
Measurement of ambient NO₃ reactivity: Design, characterization and first deployment of a new instrument

Jonathan M. Liebmann¹, Gerhard Schuster¹, Jan B. Schuladen¹, Nicolas Sobanski¹, Jos Lelieveld¹ and John N. Crowley¹

¹Atmospheric Chemistry Department, Max-Planck-Institut für Chemie, 55128 Mainz, Germany.

Correspondence to: John N. Crowley (john.crowley@mpic.de)

Supplementary Information

Fig. S1: Upper and lower bounds to the uncertainty in the reactivity measurement calculated for a fixed minimal detectable change $(MDC_{NO3} = 2.5 \text{ pptv})$ in NO₃ (initially $[NO_3]_t^{ZA} = 50 \text{ pptv})$ for different reactivities resulting in various measured NO₃ mixing ratios at 10.5 s ($[NO_3]_t^{Amb}$). The horizontal line (y = 1) is the ideal case where the MDC_{NO3} tends to zero. The square brackets indicate the dynamic range in which the uncertainty associated with signal stability is $\leq 15 \%$. When $[NO_3]_t^{Amb}$ and $[NO_3]_t^{ZA}$ are very similar (reactivity tends to zero) or when NO₃ is entirely depleted (very high reactivity) the uncertainty increases rapidly.