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Abstract. Zenith Total Delay (ZTD) time series, derived frdhe re-processing of Global Positioning System$G&ata,
provide valuable information for the evaluationgbébal atmospheric reanalysis products such as ER&im. Identifying
the correct noise characteristics in the ZTD tireges is an important step to assess the 'true’nitade of ZTD trend

uncertainties. The ZTD residual time series for 32915 are generated from our homogeneously reepsed and

homogenized GPS time series from over 700 globdiiyributed stations classified into five majornudite zones. The @

annual peak of ZTD data ranges between 10 and I&Owith the smallest values for the polar and Alpzone. The
amplitudes of daily curve fall between 0 and 12 mitin the greatest variations for the dry zone. @htoregressive process
of fourth order plus white noise model were fouade optimal for ZTD series. The tropical zone theslargest amplitude
of autoregressive noise (9.59 mm) and the greateglitudes of white noise (13.00 mm). All climatenes have similar
median coefficients of AR(1) (0.80+0.05) with a mmum for polar and Alpine, which has the highestfticients of AR(2)
(0.274£0.01) and AR(3) (0.11+0.01) and clearly diffiet from the other zones considered. We showaBatf 120 examined
trends became insignificant, when the optimum noiselel was employed, compared to 11 insignificagmds for pure
white noise. The uncertainty of the ZTD trends rbayunderestimated by a factor of 3 to 12 compavetié white noise

only assumption.

1 Introduction

Continuous Global Navigation Satellite System (GIN&Sservations, in particular those from the GldPasitioning System
(GPS), play a prominent role to help us improve wutlerstanding of many of the Earth’s internal artérnal processes.
Especially the position time series have been widelployed to investigate various geophysical psses (van Dam et @
1994; Larson et al., 1997; Wu et al., 2003; Sellal.e 2007; Teferle et al., 2009; Woppelmann gt2009; Fu et al., 2013),
which act on the Earth’s surface and generally iogua measurable displacement of the GPS antenmahéother hand,
GPS has also proven to infer the conditions ofatheospher@articularly in the lower and neutranionized) layer

known as the troposphere, which plays an importaatin generating both weather and climate (Rohal.e2014).

As the GNSS signal travels from the transmittingelites to the ground-based receiver, it is suleiécto variable

atmospheric conditions. The atmosphere bends thwlsicausing a delay in the arrival time (path theging). In the

troposphere this delay-depends-en-the-rtegratipdiiethe densities of dry air and water vapor gltine-entire-atmespheric
eelumn. Because the amount of delay in the tropespis directly related to the integrated obseovetiof atmospheric
conditions, including the amount of water vapor, $8\can remotely sense integrated atmospheric waper (Bevis et al.,

1992). The atmospheric prod@derived using GWNB&ervations can further be used to improve, #g.,accuracy of

forecasts generated by numerical weather predi¢NdiP) models (e.g., Mahfouf et al., 2015 Wilgdmb2016).

The total atmospheric delay depends on the effectignal path between the satellite and receiveanaas and therefore

indirectly on the satellite elevation angle, whigtovides a slant total delay as a function of tlewvation angle. This-skgnt
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total delay can be converted into an equivalentydéh the vertical (zenith) direction using a cepending mapping
function (MF) and is known as Zenith Total Delay ().
state-and-it-has-been-shewn-to-be-beneficial taraggit into two components: the Zenith Hydrost&telay (ZHD) and the
Zenith Wet Delay (ZWD). Taking into account surfgmessure and temperature, either from observatorzs adequate
model, the ZTD can be converted using the ZWD mtoestimate of the Integrated Water Vapor (IWV)teah of th

atmosphere (Bevis et al., 1992-ane-the-amourtdi-hasa-directrelationto-the-change-i-tempecafiirenberth-¢

20663). Hence the use of ground-based near real@PR® observations became quickly a popular rese¢apit for weather
forecasting. The use of GPS was further promotsdoiver cost as compared to classical meteorolbgieasors, the
establishment of various regional and global statietworks, and activities related to the assimitebf the GPS-derived
products in NWP models (Guerova et al., 2004; Walpexf et al., 2007; Dousa, 2010; Mahfouf et a12; Kroszczynski,@
2015; Guerova et al., 2016). Although the potentfahe ground-based GPS-derived IWV products fionate studies was
already acknowledged by Yuan et al. (1993), thegmmm trend of IWV may be used as a proxy indicatiba possible
change in climate, initially the number of studiemained relatively low (Hagemann et al., @Ds lhoted here that IWV
plays a vital role in Earth’s climate as it is tiyhcoupled with the temperature in the troposphé&tds coupling drives a
positive feedback loop in climate modeling — makany temperature changes larger than they woulotherwise (Soden
and Held; 2005

As more GPS data have become available duringasitewo decades and the importance of homogeneemscessing of
the observations was acknowledged, interest inlahg-term applications of the GPS-derived troposphgroducts has
increased (Vey et al., 2009; Thomas et al., 201dckBet al., 2016). However, theleng-term-trend astathastic properties
of IWV (as derived from ZTD) re=xjins a major sounfeuncertainty for a comprehensive—dnderstandifithe-global

i 00). Multipleviones studies have shown that the noise charattsrisf GPS-derived

trend parameters from station position are not gwet only by a white noise process (Johnson ancegi995) but are
also affected by time-correlated noise (e.g. Langhad Johnson, 1997; Mao et al., 1999; Williamalgt2004; Teferle
al., 2008; Bos et al., 2013; Klos et al., 2016} islnow widely accepted that if we assume only hatevnoise process
affecting the GPS position time series, the una@iés of the parameter estimates, particularlythaf trend, would be
underestimated by up to an order of magnitude. Keweso far re-processed GPS observations haveussehto estimate
water vapor using white noise assump@ e.gamalyzing meteorological events (Brenot et al.,@@ock et al., 2007;
son and Elgered, 2008; Labbouz et al., 201Bkfonate applications (Sguerso et al., 2@ agxinailation of ZTD in
operational NWP models (Yan et al., 2009; Mahfdaudle 2015)—Fherefore, identifying the correcisgocharacteristics in
the ZTD/IWV time series is an important step inessing the 'true’ magnitude of ZTD/IWV trend esttem and is the
prime objective of this study.
Climatologists have described the noise propedifeany data interpreted in terms of climate as atoragressive nois@
process (Matyasovszky, 2012). They have showntttistnoise process gives better res@ompareﬂetcsimple white
noise assumption. ZTD is directly linked to climat®cesses and one would expect that the samelyindenoise model
may fit as it does for other climate parametersenetthe frequency spectra follow a well-definecttah distribution, i.e.,
frequency and amplitude of the sign@e relatednkans of an autoregressive process. This imiliegsthe uncertainties
of ZTD trends are also expected to increase cordptréhe white noise assumption. Consequently, Zfh® trends that
have been provided in recent publications and whiere used in climate studies may have been urtttastsd-and-sheuld
not-be-considered-for-futdre—trvestigations. Themesiderations motivate us to undertake a compebemssessment of
the stochastic properties of ZTD time series, tgrebtaining new estimates of ZTD trends and thicertainties in
addition to an improved understanding of the ZTsapthat can be further interpreted in terms whate, meteorologic
events and during potential assimilati(@ geneirgulation models in future. Therefore, the prignarget of this study is

to determine the most appropriate stochastic mfmiehe ZTD time series on the basis of our regehtimogeneously re-
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processed GPS time series. These time series stemoier 700 globally distributed continuous GP&ishs and cover the
period 1995 to the end of 2015. The consortiunhefBritish Isles continuous GNSS Facility (BIGF)dahe University of
Luxembourg TIGA Analysis Centres (BLT) have re-gmald the full history of GPS data collected by abgll tracking
network of stations using the latest available n®ded methodology. While the temporal consisteicthe time series is

5 addressed by keeping the bias models and processitigpdology the same for the whole data periogl,GIPS position @
time series are often subjected to discontinuitiagch are either due to real position changes berofactors that do not
necessarily reflect real geophysical events. Sudomected discontinuities are known to adverséBcatrend estimates of
the concerned position time series (Williams et 2003a; Thomas et al., 2011; Griffiths and Rayl3)0and introduce
random-walk noise into the time series (William803b; Santamaria-Gémez et al., 2011).

10 In order to employ the ZTD time series for climat@nge studies, a homogenization of the ZTD timese.e. the need for
identifying and correcting discontinuities, is nesary (Vey et al., 2009; Gazeaux et al., 2011; nDs#012). WhiIeQ
automated change detection methods have also leelicated to GPS time series (Williams et al., 20@3wdabandeh e 2‘
al., 2011; Gazeaux et al., 2013), identifying akcdntinuities still requires significant visualspection and manual

intervention. For ZTD time series the detectiomfiscontinuities is particularly crucial as irost cases the-elimate-signal
15 may be comparable in size to the magnitude of thelitudes of the discontinuities. Furthermore, uadeed discontinuities
in the ZTD time series may also introduce a compboérandom-walk noi@
Our investigation of the noise processes in ZTDetigeries is based on the climate zones followirsgKbppen-Geiger
classifications (Peel et al., 2007). In this stwdyfocus on five climate zones for classifying Warld's climate based on
annual and monthly averages of temperature andpimon. These five major climate zones are ttahidry, temperate,
20 continental and polar and Alpine. It is noted hitr& one can also investigate the noise proceZ\id or the IWV time
series, which are arguably more linked with theawapour variability in the atmosphere. Howevestliy, a pre-analysis
showed that the stochastic properties of the ZWB ARD time series are nearly identical (see Figbieas part of the@
supplementary material) and, secondly, the predgoreduct for assimilation in NWP models are thebzdstimates and n@
the IWV estimates. To convert the GNSS derived ZWOWYV, a water vapour mean temperature parameter @GPS
25 station is required. However, the source of thimpeeter varies; it can be estimated from empiricatiel or from observed
surface temperature. Thus the—aeeygracy of thisnpetex introduces an error in the trend estimatelsgdh and EIgere@
2008). Recent extensive studies by (Wang, 2016¢ damonstrated that depending on the choice csdbece of the wat
vapour mean temperature parameter, the IWV trewdvsta relative error larger than 10 %. Thus, fonststency ZTD
should be converted to IWV once it has been assiedl and we argue that this would also be the wagtforward for
30 climate models.
Finally, the paper is divided into five differergcgions. The ZTD estimation from GPS, the GPS dadaessing strategy,
the detection of discontinuities in the ZTD timeise and the homogenization (verification and otiiom) process are
described in section 2. The ZTD time series parametodel and the features of the estimated pegisidjnals are explained
in section 3. The main results of the study, thisaanalysis, is covered in section 4. Sectiorsbudises the core results and

35 section 6 provides the conclusions of the paper.

2 Methodology

In the following section, we describe the GPS datacessing strategy employed which provided the dganeous daily
GPS solutions for this study, including the modbgjliand estimation of the ZTD values. We detail lioenogenization

40 strategy applied to the ZTD time series and findigcribe the ZTD noise models we have investigated
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1.1 GPS data processing and ZTD estimation

The International GNSS Service (IGS) (Dow et abQ@) recently completed the second re-processingpamn (repro2).
Using the latest available bias models and mettoagothe different IGS analysis centers (ACs) rehareal the full history
of GPS data collected by the global tracking nekwfosm 1995-2015. At the University of Luxembousgg part of our IGS
Tide Gauge Benchmark Monitoring (TIGA) Working Gmactivities, we completed a new global solutiomgsip to 750
GPS stations. Figure 1 shows a map of 120 seletédins for which we will present our results. ifsan be seen, the
stations are globally distributed and the timeesetised vary from 6 to 21 years in length.

The re-processing follows a double difference neltwsirategy using the Bernese GNSS Software versianBSW52)
(Dach et al., 2015), incorporates recent bias mo@eklopments, the latest International Earth Rotaand Reference
Systems Service (IERS) 2010 conventions (Petittarzdim, 2010) and IGS recommendations. Further Idedeé detailed in
(Hunegnaw et al., 2016). The selected station ndétweluded all IGb08 core stations (Rebischunglgt2012) and more or
less the complete archive of TIGA, which encompsisstarge number of GPS stations at or near tHeagletwork of tide
gauges. The GPS data was re-processed using the @@nOrbit Determination in Europe (CODE) fir@kecise orbits and
Earth orientation parameters. We employed the 1G&0Q8llites and receiver antenna phase center madel adopted an
elevation cut-off angle of 3° (Dach et al., 2016).

During GNSS processing the tropospheric propagatdielay () affecting the GPS observation in the line of sigh
modeled as:

T, =mf, (€)ZHD + mf,,(e)2ZWD + i (e)|G,, coda) + G sin(a)] (1)

wheree s the elevation angle in the topocentric coordirfeame to the GPS satellite amf}, andmf,, are the hydrostatic and

wet MFs, respectively. These are used to map thessxpropagation paths for the slanted signalsathiate at the GPS

antenna to the zenith d|rect|on—|—e—the—d+Feemmh—nmﬂ+maHFepespheﬁc—delay The temporall}eeagedT then prowdes@

the ZTD estimate for a given epoch. There

initially-prepesed-by-Marini{1972). Here we maksewf the Vienna Mapping Function 1 (VMF1) (Bohnakf 2006) that
allows the MF to describe the atmosphere with thest detail, leading to the highest precisionhia tlerived tropospheric

parameters. This is achieved by the MF by takirtg sccount different factors such as the Earth ature at different
latitudes and seasonal changes. The VMF1 coeffiiehthe continuous fraction form are derived frima pressure-level
data estimated by European Centre for Medium Ra&Mgather Forecasting (ECMWF) (Simmons and Gibso@0p@nd
are given every 6 hours on a global-8-75>x0-+5.grhe third term in equation (1) represents thagigmt (tilt) corrections
in North-South direction (GN) and in East-West diifen (GE),a is the azimuth angle defining azimuthal asymmétrthe
troposphere andf, is the gradient MF (Chen and Herring, 1997).

In BSW52 the ZHD is-parameterized as a piece-wisetfon variation of the delay using a piecewisedir interpolation @
between temporal nodes. Observations of atmosppegsure at the GPS station offer high precisioriife ZHD estimates
and minimize station height errors (Tregoning aretriig, 2006). However, many of the TIGA and IG&tishs do not
possess integrated meteorological sensors. Thud,idkinits of meters was a priori obtained reliatstym surface pressure
data from the gridded output of the ECMWF NWP modedl is provided by-¥Mk1 using the modified Saastizen
model, which assumes that the atmosphere is inosyatic equilibrium (Davis et al., 1985). We estienahe 2+
parameters in an interval of 1 hour with a loosast@int of 5 meters. In addition, horizontal geads in the North-South
and East-West directions are estimated in a 24 intenval with the same 5 meter loose relative traist.

In this manner more than two decades of ZTD timeselong with station positions are availablexfrour re-processing.
Figure 1 shows a selection of 120 global statiamsshich we have carried out the further analysisatibed in this study.
However, as the station positions are affectedrbawerage two discontinuities per station per decttte ZTD time series

need to be homogenized before they are usefuuftindr application.

4


Anonymous
Barrer 

Anonymous
Texte surligné 

Anonymous
Note
GPS processing doesn't work this way. It is a least squares estimation of parameters (ZWD and gradients, coordinates...).

Anonymous
Barrer 

Anonymous
Barrer 

Anonymous
Texte inséré 
2x2.5° grid

Anonymous
Barrer 

Anonymous
Texte inséré 
corrected a priori based on observations, empirical models, or NWP pressure data.

Anonymous
Texte surligné 

Anonymous
Note
this description is rather for the estimated parameters.

Anonymous
Texte inséré 
and estimated ZTD 

Anonymous
Barrer 

Anonymous
Texte inséré 
Tech. Univ. Vienna

Anonymous
Barrer 

Anonymous
Texte inséré 
ZWD?


1.2 Homogenization of ZTD time series@

The ZTD parameter is now customarily derived frdra processing of the GPS observations but its stamly in time is
adversely affected by a number of processes, platlg discontinuities that may or may not stenmiroeal geophysical or
climatic signals((Beaulieu et al., 2008; Gazeaurlget2011; Gazeaux et al., 2013; Bock et al., 2@@dffiths and Ray, @
5 (2015). The source of these discontinuities can haaay origins but is mostly related to hardwarenges (receiver,
antenna or antenna cable), changes in the obsamn@tbcedures (e.g. the elevation cut-off), modifimns in the vicinity of
the GPS antenna (e.g. introduction/removal of Sigiastructions),—realphysical-displacements—of-thaenna—(e-g.
earthguakes) and other mostly unknown sources. lgempation is the technique of detecting, verifyargl correcting of
these discontinuities in the ZTD or station positiime series. Undetected discontinuities with sigant amplitudes
10 adversely affect the estimated parameter of intefresn the time series, especially any trend ediémaas a central
component for many geodetic, geophysical and cigriavestigations. Recently a working group wasaamned with this
topic under the umbrella of the IGS: Detection dfséts in GPS Experiment (DOGEXx). This working gvoaimed at
consistently and objectively detect discontinuitiasSGPS time series in an automated fashion whikewthg on the
experiences of both the geodetic and climatic $isiesn The experiment concluded that there wasimgles algorithm that
15 could fully automate and reliably detect all distiouities in GPS time series (Gazeaux et al., 20E8jthermore, for the
best results a manual intervention was necessamder to detect particularly those offsets of umkn causes.
In our re-processing that covers a period of 20s/@& have identified approximately 2500 discoritias in the position
time series for the 750 stations. As the scattehénZTD time series is much larger than in theitpos time series our
strategy was to first identify the position offsetsd then adopt the related epochs also for osebfhodeling of the ZTD
20 time series. In this way the discontinuity idemfiion and verification is based on (1) the Intéomal Terrestrial Reference
Frame 2008 (ITRF2008) supplied discontinuity fi{2) earthquakes reported by the USGS Earthquakardsaz’rogram
(https://earthquake.usgs.gov/) and (3) a manual inspection of all the positiomet series. The obtained discontinuity budget
arises in 67 % from hardware changes, in 4 % franthgquakes and in 29 % from unknown origins. Whirep@ochs of
offsets were taken into consideration, we found aximum offset amplitude in the ZTD time series &3} mm, a
25 maximum improvement in the standard deviation 861mm, and a maximum, most dramatic, change in #€bd of 3.7
mm/decade at station POHN (Pohnpei, FederatedsStafdicronesia). Table S1 in supporting informatshows statistics

related to the detected discontinuities in the Zifie series of the 120 GPS stations discussedsrsthdy.

1.3 ZTD time series modelling@

30 The ZTD time series-are—eommenly modeled with lsasiares or weighted least squares estimation wheertainties of

individual observations are taken into account.usgty on the estimation of trend,—which-is-intetpdein-terms-of-climate
change{e-g+Nilssenand-Elgered,—2008), andgalifEcant periodics, derived from a spectral asay one can fit a least-

squares model as:

ZTD(t;) = ZTDg +v _tR)+i[S< sin(2770F, Ot —tg)) + C, o277 CF, (t, _tR))]+

i(d .t )+ e, O

i=

(2)

35 wheret; is time,tr is the reference tim&TDg the initial value of the ZTD at time=tg, v is the linear trendC, andS, are the
coefficients of the harmonic terms a4 is the stochastic pard; represents the discontinuity which occurs at tileis
the number of harmonic terms afad (1/365.25, 2/365.25, 3/365.25, 4/365.25, 1, H2) frequency irdays. We apply here
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A=ysi+c

3
qq(:tan‘l(ci], k=1..6 )

k

The unknown parameters in equation (2) are estiomageng least-squares incorporating more than teaades of data with

1-hour sampling intervak

white-neise. In this case, the weight maRixs a diagonal matrix based on the uncertaintiaadi’idual observationsA is

a design matrix of (2) and y is a vector of obstoves. The estimated parameters, vedtpare then obtained as:

x =(ATPA]*ATPY @

The covariance matrix of the fitted parametersiéntequal to:

c, =(aTPA]* [T ©)

Here, the uncertainties-ef-beth-trendand-seasaigabls are determined with the assumption of uetated residual or
white noise only (I@and et al., 2009). Even tladues of the ZTD errors of the individual observathave little impact on
the results of the estimated parameters and thegrtainties—Nilsserand-Elgered{2008)-addedoat sbrm-correlation
the-covarianece-matriGx to-considera-celoredneige. They found that theettainties of IWV trends increased by a factor
of four when a correlation is added. Combrink et(2007)-teek—afurtherstep—and proposed an agrtessive moving
average (ARMA) noise model, which better represehes correlation of IWV in time than a simple whiteise @
assumptions.

In general, the first order ARMA(1,1) noise modetefined as:

& =@ T+ 7, (6)

whereg is the residual ZTD, obtained by removing the dresffsets and the seasonal components from theaegsed ZTD
time series. The symbolsandé are the autoregressive (AR) and moving average)(pEameters, respectively, is a
Gaussian variable with fixed standard deviationmBonk et al. (2007) examined the power spectraisides (PSDs) of
two South African GPS stations and pointed out thidY trend uncertainty increased by twofold when MR(1,1) is
applied. Most time series may also be expressed Ispecific class of ARMA model, an autoregressirgctionally
integrated moving average (ARFIMA) noise model. AlXresidual time serieszp(t), follows ARFIMA(p,d,q), if it is
governed by the following relationship (e.g., Squi€l92):

d
O(L)1- L) ez (t) = O(L)w, ™
whereL is the lag operator amd is uncorrelated white noise. The paramedeend® are estimated as:

O(L)=1-gLl' -’ -...-gL°

OL)=1+4L +G,L> +... +6,L° .
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ARFIMA(p,d,q) can be implemented in different ways, dependimgtiee AR, FI and MA parameterg, d and g,
respectively. We can start from a simple AR(1) miedth p = 1, which means, that there are no FI and MApatars, i.e.,
d=0andg=0:

7 =420 o

getting through the MA part by estimating its orderd ending with an autoregressive fractionallyegnated moving
average ARFIMAY,d,q) model, where d is the integer order of the défering of data before we estimate its stationarity.
When the ARFIMAp,d,q) noise model is being computed with Maximum Likelbd Estimation (MLE), p should be
smaller than @s et al., 2012). A simple AR(Idal means that any data sample is being dependgnbn the previo@
observation. When we increase AR into fourth o@d®(4)), it expands our search for any dependerttiasexist between

current and the four previous values.

3 Results

In the following section, we present results ofseeml signals: annual, semi-annual, three and fioamths terms were
analyzed along with daily and sub-daily oscillaoe include all above mentioned periodics, ag #ffect noise analysis
if unmodelled. Having modelled the deterministictpave present the results of noise analysis amdpeoe different noise
processes. We end with recommendation on the optimoise model to be used for any future analysigesfith Total

Delay taking into account the differences accordorghe given climate zone.

3.1 Temporal variations of ZTD @

In this study, we considered 120 stations with Ziiilde series lengths between 6 and 21 years steminimg our
reprocessed global network of stations (FigureQl).average, each of the time series is charactet@zeontain 2 offsets.
For interpretation the stations are classified finte different climate zones: tropical, dry, watemperate, continental and
polar and Alpine based on the general Koppen-Geiljmate classification (Peel et al., 2007), Fig@raNVe did not follow
the detailed Kdppen-Geiger climate classificatiohiclw contains 27 different climate sub-zones, aswilenot have a
representative sample of stations from each of tttemake the sub-zones statistically significane ®so focused on those
climate zones with stations distributed all arodhd globe to investigate which noise model is optifior any climate
conditions we may consider. Having classified oatadet of 120 stations we ended up with a stationber of 27 in the
tropical, 13 in the dry, 35 in the warm temper&i,in the continental climate, and 23 in the palad Alpine zones. These
numbers provide a statistically significant resutts both temporal variations and noise parameteesderive in the
following study.

Any individual ZTD time series can behave in diffiet ways, due to the region where station is latalgpically, the
tropical zone is characterized by high day-to-dagraalies of GPS derived ZTD time series<{e-g-e#iak-—2008). Oceanic
coasts are-theught to have greater annual vargatitan any other regions (e.g., Jin et al., 20@8#)le regions between 20°
and 65° for both Hemispheres (N and S) are charaeteby large values of PWV linear trends of

4-kgtr-per decade determined for PWV from the EuropeanBlgsis Interim (ERAI) model and DORIS data (Betlal.,
2014). This might be a reason to suggest that Wi #sidualsp, or their stochastic model from equation (2) behawv
different ways for each climate zone examined. Thisld arise from variations-in-cencentrationshia hydrostatic and wet
parts-of-the-atmesphere which are associated hitlzone. As an example, the polar regions areadmsrywhich results in a
small amount of water vapor and in this way a lowpact on the wet part of the ZTD. Besides, the {iiigguency part of @
the residuals reflects local station effects (engltipath). This is why each of the ZTD time serieay have different

characteristics. Hence, we examined the Power Eppdatnsities (PSDs) of each of the analyzed statiigure 3 shows a
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PSD for a single selected station, BJFS (Beijinging) for both original and residual ZTD time seri#Ve have found that
1-hour ZTD time series are characterized by cleakp of one year and three subsequent overtoreklition to the diurnal
and semi-diurnal peaks. The annual oscillatiorhés most powerful peak for all examined stationfip¥eed by the semi-
annual oscillation, which is roughly half the magde as the annual one for 70 % of the stationak$ef 3 and 4 cpy
(cycles per year) are clearly seen in the frequethmmain for low- and mid-latitude stations, whileese are hardly
noticeable for the polar and Alpine zones. In thi#s/, we assumed a seasonal model containing a@li6dicities (equation
2), adding diurnal and sub-diurnal peak to abovatioeed.

Figures 4 and 6 as well as Table 1 summarize thdtsefor the annual amplitudes. In general, thenreaasonal signal for
the selected stations varies between 10 to 150 nitim & median of 50 mm. Low- and mid-latitudes stasi are
characterized by larger annual variations than agitude stations, especially those in the Southdemisphere (SH)
located in polar and Alpine regions. The Northemniisphere (NH) is characterized by maxima in JalAugust (phase
shift of annual signal corresponding to 200°), wtithe Southern Hemispheres maxima fall betweenadgrand February
(phase shift of 20°). There is no obvious correlatbetween annual amplitudes for different climadees, except the fact
that, amplitudes for tropical and warm temperaggians are higher than those located in continertaks. Again with
exceptions, oceanic coastal stations show highenarchanges than those of inland stations. SwiiorEast Asia (BJFS,
[ISC, KUNM), Japan (TSKB, P211) and East coast ofthl America (STJO, BRMU, SCH2, WES2, NRC1, GODEGO,
MOB1) show larger annual amplitudes compared terosftations. This was also noticed by Jin et A0(@. The area of
India is characterized by monsoon, what may causk a large variation during one year. Brazil iduded in the tropical
zone, however, stations on the coast of Brazil tdifferent phases from inland stations. As the talaone in the northeast
of Brazil is fairly dry, this might be a reason wthese tropical stations differ a lot. Interestiognote here is that, even
though the Antarctic and Arctic regions are clasdiinto the same major climate zone, i.e. therpata Alpine , the annual
amplitudes of the Antarctic stations show notablydr amplitudes than Greenland stations — an itidicaf low variability
in ZTD. However, in the detailed climate classifioa according to Képpen-Geiger, the major Alpirleanate zone is
further subdivided into two sub-zones, that matehdignificant different variabilities we see inr@nnual ZTD amplitudes
between those two regions. The stations in NH @ratéd mostly in Greenland, so the higher anngalasiwe noticed here
might arise from the their coastal location and itheact of the Gulf Stream, which results in warmeters along the
Southern coast of Greenland than that of Antarcfinge to above, we decided to split the polar atging zone into two
sub-zones of Northern and Southern Hemisphere.eflexted this division in Table 1.

Figure S2 in supplementary information shows thmissnnual signal for a set of 120 analyzed statittere, a phase of
first semi-annual peak is presented. All statidms/sa very good consistency of phase. Maxima obatrall stations fall in
January, excluding tropical for which the majomtfymaxima fall in May. Again, few exceptions can deo found in dry
regions: MAS1 (Maspalomas, Gran Canaria), TAMP (p@am city, Mexico), RAMO (Ramon, Israel), LPAZ (LRaz,
Mexico) and AREQ (Arequipa, Peru), for which thesfimaximum falls in March.

We also investigated the diurnal to semi-diurnalley of the series, since the ZTD time series laa¥éhour resolution. The
diurnal cyclg reflects-day-to-day-changes-causethbysolarcyele-along-with-changes-intemperaamgbrainfall. Figures 5
and 7 as well as Table 1 summarize the resulttheodiurnal amplitudes for the selected set ofyameal ZTD time series.
The phase shifts are given with respect to thel Ioeidian. The largest diurnal peaks were foundstations located in
low-latitude regions, especially tropical and dones, and are approximately 5-10 times higher thaather climate zones.
The warm temperate diurnal amplitudes fluctuatevben 1 and 7 mm with maxima for South Americaniatat The
diurnal amplitudes for the continental zone dovaty very much on a station-by-station basis, wttike diurnal signals for
the polar and Alpine regions are almost flat withpéitudes close to zero. The time of diurnal maximeonsistent and very
homogenous for stations located in Europe. The mpeak time is around 18 hours with respect to ¢tleallmeridian. The

times of peaks beyond the area of Europe seem sigtent, however, the majority are between 18 ahda@urs. The
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amplitudes of daily curv@gure 7) are similar &tations between 30° S and 30° N. The tropicaknwtemperate and a
few dry stations situated within this latitude aharacterized by daily amplitude higher than 4 Mmery good consistency
can be noticed for diurnal amplitudes for polar @tgine stations which unlike the annual amplitudesstations in this
climate zone, are at the level of 0.2-1 mm, withedian of 0.4 mm.

Figures 4 and 5 show that the phases of maximheo&ihnual and diurnal signals are well-correlatedobth hemispheres.
Amplitudes of daily curve are consistent for stasidoetween 30° S and 30° N of latitude with oneepiion: station BELE

(Belem, Brazil), which has an amplitude of dailyaobes as high as 11 mm.

3.2 Noise analysis of ZTD @

As shown in section 2, the ZTD residuajsp represent the misfit between real and modeled. ddis misfit can be
reselved in several ways. The easiest one is armapip with a white noise process, which assumaestlile residuals are not
correlated in time. In this case we adopt ordifaeast-squares (LS) and estimate the covariancéted fparameters as in
equation (5). This approach is widely used in ZWVi¥l estimations in terms of climate applicationgy(eJin et al., 2007;
Flouzat et al., 2009; Morland et al., 2009; Ningakt 2013; Bock et al., 2014). Nilsson and Elge(2808) applied
additional covariance as a function of time so@stm assume a pure white noise process. Howe&,was further used to
estimate the uncertainties of the determined patem&vith the covariance matrix modified by thedditional covariances.
Combrink et al (2007) proposed an ARMA(1,1) model to derive thastrproper trend uncertainty which takes care ef th
real characteristics of IWV. Oladipo (1998) haslgsed the power spectra of climatic time series.efghasized that the
first order autoregressive model is the preferre@ dor most cases analyzed. Other time series ast fitted by
autoregressive models of second, third or fourttenrMann and Lees (1996) pointed out that climttie series have a
character of red noise in form of an autoregressiRé¢l) process. Percival et al. (2004) modeleddimate time series of
the North Pacific (NP) index as a first-order aagyessive process, namely AR(1). If ZTD time sedss believed to
resemble climatic variations that happen over yahaen should these series also follow a low-omigoregressive model
such as the climatic data do? When addressingjtigstion, we propose to decide on an optimum mimde¢he stochastic
properties of ZTD time series using the Bayesidormation Criterion (BIC) (Schwarz, 1978) and Maxim Likelihood
Estimation (MLE) values. Both values are computeditting different noise models into the residuaiée start by applying
a pure white noise model. In this case, the comadaf fitted parameters is estimated with equafirand the error of each
individual ZTD sample is the only one that influesdhe results. Then, a combination of power-laly) @ghd white (WH)

noise process is implemented for which a covarianagix of observation€ is computed a@
— a2 2
C=a"l+b, LI, (10)

wherea andb are the amplitudes of the WH and PL noise procesgeilel andJy are the covariance matrices of white and
colored noise, respectively (Williams et al., 2Q08)Je completed our analysis with autoregressivetifsaally integrated
moving average noise model (ARFIMA) of varying aleo, d andqg of AR, Fl and MA, respectively. For a simple first
order autoregressive noise model one gets an awtnaace of (Bos et al., 2013):

2

C(gzmi €710, ) = 1f—¢2¢ (11)

whereo is a standard deviation of WH noise ahds the coefficient of the AR(1) model. We appli&H, PL+WH and
different autoregressive noise models using thetddesoftware package (Bos et al., 2012) and ouisiets are based on
the BIC and MLE values computed. Once the stoohastdels were fitted to the residuaisyp presented in a doub@
logarithmic scale. Figure 8 shows an example foe fstations selected for different climate zone AR, Managua,
Nicaragua; MAS1, Gran Canaria, Spain; AUCK, Newlded; BJFS and SYOG, Syowa, Antarctica). Table® lihe trend
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with associated uncertainties for different noisedeis employed in this research. As can be sean Rower Spectral
Densities presented in Figure 8, WH noise, whicls widely used in previous studies to estimate tnemcertainties does
not fit the ZTD residuals at all. The PL+WH noisedgl is the most proper one for use with GPS resigosition time
series and it somewhat fits both medium and hidtezgruencies of the PSD. However, it fails in thes lfrequency part,
leaving some of the power unexplained. This pant glaift artificial correlation and increase theualof uncertainties o@
determined parameters. ARFIMA(l,O@H is quite &mito PL+WH for MANA and SYOG. When BJFS, MAS1 or
AUCK are considered, ARFIMA(1,0)+WH matches theideals better than the PL+WH noise model. The lodeo
autoregressive noise models are though the be&TDrfrom any station analyzed. AR(1) is quite danito the residuals,
however, it does not explain all power below 30 (NB, 10 (AUCK), 10 (MAS1), 100 (BJFS) and 1000 (S®PDcpy.
This might arise from the fact, that a simple defeite between each individual observation andrésigus value that is
assumed in AR(1) as in equation (1) is not what Zifie series really follow. However, adding a put@te noise to AR(1)
i.e. AR(1)+WH makes the noise model suitably wéllefl to the residuals;zp. The adding of higher orders to the
autoregressive model does not bring a clear arbleismprovement when looking at the PSDs. Howeves,go further
from the first to the fourth order of autoregressivodel to examine if they will bring any improvemén a goodness of fit
and in a trend error. All of them included whiteisgoas a background which explained low and higlyifencies in the
residuals. We compared them for the noise modedsridbeed above. The simplest white noise resultedhe five stations
with trend values of: -0.03 £ 0.11 (MANA), 1.29 #8 (AUCK), 0.32 + 0.05 (MAS1), 0.49 + 0.07 (BJRS)d —-0.31 + 0.03
(SYOG) mml/year (Table 2). For the full results ske Table S2 in the supplementary information. dther examined
stations had similar uncertainties of trend witlv fexceptions. One such exception is TWTF (Taoyuiy, Taiwan) with a
trend equal to -2.29 £ 0.27 mm/yr. When a PL preogas added to the WH noise (PL+WH), the trend uacgy was
enlarged by maximum of up to 105 times in comparigothe pure white process. A slight differencéhia trend values is
also noticed when comparing the results. First matéoregressive noise model, AR(1), increasesrémal uncertainty by 4
times. However, looking at the PSD plot (Figure BiR(1) does not fit the residual@/hen white nossadded to AR(1),
(AR(1)+WH), the trend values remained almost thaesebut its uncertainty increased 3 and 10 timégnicompared to the
AR(1) and WH-only models, respectively. The foustlller autoregressive noise model in combinatiom &itvhite noise
process, AR(4)+WH, was chosen here as the optimalfor ZTD residuals based on the BIC and MLE val(iEable 2).
The trend uncertainties are inflated 8 times compao the WH noise model. The ZTD residuals desdritny a fourth order

autoregressive noise model in combination with &/hivise (AR(4)+WH) take the form of:
EZTDi =& [EZTDi_l te [£ZTI3,_2 T [EZTDi_s t¢, [EZTDi_4 +ta (12)

where p,...,¢4] are the coefficients of the autoregressive moudglich describes how much the current value of ZTD
depends on the four previous observationsanepresents white noise.

As AR(4)+WH noise is a combination of two indepemtdeoise models, we can describe a percentageilmation of each
of them to the overall model. WH contributes ZTBideials in 86%, 43%, 27%, 42% and 93% with standerdations of
15.4, 9.2, 7.7, 11.4 and 8.5 mm for MANA, MAS1, AKICBJFS and SYOG, respectively. Likewise, the AR@)del
contributes in 14%, 57%, 73%, 58% and 7% with saasddeviations of 6.3, 10.7, 12.7, 13.5 and 2.4 fomMANA,
MAS1, AUCK, BJFS and SYOG. We estimated the averagse level for all climate zones considered ibl€s8. Table 3
shows that median amplitudes for AR(4)+WH are betw&.17 and 13.00 mm for white noise with the maxinfor the
tropical and the minimum for the polar and Alpirene. The autoregressive part of this combinatienamplitudes between
4.07 and 9.59 mm with a maximum for a tropical eliem The coefficients of the autoregressive proaesshe highest for
the first term (AR(1)) with a maximum for the tropl zone.

Figure 9 and Table S2 in supplementary materiadsvsiralues of trend when a pure white noise andragtessive process

of fourth order plus white noise are assumed. Njorel dependencies can be observed. Six pairatdiss situated close
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to each ot@show a discrepancy in trend valukesd@ are: ALRT-KMOP=SUAT-CHET, KOUR-MAPA, TWTF-TCH
P211-TSKB, AUCK-MQZG. Four of these pairs show eliint time leng=rL0 to 15 years). Trends estich&de stations
situated in West coastline of North America, Easastline of South America, middle Europe, Indiane@t and South
Australia become insignificar@wen AR(4)+WH isas®d. Trends for almost all stations in polar atpine (SH) become
insignificant when AR(4)+WH noise is assumed. $tai DAV1, DUM1, MCM4 are the only exceptions. Thesmw a
significant trend both for pure white and AR(4)+Vgkbcess.

We estimate the ratios of the trend uncertaintegs/dd with AR(4)+WH §ar():wh) and WH-only &) noise models as:

ratio = ARG

T (13)
This ratio ranges betweep 1 and 12 for the sehalyaed stations (Figure 10 and Table S2 in suppieany materials). No
climate classification dependence is apparent Hene.trend itself may become insignificant when ttoése model was
changed from white into AR(4)+WH as e.g. for ALGALIC, ALRT, HRAO, TOW2, etc! This suggests that rand
uncertainty derived from ZTD time series can benpteted in terms of climate change onI@th&:b&stic properties are

fully accounted for by a proper noise model, whitiviously is not a white noise only model

4 Discussion @

Homogenously re-processed time series within opro solution delivered consistent time series wibthartificial jumps
due to changes in models (as was showBtejgenberger et al. (2007)). Ning et al. (201§)lied a PMTred test (penalized
maximalt test modified to account for first-order autoresgige noise in time series) to detect breaks iieidihces between
IWV estimated with ERA-Interim model and GPS-retdd estimates. They corrected the detected breaksiethe epoch
was not reported before in a log-file of statioronibgenisation of ZTD data in this study was perfednby manual
detection of breaks, cross-validation with statidog-files and the use of earthquake files and discontinuity file from
ITRF2008. It brought an improvement in ZTD standaeliation and trend estimationkling et al. (2016) found a
maximum difference in trend between homogenized mmishomogenized IWV data of -2.28 kd/rfor KELY station
(Kangerlussuag, Greenland). In our research, KEI2$ affected by 4 offsets. However, a most drantdi@nge in trend of
3.7 mm/decade for data before and after homogémizatas found in this study for station POHN witho#sets being
applied. One can be misled by trend estimatesfdfiet§ are not removed properly or neglected. Bssidadetected or
unmodeled discontinuities may also introduce a aomept of random-walk noise. Homogenization shoaadnsidered for
a proper analysis of ZTD time series, in particéitarclimate studies.

The main variability of ZTD comes from ZWD, as wasown in this study in a pre-analysis and alsadtatrlier by Jin et
al. (2007). Temporal variations determined herengtba good agreement in amplitude and phase farahcnrves for both
Northern and Southern Hemisphere. The maxima ofi@nsine fall between July and August for the NemthHemisphere,
while between January and February for the Southiemmisphere. Both periods fall in the summer fa tlorresponding
Hemisphere. Annual amplitudes vary between 10 &@lirhim. The largest were found for the tropical zand oceanic
coasts with a few large amplitudes for east Asigah and east coast of North America. The polarAdpthe zone is
characterized by almost flat annual sine curve,ctvhis due to lack of differences between summer @&imder. The
maximum of the semi-annual cycle falls in January the Northern Hemisphere and are uncorrelateghase for the
Southern Hemisphere. Similar results were repdseddre by Jin et al. (2007).

The largest amplitudes of daily oscillations arerfd for stations in the tropical zone, while thaséoth polar and Alpine
zones are almost flat. Day-to-day variations afisen changes in ambient temperature and presswmolgenous daily
changes were found here for a set of Europearostativith a peak of daily oscillation around 18 lsourhe same was

reported before by Jin et al. (2009) with IGS GPSepvations and data from Comprehensive Ocean-Athawse Data Set

11


Anonymous
Texte surligné 

Anonymous
Note
these stations are not close together

Anonymous
Texte surligné 

Anonymous
Note
add the information on time length in Table S2

Anonymous
Texte surligné 

Anonymous
Texte surligné 

Anonymous
Texte surligné 

Anonymous
Note
how was a value deemed significant?

Anonymous
Barrer 

Anonymous
Texte inséré 
3.7

Anonymous
Texte surligné 

Anonymous
Note
this is a well known fact for all parameters

Anonymous
Note
The Discussion and Conclusion sections need to be revised accordingly with the rest of the manuscript, and avoiding too many repetitions.


10

15

20

25

30

35

40

(COADS) surface pressure. Similar results were adgmrted before by Ning et al. (2013). Howevew faconsistences
were noticed. A diurnal peak for station VILL (\dlueva, Spain) falls at 1 a.m. in this study, wkiilese happened at 6
p.m. in Ning et al. (2013). However, the diurnalpditaide for VILL is insignificant, i.e. smaller thaits error. Diurnal peaks
for other stations from Europe agree to within 2rsowith those shown in Ning et al. (2013).

The frequency spectra of the ZTD estimates and>tR8 position time series follow a well-defined feddistribution, i.e.
amplitude and frequency are related by means @iweplaw. However, their spectral indices diffee. iGPS position time
series stochastic character is not transferrede@ower property of the ZTD time series. This shofvthe good separation
between position and troposphere estimates withatter following the properties of other climatriss.

Combrink et al. (2007) showed that an ARMA(1,1)seomodel represents residuals of IWV data bettan thpure white
noise model. The same was reported in this studyARMA(1,1)+WH. However, we added a further stem amalyzed
higher orders of an autoregressive process (up'tigher orders are computationally intensive). TR(4)+WH noise
model is found to be optimal for ZTD time seriesdxh on the BIC and MLE values. White noise, whikidely assumed
for ZTD time series, does not fit ZTD residualsalt PL+WH noise, which is commonly used for GPSipion time series,
fails for the low frequencies and can bring ar#ficorrelations within. The AR(1) model that itmost often used for any
of climate time series (e.g. Percival et al., 20€ty the ZTD residuals as well, but only if whiteise was added.
Uncorrelated white noise explains low and high tiexacies of data, while the autoregressive modelpiimal for the
medium frequencies. We added another three orddtetautoregressive part of the model and fouat] the fourth order
is the best noise model with respect to the BICMh& metrics.

Combrink et al. (2007) showed that 1-sigma uncetitss of the PWV trend for station HRAO (Hartbeempo RSA)
significantly decreased when: 1) noise model ind¢pehanged from ARMA(1,1) to white noise and 2) bemof data used
in the analysis increased. In this analysis, wel dseyears of data from station HRAO and obtainddsggma uncertainty
of ZTD trend at the level of 0.07 mm/yr for pureitehnoise and at the level of 0.52 mm/yr for ARMJH. When shorter
time series is used, the error will be appareritiér.

Jin et al. (2007) accounted for trend values ino@rhresolution ZTD series for a set of 150 IGSiste. They showed
significant up- and downward trends with almosf ledlthem higher than 2 mm/yr for Northern and $®uh Hemisphere.
They showed that almost all stations for Northeemtisphere have a positive trend, while those irtt&on Hemisphere are
directed downward. However, their analysis wasgreréd for a white—noise-only process. Our analgéigl-years ZTD
series shows few similarities to what was shownJiy et al. (2007). The number of 21 stations hawala (up- or
downward) trend. These are: KOKB, NEAH, LPAZ, GUAALRT, BRFT, NKLG, VILL, MATE, POTS, LAMA, NYAL,
RAMO, ARTU, NRIL, IISC, BILI, KARR, PERT, DAV1, KERS.

We estimated the trend uncertainties with the ARMIH noise model. This showed that to date, trencertainties were
underestimated of up to 12 times for some statigvisen the AR(4)+WH noise model was assumed sonmelsrbecame
insignificant, which means that they should notéhbeen interpreted in terms of climate change. Whpuare white noise is
assumed, only 11 from a set of selected 120 statiawe insignificant trend within 1-sigma error.bBinese are: MANA,
FAIR, SSA1, HOFN, P211, MDO1, MCM4, KIRO0, VNDP, Wlland WSRT. Having changed the noise model from WH
into AR(4)+WH, the number of only 64 trends fromD1gtations is significant. Trends estimated fotiats MANA, FAIR,
MDO1, MCM4, KIR0O, SSA1, HOFN, VNDP, WILL and WSRTainsignificant for both white and autoregressitéourth
order plus white. Few estimates of trends, whictfaumd in this study as insignificant for AR(4)+Widere shown irdin et
al. (2007) with a pure white noise. These trends wiemived for: NEAH, NANO, WILL, QUIN, VNDP, MDO1, AGO,
HOFN, LAMA, KIR0, WSRT, HRAO, DGAR, KERG, CAS1, MCH MAC1, HOB2, ALIC, NTUS and TWTF. Also, few
stations all located at or close to Antarcticasagi MCM4, CAS1, MACL1, SYOG and PALM, used befoyeTthomas et al.
(2011), have insignificant trends, when AR(4)+WHmployed.
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4 Conclusions

A data set of homogenous ZTD data could be useddsimilation into climate models similarly to thessimilation into
numerical weather prediction models. This studydkses the deterministic and stochastic charatiesisf ZTD time series
for a selection of 120 stations from the re-analydiglobal tracking stations from more than 7Gftishs around the world
for 1995 to 2015. Our TIGA second re-processingr@2) at the University of Luxembourg solution &l the recent
model developments and the latest InternationathHaotation and Reference Systems Service (IER$)D 20nventions.
This re-processing guarantees consistent ZTD dweicomplete time span and only time series lonige@n 6 years have
been considered. Similar studies have shown tlatetprocessed ZTD time series and the derived tive series can be
employed for the evaluation of re-analysis modeld potentially also for climate models. Since ZT®Dinterpreted as a
change in climate, it needs to be properly analyzfdre we decide on any climate change studieenTD time series
are affected by discontinuities of various sourtlest include hardware changes, earthquake and wikreburces.
Discontinuities or offsets in the ZTD time seriegythde the accuracy of the magnitude of the estuinaend if they are not
identified and modeled. In this study, we have sautomatically (partly manually) identified a numbef 2500
discontinuities in the position time series for ffg0 stations. When these were applied to the Zi@ series, the most
dramatic change in trend of 3.7 mm/decade was folandstation POHN. Stations WES2, TSKB and TWTF are
characterized by the largest number of offsetsiegpl

We have then set up a priori significant frequestiet appear in ZTD time series, i.e. annual, semual, a third of a year,
a quarter, daily and sub-daily. These periodic afgrf mis-modelled will bring additional correlati into the stochastic
component of the underlying noise of the ZTD realduFurthermore, it can artificially remove sonfettee real power,
although this is quite insignificant. The residtiales series will vary with every change in deteristic model. We sub-
divided the GPS stations from our repro2 solutiao ffive different climate zones according to thépken-Geiger climate
classification. A total of 120 GPS stations wereduor this study from all the five climates zonkstributed globally. We
examined on all significant periodicities after @ljng the data for discontinuities. The annualkpisathe most powerful
one for all stations included in the study. Its #itade ranges between 10 and 150 mm being depedtetite climate zone
the station is located in. The smallest amplitudese found for the polar and Alpine zone, but dialy stations situated in
Southern Hemisphere. The amplitudes for the paidrAdpine zone of the Northern Hemisphere are atrasdarge as for
the continental zone. The annual peak is followgdhe semi-annual oscillation, of which the powehalf as large as for
the annual peak for 70% of the analyzed stations. fa¥ind very good consistency in phase shifts lier ¢emi-annual
oscillation. These fall into January/February fémast all stations situated in the Northern Heméghwith significant
amplitude, when compared to those from the SoutHemisphere. The phase shifts for stations in thélgrn Hemisphere
are less consistent, possibly due to the more dariean-land distribution. However, five of thertyated in Antarctica,
have consistent peaks in early January. The ardpktof daily curve fall between 0 and 12 mm. Theatgst were found for
the dry zone while the continental and the polal Alpine zones are characterized by the smallgstalaay changes.

Up until now, the stochastic component of the ZE3iduals has widely been modeled as a white naigepocess i.e.
with no time correlation between observations. Hattcase, little impact on the parameters (inclydiend) and their
uncertainties of the deterministic component iglent. In this study, we proposed an innovative epgh of autoregressive
process plus white noise (AR(4)+WH) to investigdue stochastic component of the ZTD residual tierées. We used few
different assumptions of noise model and showeskdan the BIC and MLE, that an autoregressiveqa®of fourth order
appears to be the most appropriate model for thigerzharacteristic of the ZTD residual time seriHss is in agreement
with other results from climatologists who analyzifflerent climatic time series such as temperatpressure and humidity
with all follow an autoregressive noise model. Tasidual ZTD time series show a temporal corretati@at appears to be
explained by an autoregressive process of fourtterocombined with white noise irrespective of tHenate zone

considered. The tropical zone is characterizechbyldrgest amplitude of autoregressive noise (8069 compared to other
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zones and the largest median of amplitudes of wiitse (13.68 mm). All climate zones are charanteriby similar
median coefficients of AR(1) (around 0.80+0.05)hagt minimum for polar and Alpine. However, this edms the highest
coefficients of AR(2) (0.27+0.01) and AR(3) (0.11&0), clearly being different from the other zokessidered.

We show that 56 of 120 trends from selected statinrihis study became insignificant when the optimmoise model was
employed. We compare this to 109 significant tremtien the WH noise only is assumed. Some of thadierss were also
analyzed in previous studies in terms of long-terthanges. Therefore, we would recommend that a cuatibh of
autoregressive process with white noise has tabkentinto account when aiming at the estimatiosegfular trends from
any tropospheric (ZTD or IWV) series. If a proptwchastic model is not employed, one will obtaisules that cannot be
interpreted in terms of climate change as the daitgy of the ZTD residuals may be underestimatga liactor of 3 to 12

compared to the white noise only assumption.
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Figure 1: 120 selected global stations from the repcessed TIGA solution. The selection is based onethime length of the ZTD
time series and their quality. We have only seleatithose sites having a minimum length of 6 years.
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Figure 3: PSD of ZTD for BJFS (Beijing, China). Peak at annual, semi-annual, 3- and 4-monthly as wedls daily and sub-daily
frequencies can be easily identified in the plot. Tépower of the original series is plotted in red, hile the power of residuals with
respect to the model from equation (2) is in blueRemaining peaks in high frequencies were found toebnon-significant.
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Figure 4: Annual amplitudes for 120 selected statits. Stations are classified into five different cihate zones as in Figure 2. The
length of arrow depicts the amplitude of the annuakine curve with a reference to 40 mm. Phase shiftse counted as clockwise
beginning from the North which means positive peakn January.
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Figure 6: (a) Annual amplitudes (mm) of 120 selectkstations w.r.t latitude. (b) Phase shifts (giverin month) of 120 selected

Latitude (°)

stations w.r.t latitude.

21

Latitude (°)



Amplitude (mm)

Figure 7: (a) Diurnal amplitudes (mm) of 120 seleedd stations w.r.t latitude. (b) Phase shifts (givein hours) of 120 selected
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Figure 8: Examples of power spectra of five statiamfrom different five climate zones. (a) tropicalMANA, Managua, Nicaragua.
(b) dry: MAS1, Gran Canaria, Spain. (¢) warm tempente: AUCK, New Zealand. (d) continental: BJFS, Beijig, China. (e) polar
and Alpine: SYOG, Syowa, Antarctica. Different noi® models: WH (blue), PL+WH (light green), ARFIMA(1,0+WH (turquoise),
AR(1) (brown), AR(1)+WH (pink), ARMA(1,1)+WH (viole t) and AR(4)+WH (Red) were fitted into residuals (gey).
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Figure 9: Values of trends (mm/yr) and a differencein trends (mm/yr) when pure white noise (WH) and he combination of
autoregressive and white noise (AR(4)+WH) processase being assumed.
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Figure 10: Ratio of trend uncertainties estimated ith AR(4)+WH and WH-only noise model, see Table Sf more details.
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Table 1. Median annual and diurnal amplitudes (mm)for each of five climate zones considered in thigugly.

Climate zone Median annual amplitude (mm)| Median diurnal amplitude (mm)
Tropical 42.0+0.8 29+0.8
Dry 43.4+£0.8 3.2+0.8
Warm temperate 41.3+0.8 1.4+0.8
Continental 48.6 £ 0.8 0.8+0.8
Polar and Alpine (NH) 40.9+0.8 0.4+0.8
Polar and Alpine (SH) 11.5+0.8 0.4+0.8
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Table 2. Trends and uncertainties (mm/yr) for diffeent noise models tested in this study. Five statis are
juxtaposed: MANA, MAS1, AUCK, BJFS and SYOG, that represent five different climate zones: tropical, dy, warm
temperate, continental and polar and Alpine, respdovely. The selection of the best noise model wasded on BIC

and MLE values. The optimal model minimizes BIC andnaximizes MLE are in bold.

Noise (a) MANA, Managua, Nicaragua (b) MAS1, Maspalomas@Gran Canaria, Spain
Trend Error BIC MLE Trend Error BIC MLE
WH -0.03 0.11 1360907 -680423 0.32 0.05 176349 1783
PL+WH -0.35 2.10 1195210 -597572 344 3.14 1355913 -677918
ARFIMA(1,0)+WH -0.35 2.04 1192072 -596002 1.03 0.44 1354127 -677025
AR(1) -0.35 0.30 1213441 -606689 0.82 0.27 1372466 -686196
AR(1)+WH -0.35 0.50 1192131 -596033 0.89 0.40 18341 -677046
ARMA(1,1)+WH -0.35 0.50 1192133 -596033 0.89 0.40 354170 -677046
AR(4)+WH -0.35 0.69 1192091 -596009 0.53 0.32 135K0 -677004
Noise (c) AUCK, Whangaparaoa Peninsula, New Zealand (d) B-S, Beijing China
Trend Error BIC MLE Trend Error BIC MLE
WH 1.29 0.08 1788817 -894370 0.49 0.07 1411516 74265
PL+WH -1.83 5.49 1325702 -662609 0.62 1.93 1224722 -612328
ARFIMA(1,0)+WH 0.79 0.93 1320723 -660320 0.53 0.29 1217661 -608795
AR(1) 1.40 0.56 1322653 -661287 0.53 0.27 1243013 621475
AR(1)+WH 1.33 0.60 1321365 -660642 0.53 0.26 127767 -608805
ARMA(1,1)+WH 1.33 0.60 1321367 -660642 0.53 0.26 1779 -608805
AR(4)+WH 1.29 0.50 1320626 -660270 0.41 0.49 124766 -608798
Noise (e) SYOG, Syowa, Antarctica
Trend Error BIC MLE
WH -0.31 0.03 1638636 -819283
PL+WH 1.10 0.89 1357870 -678898
ARFIMA(1,0)+WH 1.59 111 1340947 -670435
AR(1) -0.29 0.11 1398359 -699143
AR(1)+WH 0.06 0.30 1342770 -671348
ARMA(1,1)+WH 0.06 0.30 1342772 -671348
AR(4)+WH 0.06 0.30 1340825 -670372
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Table 3. The median values of noise parameters feach of five climate zones considered in this studyhe associated
error bound of median amplitudes of noise and media fraction of AR are the 1-IQR @r-Quartile Range) values.

The associated error bounds of median coefficientxe the 1o/standard deviation@

Median amplitudes of noise (mm)£1-IQR
Climate zone WN AR
Tropical 13.0045.67 9.59+8.12
Dry 9.23+6.18 6.80+5.72
Warm temperate 9.70+8.28 8.75+7.93
Continental 8.77+7.62 7.07+6.03
Polar and Alpine
(NH) 7.17+6.45 4.85+4.06
Polar E’g‘j)A' pine 8.91+8.05 4.07+3.60
Median coefficients of AR(4)+1le
Climate zone ARG ARE) ARE) ARMK4)
Tropical 0.90+0.08 0.05+0.08 0.01+0.03 0.03+0.01
Dry 0.78+0.04 0.19+0.03 0.05+0.01 0.01+0.01
Warm temperate 0.72+0.03 0.17+0.02 0.08+0.01 -0.01+0.01
Continental 0.80+0.02 0.08+0.01 0.09+0.01 -0.03+0.01
Polar (""l\'lﬂ)A'p' "1 0.61£0.02 0.27+0.01 0.11+0.01 -0.02+0.01
Polar (agj)A'p' e | 0614001 0.2840.01 0.13+0.01 0.01+0.01
Median fraction of AR+1-IQR
Climate zone
Tropical 0.33+0.22
Dry 0.30+0.23
Warm temperate 0.44+0.37
Continental 0.40+0.31
Polar and Alpine
(NH), 0.26+0.21
Polar and Alpine
0.21+0.18
(&)
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