O$_3$ and NO$_2$ mixing ratios at a fixed reaction time of 10.5 s.
Figure 9: Raw data showing the change in NO$_3$ (10.5 s reaction time) between zero-air (ZA, periods marked with red brackets) and ambient air (Ambient, blue brackets). The Figure also shows periods of titration of NO$_3$ with NO (\approx 2 min intervals) a change in the dilution factor from 4 to 3 (at \approx 07:33) and an in-situ reactivity calibration (at \approx 07:07). The “skip” periods are those in which data are not analysed due to switching from ambient air to zero-air and vice versa.
Figure 10: Verification of the experimental procedure by addition of isoprene at different NO₂ mixing ratios. The known reactivity was calculated from the isoprene mixing ratio (1.5 – 6 ppbv) and the rate coefficient for reaction of isoprene with NO₃. Experiments were performed in dry zero-air. The error bars in the simulation are due to uncertainties in [isoprene] and [NO₂] (both 5 %) and the reaction time (10 %).
Figure 11: Uncertainty factor (f_{RTG}) as a function of the ratio $k_{RTG} / [NO_2]$ as derived from Monte-Carlo simulations. The relationship (black line) is described by $f(\frac{k_{RTG}}{[NO_2]}) = 0.33 \times (\frac{k_{RTG}}{[NO_2]})^{0.977}$. The results of three individual sets of 1200 simulations are shown as histograms.
Figure 12: a) Measured values of k_{RTG} over a 3 day period. The overall uncertainty is represented by the amber, shaded area. The black lines are k_{RTG} obtained by full simulations, the blue lines are calculated using expression (11) (without correction for N$_2$O$_5$ formation and decomposition). The contribution of NO to the NO$_3$ reactivity is displayed as the red line. Yellow regions correspond to daytime, grey regions correspond to night-time. b) Zoom in on a night-time period with low reactivity emphasizing the effect of NO$_2$-induced formation and decomposition of N$_2$O$_5$.
Figure 13: Comparison of stationary-state and measured NO$_3$ loss rates. Uncertainty in k_{RTG} (see text) are displayed as the amber shaded area.