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Abstract. Zenith Total Delay (ZTD) time series, derived frahe re-processing of Global Positioning System$J>&ata,
provide valuable information for the evaluationgbdbal atmospheric reanalysis products such as Ef&im. Identifying
the correct noise characteristics in the ZTD tireges is an important step to assess the 'true’nitade of ZTD trend
uncertainties. The ZTD residual time series for 39915 are generated from our homogeneously reepsed and
homogenized GPS time series from over 700 globdiliyributed stations classified into five majornadite zones. The
annual peak of ZTD data ranges between 10 and I&0with the smallest values for the polar and Alpzane. The
amplitudes of daily curve fall between 0 and 12 wmith the greatest variations for the dry zone. &htoregressive process
of fourth order plus white noise model were fouade optimal for ZTD series. The tropical zone theslargest amplitude
of autoregressive noise (9.59 mm) and the greamaglitudes of white noise (13.00 mm). All climatenes have similar
median coefficients of AR(1) (0.80+0.05) with a mium for polar and Alpine, which has the highestfticients of AR(2)
(0.27£0.01) and AR(3) (0.11+0.01) and clearly difet from the other zones considered. We showSBatf 120 examined
trends became insignificant, when the optimum noiselel was employed, compared to 11 insignificasnds for pure
white noise. The uncertainty of the ZTD trends rbayunderestimated by a factor of 3 to 12 compaoetti¢ white noise

only assumption.

1 Introduction

Continuous Global Navigation Satellite System (GIN&Sservations, in particular those from the Gldbasitioning System

(GPS), play a prominent role to help us improve werstanding of many of the Earth’s internal artérnal processes.
Especially the position time series have been widehployed to investigate various geophysical pgses (van Dam et al.,
1994; Larson et al., 1997; Wu et al., 2003; Sdilale 2007; Teferle et al., 2009; Woppelmann et2009; Fu et al., 2013),
which act on the Earth’s surface and generally icgua measurable displacement of the GPS antermah&®other hand,
GPS has also proven to infer the conditions oféatmosphere, particularly in the lower and neutrednfionized) layer

known as the troposphere, which plays an imporatin generating both weather and climate (Rohail.e2014).

As the GNSS signal travels from the transmittingeliées to the ground-based receiver, it is sulgj@cto variable

atmospheric conditions. The atmosphere bends timalscausing a delay in the arrival time (path teeging). In the

troposphere this delay depends on the integrattedfiethe densities of dry air and water vapor gltime entire atmospheric
column. Because the amount of delay in the tropespis directly related to the integrated obseovetiof atmospheric
conditions, including the amount of water vapor, &8\can remotely sense integrated atmospheric waper (Bevis et al.,

1992). The atmospheric products derived using GRBServations can further be used to improve, &g.,accuracy of

forecasts generated by numerical weather predi¢hdP) models (e.g., Mahfouf et al., 2015; Wilgadrak, 2016).

The total atmospheric delay depends on the effedtignal path between the satellite and receivesmaas and therefore
indirectly on the satellite elevation angle, whimtovides a slant total delay as a function of tlewation angle. This slant
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total delay can be converted into an equivalenaydéh the vertical (zenith) direction using a cepending mapping
function (MF) and is known as Zenith Total DelayT@). Therefore, ZTD provides a measure of the irgegyl tropospheric
state and it has been shown to be beneficial taragpit into two components: the Zenith Hydrost&telay (ZHD) and the
Zenith Wet Delay (ZWD). Taking into account surfgmessure and temperature, either from observatiors adequate
5 model, the ZTD can be converted using the ZWD emtoestimate of the Integrated Water Vapor (IWV)teah of the
atmosphere (Bevis et al., 1992) and the amountWf has a direct relation to the change in tempeeaflirenberth et al.,
2003). Hence the use of ground-based near real@R® observations became quickly a popular reseapih for weather
forecasting. The use of GPS was further promotedoiver cost as compared to classical meteorolbgieasors, the
establishment of various regional and global statietworks, and activities related to the assimitabf the GPS-derived
10 products in NWP models (Guerova et al., 2004; Walberf et al., 2007; Dousa, 2010; Mahfouf et 012, Kroszczynski,
2015; Guerova et al., 2016). Although the poterdfahe ground-based GPS-derived IWV products fionate studies was
already acknowledged by Yuan et al. (1993), theg4@mm trend of IWV may be used as a proxy indicatba possible
change in climate, initially the number of studiemained relatively low (Hagemann et al., 2003js hoted here that IWV
plays a vital role in Earth’s climate as it is tilyhcoupled with the temperature in the troposph@&ies coupling drives a
15 positive feedback loop in climate modeling — makany temperature changes larger than they woulotheErwise (Soden
and Held, 2005).
As more GPS data have become available duringaitewo decades and the importance of homogeneeguocessing of
the observations was acknowledged, interest inldhg-term applications of the GPS-derived troposphgroducts has
increased (Vey et al., 2009; Thomas et al., 20TckBet al., 2016). However, the long-term trend srudhastic properties
20 of IWV (as derived from ZTD) remains a major souafeuncertainty for a comprehensive understandihthe global
climate system (Held and Soden, 2000). Multipleviones studies have shown that the noise charatitsrisf GPS-derived
trend parameters from station position are not gme only by a white noise process (Johnson ancegi995) but are
also affected by time-correlated noise (e.g. Laimgped Johnson, 1997; Mao et al., 1999; Williamalgt2004; Teferle et
al., 2008; Bos et al., 2013; Klos et al., 2016} islnow widely accepted that if we assume only ldtavnoise process
25 affecting the GPS position time series, the unagrés of the parameter estimates, particularlytha trend, would be
underestimated by up to an order of magnitude. heweso far re-processed GPS observations haveussehto estimate
water vapor using white noise assumptions e.gafadyzing meteorological events (Brenot et al.,&®bock et al., 2007;
Nilsson and Elgered, 2008; Labbouz et al., 201Bxfimnate applications (Sguerso et al., 2013) asginailation of ZTD in
operational NWP models (Yan et al., 2009; Mahfaudle 2015). Therefore, identifying the correcisgocharacteristics in
30 the ZTD/IWV time series is an important step ineasing the 'true’ magnitude of ZTD/IWV trend estiem and is the
prime objective of this study.
Climatologists have described the noise properfeany data interpreted in terms of climate as atoregressive noise
process (Matyasovszky, 2012). They have shownttigitnoise process gives better results comparebetsimple white
noise assumption. ZTD is directly linked to climpt®cesses and one would expect that the samelyindenoise model
35 may fit as it does for other climate parametersengithe frequency spectra follow a well-definecttahdistribution, i.e.,
frequency and amplitude of the signal are relatednkans of an autoregressive process. This imfiiesthe uncertainties
of ZTD trends are also expected to increase cordptarehe white noise assumption. Consequently Zffi® trends that
have been provided in recent publications and whiete used in climate studies may have been urtttee¢ed and should
not be considered for future investigations. Thesesiderations motivate us to undertake a compedemssessment of
40 the stochastic properties of ZTD time series, thgrebtaining new estimates of ZTD trends and thicertainties in
addition to an improved understanding of the ZTseapthat can be further interpreted in terms whate, meteorological
events and during potential assimilation in geneiraulation models in future. Therefore, the pnigntarget of this study is

to determine the most appropriate stochastic mfudehe ZTD time series on the basis of our regehdmogeneously re-
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processed GPS time series. These time series siemoier 700 globally distributed continuous GP&ishs and cover the
period 1995 to the end of 2015. The consortiurhefBritish Isles continuous GNSS Facility (BIGFdahe University of
Luxembourg TIGA Analysis Centres (BLT) have re-gmeld the full history of GPS data collected by abgl tracking
network of stations using the latest available nodad methodology. While the temporal consistericthe time series is

5 addressed by keeping the bias models and procesgitigpdology the same for the whole data periog,GIPS position
time series are often subjected to discontinuitegch are either due to real position changes berofactors that do not
necessarily reflect real geophysical events. Suciomected discontinuities are known to adverséfcatrend estimates of
the concerned position time series (Williams et 2003a; Thomas et al., 2011; Griffiths and Rayl3)0and introduce
random-walk noise into the time series (William@02b; Santamaria-Gémez et al., 2011).

10 In order to employ the ZTD time series for climatenge studies, a homogenization of the ZTD timese.e. the need for
identifying and correcting discontinuities, is nesary (Vey et al., 2009; Gazeaux et al., 2011; nDs#012). While
automated change detection methods have also leekcated to GPS time series (Williams et al., 20063@dabandeh et
al.,, 2011; Gazeaux et al., 2013), identifying acdntinuities still requires significant visualsjection and manual
intervention. For ZTD time series the detectioralbiiscontinuities is particularly crucial as irost cases the climate signal

15 may be comparable in size to the magnitude of thelitudes of the discontinuities. Furthermore, uadted discontinuities
in the ZTD time series may also introduce a compboérandom-walk noise.

Our investigation of the noise processes in ZTDetiseries is based on the climate zones followiegkbppen-Geiger
classifications (Peel et al., 2007). In this stuwayfocus on five climate zones for classifying w@rld's climate based on the
annual and monthly averages of temperature andpitegon. These five major climate zones are ttapidry, temperate,

20 continental and polar and Alpine. It is noted hitr@ one can also investigate the noise proceZ\ib or the IWV time
series, which are arguably more linked with theewaapour variability in the atmosphere. Howevestlly, a pre-analysis
showed that the stochastic properties of the ZW® ZND time series are nearly identical (see Figbteas part of the
supplementary material) and, secondly, the predepreduct for assimilation in NWP models are théZ8stimates and not
the IWV estimates. To convert the GNSS derived Z¥WOWYV, a water vapour mean temperature parameter @GPS

25 station is required. However, the source of thimpeter varies; it can be estimated from empimcatlel or from observed
surface temperature. Thus the accuracy of thisnpeter introduces an error in the trend estimatélsgbh and Elgered,
2008). Recent extensive studies by (Wang, 2016 dawnonstrated that depending on the choice afdhece of the water
vapour mean temperature parameter, the IWV trendvsta relative error larger than 10 %. Thus, fonsistency ZTD
should be converted to IWV once it has been assiedl and we argue that this would also be the wagtforward for

30 climate models.

Finally, the paper is divided into five differer¢écdions. The ZTD estimation from GPS, the GPS gataessing strategy,
the detection of discontinuities in the ZTD timeise and the homogenization (verification and acifom) process are
described in section 2. The ZTD time series pardmetodel and the features of the estimated pesisigjnals are explained
in section 3. The main results of the study, thiseanalysis, is covered in section 4. Sectiorsbudises the core results and

35 section 6 provides the conclusions of the paper.

2 Methodology

In the following section, we describe the GPS gatacessing strategy employed which provided the dgemeous daily
GPS solutions for this study, including the modgjliand estimation of the ZTD values. We detail tioenogenization
40 strategy applied to the ZTD time series and findlgcribe the ZTD noise models we have investigated
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1.1 GPS data processing and ZTD estimation

The International GNSS Service (IGS) (Dow et ab0%®) recently completed the second re-processingpaan (repro2).
Using the latest available bias models and mettoagothe different IGS analysis centers (ACs) reharead the full history
of GPS data collected by the global tracking nekwioom 1995-2015. At the University of Luxemboueg part of our IGS
5 Tide Gauge Benchmark Monitoring (TIGA) Working Goactivities, we completed a new global solutiomgsip to 750
GPS stations. Figure 1 shows a map of 120 selesttgins for which we will present our results. ifsan be seen, the
stations are globally distributed and the timeesetised vary from 6 to 21 years in length.
The re-processing follows a double difference nekwsirategy using the Bernese GNSS Software versian(BSW52)
(Dach et al., 2015), incorporates recent bias madeégklopments, the latest International Earth Rwtadnd Reference
10 Systems Service (IERS) 2010 conventions (Petittarzdim, 2010) and IGS recommendations. Further ldesieé detailed in
(Hunegnaw et al., 2016). The selected station né&weluded all IGb08 core stations (Rebischunglgt2012) and more or
less the complete archive of TIGA, which encompssstarge number of GPS stations at or near tHmbteetwork of tide
gauges. The GPS data was re-processed using thee @amOrbit Determination in Europe (CODE) finakecise orbits and
Earth orientation parameters. We employed the 1G&@8llites and receiver antenna phase center smadel adopted an
15 elevation cut-off angle of 3° (Dach et al., 2016).
During GNSS processing the tropospheric propagatielay {T;) affecting the GPS observation in the line of sigh

modeled as:
T, =mf, (€)ZHD + mf,, (€)ZWD + mf , ()G, codar) + G sin(a)] &)

wheree s the elevation angle in the topocentric coordirfeame to the GPS satellite amfj, andmf,, are the hydrostatic and
20 wet MFs, respectively. These are used to map thessxpropagation paths for the slanted signalsatiiate at the GPS
antenna to the zenith direction, i.e. the directidtih minimal tropospheric delay. The temporallyeeagedT, then provides
the ZTD estimate for a given epoch. There are tias@f MFs, which are all based on the continuoastion form as was
initially proposed by Marini (1972). Here we maksewf the Vienna Mapping Function 1 (VMF1) (Béhnmakt 2006) that
allows the MF to describe the atmosphere with thest detail, leading to the highest precisionhia derived tropospheric
25 parameters. This is achieved by the MF by takirtg eccount different factors such as the Earth ature at different
latitudes and seasonal changes. The VMF1 coeffiiehthe continuous fraction form are derived frtra pressure-level
data estimated by European Centre for Medium R&kgather Forecasting (ECMWF) (Simmons and Gibso60p@nd
are given every 6 hours on a global 0.75°x0.754.dgrhe third term in equation (1) represents thaigmt (tilt) corrections
in North-South direction (GN) and in East-West diien (GE),a is the azimuth angle defining azimuthal asymmétrihe
30 troposphere anaf is the gradient MF (Chen and Herring, 1997).
In BSW52 the ZHD is parameterized as a piece-wisetfon variation of the delay using a piecewisedir interpolation
between temporal nodes. Observations of atmospper&sure at the GPS station offer high precisionife ZHD estimates
and minimize station height errors (Tregoning aretriig, 2006). However, many of the TIGA and |IG&tishs do not
possess integrated meteorological sensors. Thus,i@knits of meters was a priori obtained reliafsym surface pressure
35 data from the gridded output of the ECMWF NWP modetl is provided by VMF1 using the modified Saastizen
model, which assumes that the atmosphere is inolyatic equilibrium (Davis et al., 1985). We estienahe ZTD
parameters in an interval of 1 hour with a loosest@int of 5 meters. In addition, horizontal geads in the North-South
and East-West directions are estimated in a 24 intenval with the same 5 meter loose relative traist.
In this manner more than two decades of ZTD timeesealong with station positions are availablerfrour re-processing.
40 Figure 1 shows a selection of 120 global statiamsathich we have carried out the further analysisatdibed in this study.
However, as the station positions are affectedrbgverage two discontinuities per station per decttte ZTD time series

need to be homogenized before they are usefulifthdr application.

4
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1.2 Homogenization of ZTD time series

The ZTD parameter is now customarily derived frdra processing of the GPS observations but its stamy in time is
adversely affected by a number of processes, péatlg discontinuities that may or may not stenmireeal geophysical or
climatic signals (Beaulieu et al., 2008; Gazeaurlet2011; Gazeaux et al., 2013; Bock et al., 2@H4ffiths and Ray,
2015). The source of these discontinuities can haaay origins but is mostly related to hardwarengfes (receiver,
antenna or antenna cable), changes in the obsan@tbcedures (e.g. the elevation cut-off), modifimns in the vicinity of
the GPS antenna (e.g. introduction/removal of Sigisstructions), real physical displacements of #renna (e.g.
earthquakes) and other mostly unknown sources. lgenigation is the technique of detecting, verifyamg correcting of
these discontinuities in the ZTD or station positiime series. Undetected discontinuities with gigant amplitudes
adversely affect the estimated parameter of intefresn the time series, especially any trend edtwmaas a central
component for many geodetic, geophysical and clamiavestigations. Recently a working group wasaaned with this
topic under the umbrella of the IGS: Detection dfséts in GPS Experiment (DOGEXx). This working groaimed at
consistently and objectively detect discontinuitiesGPS time series in an automated fashion whikewihg on the
experiences of both the geodetic and climatic s$isisn The experiment concluded that there wasimgles algorithm that
could fully automate and reliably detect all distionities in GPS time series (Gazeaux et al., 20E8jthermore, for the
best results a manual intervention was necessamder to detect particularly those offsets of unkn causes.

In our re-processing that covers a period of 20sy/@a& have identified approximately 2500 discorities in the position
time series for the 750 stations. As the scattehé&nZTD time series is much larger than in theitfuos time series our
strategy was to first identify the position offsetsd then adopt the related epochs also for ogebfhodeling of the ZTD
time series. In this way the discontinuity idemtifiion and verification is based on (1) the Intéomeal Terrestrial Reference
Frame 2008 (ITRF2008) supplied discontinuity fi{2) earthquakes reported by the USGS Earthquakartdsazrogram
(https://earthquake.usgs.gov/) and (3) a manual inspection of all the positionet series. The obtained discontinuity budget
arises in 67 % from hardware changes, in 4 % franthguakes and in 29 % from unknown origins. Whitregochs of
offsets were taken into consideration, we found aximum offset amplitude in the ZTD time series &3} mm, a
maximum improvement in the standard deviation 66Imm, and a maximum, most dramatic, change in #€bd of 3.7
mm/decade at station POHN (Pohnpei, FederatedsStafdicronesia). Table S1 in supporting informat&hows statistics

related to the detected discontinuities in the Zifile series of the 120 GPS stations discussedsrsthdy.

1.3 ZTD time series modelling

The ZTD time series are commonly modeled with ksgstares or weighted least squares estimation wheertainties of
individual observations are taken into account.usaty on the estimation of trend, which is intetpdein terms of climate
change (e.g., Nilsson and Elgered, 2008), andgifcant periodics, derived from a spectral as@éy one can fit a least-
squares model as:

ZTD(t;)=ZTDg +vif, _tR)+ZG:[S< sin(2720F, Ift; ~te))+ C, o277, (t; —te))] +
. ~ @
+Z::(dj D_'(ti’tj))+€ZTDi

j=1

wheret; is time,ty is the reference tim&TDg the initial value of the ZTD at timig=tg, v is the linear trendC, andS, are the
coefficients of the harmonic terms a#igp is the stochastic par; represents the discontinuity which occurs at tipnleis
the number of harmonic terms afad: (1/365.25, 2/365.25, 3/365.25, 4/365.25, 1, H2) frequency in days. We apply here
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four harmonics of annual and two of diurnal curseaay of unmodelled signals will be transformea isb-called stochastic
parte. The model in equation (2) also accounts for difcaities using a Heaviside functiol, The amplitudes of the

harmonic termsA) and their corresponding phaseg @re:

A =ySE+CE,
(S
@ =tan (C J k=1...6

k

©)

The unknown parameters in equation (2) are estionadeng least-squares incorporating more than teeades of data with
1-hour sampling interval. In solving equation (@) disagreement between model and real data aredoas uncorrelated
white noise. In this case, the weight maffixs a diagonal matrix based on the uncertaintieadi¥idual observationsA is

a design matrix of (2) and y is a vector of obstoves. The estimated parameters, vedtpare then obtained as:

X =(ATPAJ*ATPY @

The covariance matrix of the fitted parameterfiéntequal to:
— (AT -1
C,=\A'PA (5)

Here, the uncertainties of both trend and seassigahls are determined with the assumption of uetated residual or
white noise only (Morland et al., 2009). Even tleues of the ZTD errors of the individual observathave little impact on
the results of the estimated parameters and thegrtainties. Nilsson and Elgered (2008) addedoat $érm correlation to
the covariance matri€y to consider a colored noise. They found that theettainties of IWV trends increased by a factor
of four when a correlation is added. Combrink et(2007) took a further step and proposed an agtessive moving
average (ARMA) noise model, which better represehts correlation of IWV in time than a simple whit®ise
assumptions.

In general, the first order ARMA(1,1) noise modetefined as:

& =@, T, +7, ®)

whereg is the residual ZTD, obtained by removing the drevffsets and the seasonal components from threcegsed ZTD
time series. The symbolsand @ are the autoregressive (AR) and moving average)(pEkameters, respectively, is a
Gaussian variable with fixed standard deviationmBonk et al. (2007) examined the power spectraisidies (PSDs) of
two South African GPS stations and pointed out thY trend uncertainty increased by twofold when MR(1,1) is
applied. Most time series may also be expressea Ispecific class of ARMA model, an autoregressiractfonally
integrated moving average (ARFIMA) noise model. AlZ residual time serieg p(t), follows ARFIMA(p,d,q), if it is
governed by the following relationship (e.g., Sovi€192):

d -
O(L)L-L) e (t) =O(L)w, ™
wherelL is the lag operator amg is uncorrelated white noise. The paramedeend® are estimated as:

o(L)=1-gl'-gl’-...-gL°

o(L)=1+4L" +6,.> +... +g,L° ©
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ARFIMA(p,d,g) can be implemented in different ways, dependimgtiee AR, FI and MA parameterg, d and g,
respectively. We can start from a simple AR(1) miadéh p = 1, which means, that there are no FI and MA patars, i.e.,
d=0andg=0:

Zi = ¢.LZ| -1 9)

getting through the MA part by estimating its orderd ending with an autoregressive fractionallyegnated moving
average ARFIMAJ,d,q) model, where d is the integer order of the défeing of data before we estimate its stationarity.
When the ARFIMAp,d,q) noise model is being computed with Maximum Likelbd Estimation (MLE), p should be
smaller than 5 (Bos et al., 2012). A simple AR(IDd®l means that any data sample is being dependgnbn the previous
observation. When we increase AR into fourth o@d®(4)), it expands our search for any dependerttiasexist between

current and the four previous values.

3 Results

In the following section, we present results ofsseel signals: annual, semi-annual, three and feamths terms were
analyzed along with daily and sub-daily oscillasoiVe include all above mentioned periodics, ag #ifect noise analysis
if unmodelled. Having modelled the deterministictpave present the results of noise analysis amipeoe different noise
processes. We end with recommendation on the optimoise model to be used for any future analysiZenfith Total

Delay taking into account the differences accordarghe given climate zone.

3.1 Temporal variations of ZTD

In this study, we considered 120 stations with Ziilbe series lengths between 6 and 21 years steminamy our
reprocessed global network of stations (FigureQl).average, each of the time series is charactet@zeontain 2 offsets.
For interpretation the stations are classified fite different climate zones: tropical, dry, watemperate, continental and
polar and Alpine based on the general Koppen-Geiljmate classification (Peel et al., 2007), FigaraVe did not follow
the detailed K6ppen-Geiger climate classificatiohiol contains 27 different climate sub-zones, aswilenot have a
representative sample of stations from each of tteemake the sub-zones statistically significane &lso focused on those
climate zones with stations distributed all arouhd globe to investigate which noise model is optifior any climate
conditions we may consider. Having classified oatadet of 120 stations we ended up with a stationber of 27 in the
tropical, 13 in the dry, 35 in the warm temper&2,in the continental climate, and 23 in the palad Alpine zones. These
numbers provide a statistically significant resuts both temporal variations and noise parameteesderive in the
following study.

Any individual ZTD time series can behave in diffiet ways, due to the region where station is |latatgpically, the
tropical zone is characterized by high day-to-dagraalies of GPS derived ZTD time series (e.g.geflial., 2008). Oceanic
coasts are thought to have greater annual vargatltan any other regions (e.g., Jin et al., 200fjle regions between 20°
and 65° for both Hemispheres (N and S) are charaeteby large values of PWV linear trends of

4 kg/nt per decade determined for PWV from the EuropeaamBlsis Interim (ERAI) model and DORIS data (Betlal.,
2014). This might be a reason to suggest that W2 &siduals:zp, or their stochastic model from equation (2) behiawv
different ways for each climate zone examined. Ehisld arise from variations in concentrationshia hydrostatic and wet
parts of the atmosphere which are associated wétlzone. As an example, the polar regions are dmgrywhich results in a
small amount of water vapor and in this way a lowpéact on the wet part of the ZTD. Besides, the fiighuency part of
the residuals reflects local station effects (engltipath). This is why each of the ZTD time serieay have different

characteristics. Hence, we examined the Power Bpédensities (PSDs) of each of the analyzed statiGigure 3 shows a
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PSD for a single selected station, BJFS (Beijinging) for both original and residual ZTD time ssri#Ve have found that
1-hour ZTD time series are characterized by cleakp of one year and three subsequent overtorzeklition to the diurnal
and semi-diurnal peaks. The annual oscillatiorhés host powerful peak for all examined stationfipfeed by the semi-
annual oscillation, which is roughly half the magdie as the annual one for 70 % of the stationak$ef 3 and 4 cpy
5 (cycles per year) are clearly seen in the frequeshemain for low- and mid-latitude stations, whileese are hardly
noticeable for the polar and Alpine zones. In thés/, we assumed a seasonal model containing ati6dicities (equation
2), adding diurnal and sub-diurnal peak to abovatiored.
Figures 4 and 6 as well as Table 1 summarize thdtsefor the annual amplitudes. In general, thénreaasonal signal for
the selected stations varies between 10 to 150 nitm & median of 50 mm. Low- and mid-latitudes stasi are
10 characterized by larger annual variations than -hagitude stations, especially those in the Southdemisphere (SH)
located in polar and Alpine regions. The Northermntisphere (NH) is characterized by maxima in JahAugust (phase
shift of annual signal corresponding to 200°), wttthe Southern Hemispheres maxima fall betweenadgrand February
(phase shift of 20°). There is no obvious correlatbetween annual amplitudes for different climatees, except the fact
that, amplitudes for tropical and warm temperasgias are higher than those located in continezdaks. Again with
15 exceptions, oceanic coastal stations show highenarchanges than those of inland stations. SwiiorEast Asia (BJFS,
1ISC, KUNM), Japan (TSKB, P211) and East coast oftNlAmerica (STJO, BRMU, SCH2, WES2, NRC1, GODEGO,
MOB1) show larger annual amplitudes compared terosiations. This was also noticed by Jin et 07). The area of
India is characterized by monsoon, what may causk a large variation during one year. Brazil iduded in the tropical
zone, however, stations on the coast of Brazil ltifferent phases from inland stations. As the tadlaone in the northeast
20 of Brazil is fairly dry, this might be a reason wthese tropical stations differ a lot. Interestiognote here is that, even
though the Antarctic and Arctic regions are clasdiinto the same major climate zone, i.e. themparta Alpine , the annual
amplitudes of the Antarctic stations show notablydr amplitudes than Greenland stations — an itidicaf low variability
in ZTD. However, in the detailed climate classifioa according to Képpen-Geiger, the major Alpirienate zone is
further subdivided into two sub-zones, that mat@hdignificant different variabilities we see inr@nnual ZTD amplitudes
25 between those two regions. The stations in NH @cated mostly in Greenland, so the higher anngalasiwe noticed here
might arise from the their coastal location and ithpact of the Gulf Stream, which results in warmeters along the
Southern coast of Greenland than that of Antarciinge to above, we decided to split the polar afgin& zone into two
sub-zones of Northern and Southern Hemisphere.afiected this division in Table 1.
Figure S2 in supplementary information shows thisennual signal for a set of 120 analyzed statibtere, a phase of
30 first semi-annual peak is presented. All statidmssa very good consistency of phase. Maxima obatrall stations fall in
January, excluding tropical for which the majomtymaxima fall in May. Again, few exceptions can d&eo found in dry
regions: MAS1 (Maspalomas, Gran Canaria), TAMP (p&m city, Mexico), RAMO (Ramon, Israel), LPAZ (LRaz,
Mexico) and AREQ (Arequipa, Peru), for which thesfimaximum falls in March.
We also investigated the diurnal to semi-diurnalley of the series, since the ZTD time series laaléhour resolution. The
35 diurnal cycle reflects day-to-day changes causethéolar cycle along with changes in temperaamcerainfall. Figures 5
and 7 as well as Table 1 summarize the resultthéodiurnal amplitudes for the selected set of yameal ZTD time series.
The phase shifts are given with respect to thel Ioeidian. The largest diurnal peaks were foundsfations located in
low-latitude regions, especially tropical and dones, and are approximately 5-10 times higher tbaather climate zones.
The warm temperate diurnal amplitudes fluctuatevbeh 1 and 7 mm with maxima for South Americaniatat The
40 diurnal amplitudes for the continental zone dovarly very much on a station-by-station basis, wttike diurnal signals for
the polar and Alpine regions are almost flat withpditudes close to zero. The time of diurnal maximeonsistent and very
homogenous for stations located in Europe. The meak time is around 18 hours with respect to dleallmeridian. The

times of peaks beyond the area of Europe seem sistent, however, the majority are between 18 ahch@urs. The
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amplitudes of daily curve (Figure 7) are similar ftations between 30° S and 30° N. The tropicalmvtemperate and a
few dry stations situated within this latitude at@racterized by daily amplitude higher than 4 rAmery good consistency
can be noticed for diurnal amplitudes for polar @igine stations which unlike the annual amplitudesstations in this
climate zone, are at the level of 0.2-1 mm, withedian of 0.4 mm.

5 Figures 4 and 5 show that the phases of maximheo&hnual and diurnal signals are well-correlatecobth hemispheres.
Amplitudes of daily curve are consistent for stasidoetween 30° S and 30° N of latitude with oneepkion: station BELE

(Belem, Brazil), which has an amplitude of dailyanges as high as 11 mm.

3.2 Noise analysis of ZTD

As shown in section 2, the ZTD residualgp represent the misfit between real and modeled. dais misfit can be
10 resolved in several ways. The easiest one is arapip with a white noise process, which assumaestltle residuals are not
correlated in time. In this case we adopt ordirlagst-squares (LS) and estimate the covariancéted fparameters as in
equation (5). This approach is widely used in ZWIM estimations in terms of climate applicationgy(eJin et al., 2007;
Flouzat et al., 2009; Morland et al., 2009; Ninga¢t 2013; Bock et al., 2014). Nilsson and Elge(2608) applied
additional covariance as a function of time so@stm assume a pure white noise process. Howe&k, was further used to
15 estimate the uncertainties of the determined paemvith the covariance matrix modified by theddiional covariances.
Combrink et al (2007) proposed an ARMA(1,1) model to derive thestrproper trend uncertainty which takes care ef th
real characteristics of IWV. Oladipo (1998) haslgsed the power spectra of climatic time series.edghasized that the
first order autoregressive model is the preferre@ dor most cases analyzed. Other time series ast fitted by
autoregressive models of second, third or fourttenrMann and Lees (1996) pointed out that climatie series have a
20 character of red noise in form of an autoregresdiR¢l) process. Percival et al. (2004) modeleddieate time series of
the North Pacific (NP) index as a first-order aagpessive process, namely AR(1). If ZTD time sedses believed to
resemble climatic variations that happen over yehen should these series also follow a low-oaiépregressive model
such as the climatic data do? When addressingjtléstion, we propose to decide on an optimum mimdehe stochastic
properties of ZTD time series using the Bayesidormation Criterion (BIC) (Schwarz, 1978) and Maxim Likelihood
25 Estimation (MLE) values. Both values are computeditting different noise models into the residuaié¢e start by applying
a pure white noise model. In this case, the conadaf fitted parameters is estimated with equatirand the error of each
individual ZTD sample is the only one that influesahe results. Then, a combination of power-laly) @hd white (WH)

noise process is implemented for which a covarianatix of observation€ is computed as:
C=a’0+hb?0d (10)
K K

30 wherea andb are the amplitudes of the WH and PL noise prosgsseilel andJy are the covariance matrices of white and
colored noise, respectively (Williams et al., 2008je completed our analysis with autoregressivetiaally integrated
moving average noise model (ARFIMA) of varying asle, d andq of AR, FI and MA, respectively. For a simple first
order autoregressive noise model one gets an ai#tnaace of (Bos et al., 2013):

2

C(‘gzmi ’SZTDi+k)=]f7¢< (11)

35 whereos is a standard deviation of WH noise ahds the coefficient of the AR(1) model. We appliétH, PL+WH and
different autoregressive noise models using thetdiesnftware package (Bos et al., 2012) and ouisitets are based on
the BIC and MLE values computed. Once the stoahastidels were fitted to the residuadgy, presented in a double
logarithmic scale. Figure 8 shows an example foe ftations selected for different climate zoneAfM, Managua,
Nicaragua; MAS1, Gran Canaria, Spain; AUCK, Newlded; BJFS and SYOG, Syowa, Antarctica). Table® lihe trend
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with associated uncertainties for different noisedeis employed in this research. As can be seen Rower Spectral
Densities presented in Figure 8, WH noise, whicls walely used in previous studies to estimate tremcertainties does
not fit the ZTD residuals at all. The PL+WH noisedsl is the most proper one for use with GPS resigosition time
series and it somewhat fits both medium and hidtegfuencies of the PSD. However, it fails in the lsequency part,
5 leaving some of the power unexplained. This pant gfaift artificial correlation and increase theuslof uncertainties of
determined parameters. ARFIMA(1,0)+WH is quite $mito PL+WH for MANA and SYOG. When BJFS, MAS1 or
AUCK are considered, ARFIMA(1,0)+WH matches theideals better than the PL+WH noise model. The lodeo
autoregressive noise models are though the be&TDrfrom any station analyzed. AR(1) is quite $anito the residuals,
however, it does not explain all power below 30 (N¥, 10 (AUCK), 10 (MAS1), 100 (BJFS) and 1000 (S®Pcpy.
10 This might arise from the fact, that a simple dej@te between each individual observation andrégigus value that is
assumed in AR(1) as in equation (1) is not what Ziffiz series really follow. However, adding a pwfgte noise to AR(1)
i.e. AR(1)+WH makes the noise model suitably wétllefl to the residualsszrp. The adding of higher orders to the
autoregressive model does not bring a clear anbleigsnprovement when looking at the PSDs. Howewve,go further
from the first to the fourth order of autoregressiaodel to examine if they will bring any improvemén a goodness of fit
15 and in a trend error. All of them included whiteisoas a background which explained low and higlyudencies in the
residuals. We compared them for the noise modelsriteed above. The simplest white noise resultedHe five stations
with trend values of: -0.03 + 0.11 (MANA), 1.29 #8 (AUCK), 0.32 + 0.05 (MAS1), 0.49 + 0.07 (BJFR8)d -0.31 + 0.03
(SYOG) mml/year (Table 2). For the full results ¢ske Table S2 in the supplementary information. dther examined
stations had similar uncertainties of trend wittv fexceptions. One such exception is TWTF (Taoyuiy, Caiwan) with a
20 trend equal to -2.29 + 0.27 mm/yr. When a PL preogas added to the WH noise (PL+WH), the trend udaitgy was
enlarged by maximum of up to 105 times in comparignthe pure white process. A slight differencehia trend values is
also noticed when comparing the results. First oagd¢oregressive noise model, AR(1), increasesrémal uncertainty by 4
times. However, looking at the PSD plot (Figure BR(1) does not fit the residuals. When white nasadded to AR(1),
(AR(1)+WH), the trend values remained almost thaesebut its uncertainty increased 3 and 10 timégniacompared to the
25 AR(1) and WH-only models, respectively. The foueotfdler autoregressive noise model in combinatioh w&itwhite noise
process, AR(4)+WH, was chosen here as the optimalfor ZTD residuals based on the BIC and MLE val(iEable 2).
The trend uncertainties are inflated 8 times comgao the WH noise model. The ZTD residuals desdrity a fourth order

autoregressive noise model in combination with e/hivise (AR(4)+WH) take the form of:
Emp, “Wlemp Y@ lemp , Y lEmp Y léqp , 8 (12)

30 where p,...,44] are the coefficients of the autoregressive modélich describes how much the current value of ZTD
depends on the four previous observationsanelpresents white noise.
As AR(4)+WH noise is a combination of two indepemideoise models, we can describe a percentageilwatiin of each
of them to the overall model. WH contributes ZTBideials in 86%, 43%, 27%, 42% and 93% with standasdations of
15.4, 9.2, 7.7, 11.4 and 8.5 mm for MANA, MAS1, AKICBJFS and SYOG, respectively. Likewise, the AR)del
35 contributes in 14%, 57%, 73%, 58% and 7% with stattdleviations of 6.3, 10.7, 12.7, 13.5 and 2.4 fomMANA,
MAS1, AUCK, BJFS and SYOG. We estimated the averagse level for all climate zones considered ibl&&. Table 3
shows that median amplitudes for AR(4)+WH are betw&.17 and 13.00 mm for white noise with the maxmfor the
tropical and the minimum for the polar and Alpirene. The autoregressive part of this combinatianamplitudes between
4.07 and 9.59 mm with a maximum for a tropical elfen The coefficients of the autoregressive proeesghe highest for
40 the first term (AR(1)) with a maximum for the tropl zone.
Figure 9 and Table S2 in supplementary materiadsvsialues of trend when a pure white noise andragtessive process

of fourth order plus white noise are assumed. Nyioreal dependencies can be observed. Six pairatibiss situated close

10
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to each other show a discrepancy in trend valubesd& are: ALRT-KMOR, GUAT-CHET, KOUR-MAPA, TWTF-TC#

P211-TSKB, AUCK-MQZG. Four of these pairs show eliéint time length (10 to 15 years). Trends estichéde stations

situated in West coastline of North America, Easagtline of South America, middle Europe, Indiane@t and South

Australia become insignificant when AR(4)+WH is@as®d. Trends for almost all stations in polar afgire (SH) become
5 insignificant when AR(4)+WH noise is assumed. 8tai DAV1, DUM1, MCM4 are the only exceptions. Thetmw a

significant trend both for pure white and AR(4)+Vgkbcess.

We estimate the ratios of the trend uncertaintes/dd with AR(4)+WH §ar@)+wr) and WH-only gwy) noise models as:

R
ratio = —AR@WH

P (13)
This ratio ranges between 1 and 12 for the sehalyaed stations (Figure 10 and Table S2 in suppigany materials). No
10 climate classification dependence is apparent Hene. trend itself may become insignificant when timése model was
changed from white into AR(4)+WH as e.g. for ALGALIC, ALRT, HRAO, TOW2, etc. This suggests that rand
uncertainty derived from ZTD time series can benpteted in terms of climate change only if theektstic properties are
fully accounted for by a proper noise model, whitiviously is not a white noise only model.

4 Discussion

15 Homogenously re-processed time series within opro2 solution delivered consistent time series withartificial jumps
due to changes in models (as was showBtejgenberger et al. (2007)). Ning et al. (2016)lied a PMTred test (penalized
maximalt test modified to account for first-order autoresgige noise in time series) to detect breaks ifeidinces between
IWV estimated with ERA-Interim model and GPS-retdd estimates. They corrected the detected breadsitthe epoch
was not reported before in a log-file of statioronibgenisation of ZTD data in this study was perfdnby manual

20 detection of breaks, cross-validation with statidog-files and the use of earthquake files and diszontinuity file from
ITRF2008. It brought an improvement in ZTD standaeliation and trend estimationsling et al. (2016) found a
maximum difference in trend between homogenized motshomogenized IWV data of -2.28 kdi/rfor KELY station
(Kangerlussuaq, Greenland). In our research, KEI2$ effected by 4 offsets. However, a most drantdigmge in trend of
3.7 mm/decade for data before and after homogémiratas found in this study for station POHN witho#sets being

25 applied. One can be misled by trend estimatesfifetd are not removed properly or neglected. Besidedetected or
unmodeled discontinuities may also introduce a comept of random-walk noise. Homogenization sho@ddnsidered for
a proper analysis of ZTD time series, in particétarclimate studies.

The main variability of ZTD comes from ZWD, as wat®wn in this study in a pre-analysis and alsedtatrlier by Jin et
al. (2007). Temporal variations determined herengtba good agreement in amplitude and phase faraduwenrves for both

30 Northern and Southern Hemisphere. The maxima ofi@msine fall between July and August for the NernthHemisphere,
while between January and February for the Southenmisphere. Both periods fall in the summer fa& dorresponding
Hemisphere. Annual amplitudes vary between 10 &@rim. The largest were found for the tropical zand oceanic
coasts with a few large amplitudes for east As#pad and east coast of North America. The polarApihe zone is
characterized by almost flat annual sine curve,ctvtis due to lack of differences between summer wirder. The

35 maximum of the semi-annual cycle falls in January the Northern Hemisphere and are uncorrelatephase for the
Southern Hemisphere. Similar results were repdvéddre by Jin et al. (2007).

The largest amplitudes of daily oscillations arerfd for stations in the tropical zone, while thaséoth polar and Alpine
zones are almost flat. Day-to-day variations afieen changes in ambient temperature and presswmogenous daily
changes were found here for a set of Europearostatvith a peak of daily oscillation around 18 l®uFhe same was

40 reported before by Jin et al. (2009) with IGS GPSepvations and data from Comprehensive Ocean-Athewse Data Set

11
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(COADS) surface pressure. Similar results were adgmrted before by Ning et al. (2013). Howevew faconsistences
were noticed. A diurnal peak for station VILL (\4hueva, Spain) falls at 1 a.m. in this study, wktilese happened at 6
p.m. in Ning et al. (2013). However, the diurnalpditade for VILL is insignificant, i.e. smaller thaits error. Diurnal peaks
for other stations from Europe agree to within 2rsavith those shown in Ning et al. (2013).

The frequency spectra of the ZTD estimates and>tA8 position time series follow a well-defined feddistribution, i.e.
amplitude and frequency are related by means aiweplaw. However, their spectral indices diffee. iGPS position time
series stochastic character is not transferredggower property of the ZTD time series. This shofithe good separation
between position and troposphere estimates withatter following the properties of other climatxiss.

Combrink et al. (2007) showed that an ARMA(1,1)seoimodel represents residuals of IWV data bettar thpure white
noise model. The same was reported in this studyARMA(1,1)+WH. However, we added a further step amalyzed
higher orders of an autoregressive process (ug'thigher orders are computationally intensive). PR(4)+WH noise
model is found to be optimal for ZTD time serieséd on the BIC and MLE values. White noise, whkvidely assumed
for ZTD time series, does not fit ZTD residualsafit PL+WH noise, which is commonly used for GPSipon time series,
fails for the low frequencies and can bring arigficorrelations within. The AR(1) model that ietmost often used for any
of climate time series (e.g. Percival et al., 20€8%) the ZTD residuals as well, but only if whiteoise was added.
Uncorrelated white noise explains low and high @iemcies of data, while the autoregressive modelpismal for the
medium frequencies. We added another three orddtetautoregressive part of the model and fouat the fourth order
is the best noise model with respect to the BICMh& metrics.

Combrink et al. (2007) showed that 1-sigma uncetitss of the PWV trend for station HRAO (HartbeespoRSA)
significantly decreased when: 1) noise model is¢pehanged from ARMA(1,1) to white noise and 2) bemof data used
in the analysis increased. In this analysis, wel Uskyears of data from station HRAO and obtainddsiggma uncertainty
of ZTD trend at the level of 0.07 mm/yr for pureitehnoise and at the level of 0.52 mm/yr for ARMJH. When shorter
time series is used, the error will be appareritiér.

Jin et al. (2007) accounted for trend values iro@rtresolution ZTD series for a set of 150 IGSietat They showed
significant up- and downward trends with almosf le&lthem higher than 2 mm/yr for Northern and $®uh Hemisphere.
They showed that almost all stations for Northeemtisphere have a positive trend, while those irtf&osn Hemisphere are
directed downward. However, their analysis wasqrenéd for a white—noise-only process. Our analg§igl-years ZTD
series shows few similarities to what was shownJby et al. (2007). The number of 21 stations hawgla (up- or
downward) trend. These are: KOKB, NEAH, LPAZ, GUAMLRT, BRFT, NKLG, VILL, MATE, POTS, LAMA, NYAL,
RAMO, ARTU, NRIL, IISC, BILI, KARR, PERT, DAV1, KERs.

We estimated the trend uncertainties with the ARMM noise model. This showed that to date, trencerminties were
underestimated of up to 12 times for some statiisen the AR(4)+WH noise model was assumed sonmelsreecame
insignificant, which means that they should notéhbeen interpreted in terms of climate change. Whpuare white noise is
assumed, only 11 from a set of selected 120 statiawe insignificant trend within 1-sigma error.bBnese are: MANA,
FAIR, SSA1, HOFN, P211, MDO1, MCM4, KIRO, VNDP, WlLand WSRT. Having changed the noise model from WH
into AR(4)+WH, the number of only 64 trends fronD1gtations is significant. Trends estimated fotistes MANA, FAIR,
MDO1, MCM4, KIRO, SSA1, HOFN, VNDP, WILL and WSRTaainsignificant for both white and autoregressi¥éourth
order plus white. Few estimates of trends, whicifauad in this study as insignificant for AR(4)+Wttere shown irdin et
al. (2007) with a pure white noise. These trends wiemréved for: NEAH, NANO, WILL, QUIN, VNDP, MDO1, AGO,
HOFN, LAMA, KIRO, WSRT, HRAO, DGAR, KERG, CAS1, MCK¥| MAC1, HOB2, ALIC, NTUS and TWTF. Also, few
stations all located at or close to Antarcticasegi MCM4, CAS1, MAC1, SYOG and PALM, used befoyeThomas et al.
(2011), have insignificant trends, when AR(4)+WHimployed.
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4 Conclusions

A data set of homogenous ZTD data could be useddsimilation into climate models similarly to thassimilation into
numerical weather prediction models. This studydbss the deterministic and stochastic charatiesisf ZTD time series
for a selection of 120 stations from the re-analysiglobal tracking stations from more than 7Glishs around the world
for 1995 to 2015. Our TIGA second re-processingr@2) at the University of Luxembourg solution &l the recent
model developments and the latest InternationathERotation and Reference Systems Service (IER$D 2@nventions.
This re-processing guarantees consistent ZTD dweicomplete time span and only time series longen 6 years have
been considered. Similar studies have shown tleatettprocessed ZTD time series and the derived tiwWié series can be
employed for the evaluation of re-analysis modeld potentially also for climate models. Since ZTDinterpreted as a
change in climate, it needs to be properly analyzefdre we decide on any climate change studieenXTD time series
are affected by discontinuities of various sourtlest include hardware changes, earthquake and wmkreburces.
Discontinuities or offsets in the ZTD time seriegchde the accuracy of the magnitude of the esiiaénd if they are not
identified and modeled. In this study, we have sawmtomatically (partly manually) identified a numbef 2500
discontinuities in the position time series for &0 stations. When these were applied to the Zfi@ series, the most
dramatic change in trend of 3.7 mm/decade was foiondstation POHN. Stations WES2, TSKB and TWTF are
characterized by the largest number of offsetsiappl

We have then set up a priori significant frequesitigt appear in ZTD time series, i.e. annual, semual, a third of a year,
a quarter, daily and sub-daily. These periodic aigmf mis-modelled will bring additional correlati into the stochastic
component of the underlying noise of the ZTD realduFurthermore, it can artificially remove sonfetlee real power,
although this is quite insignificant. The residtiales series will vary with every change in deteristic model. We sub-
divided the GPS stations from our repro2 solutiato ffive different climate zones according to thépiien-Geiger climate
classification. A total of 120 GPS stations weredufor this study from all the five climates zombstributed globally. We
examined on all significant periodicities after @tjng the data for discontinuities. The annualkpisathe most powerful
one for all stations included in the study. Its éitnde ranges between 10 and 150 mm being depeidethte climate zone
the station is located in. The smallest amplitudese found for the polar and Alpine zone, but dalystations situated in
Southern Hemisphere. The amplitudes for the paidrAdpine zone of the Northern Hemisphere are atrasdarge as for
the continental zone. The annual peak is followgdhe semi-annual oscillation, of which the powehalf as large as for
the annual peak for 70% of the analyzed stations.fé¥ind very good consistency in phase shifts lier semi-annual
oscillation. These fall into January/February fétmast all stations situated in the Northern Hemésphwith significant
amplitude, when compared to those from the SoutHemisphere. The phase shifts for stations in thef&rn Hemisphere
are less consistent, possibly due to the more datean-land distribution. However, five of thentuated in Antarctica,
have consistent peaks in early January. The ardpbtof daily curve fall between 0 and 12 mm. Threatgst were found for
the dry zone while the continental and the polar Alpine zones are characterized by the smallestal@ay changes.

Up until now, the stochastic component of the ZEBiduals has widely been modeled as a white naiepocess i.e.
with no time correlation between observations. Hattcase, little impact on the parameters (inclgdiend) and their
uncertainties of the deterministic component iglert. In this study, we proposed an innovative apgh of autoregressive
process plus white noise (AR(4)+WH) to investigdie stochastic component of the ZTD residual tievées. We used few
different assumptions of noise model and showeskdban the BIC and MLE, that an autoregressiveqa®of fourth order
appears to be the most appropriate model for thigeraharacteristic of the ZTD residual time serEss is in agreement
with other results from climatologists who analyzbffierent climatic time series such as temperatpressure and humidity
with all follow an autoregressive noise model. Tesidual ZTD time series show a temporal correfatimt appears to be
explained by an autoregressive process of fourtterocombined with white noise irrespective of tHamate zone

considered. The tropical zone is characterizechbyldrgest amplitude of autoregressive noise (f69 compared to other
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zones and the largest median of amplitudes of witise (13.68 mm). All climate zones are charaptetiby similar
median coefficients of AR(1) (around 0.80+0.05)haét minimum for polar and Alpine. However, this edmas the highest
coefficients of AR(2) (0.27+0.01) and AR(3) (0.11&0), clearly being different from the other zowessidered.

We show that 56 of 120 trends from selected statiprihis study became insignificant when the optimmoise model was
employed. We compare this to 109 significant tremtien the WH noise only is assumed. Some of thiasieiss were also
analyzed in previous studies in terms of long-tevhanges. Therefore, we would recommend that a cuatibn of
autoregressive process with white noise has takentinto account when aiming at the estimatioseafular trends from
any tropospheric (ZTD or IWV) series. If a prop&schastic model is not employed, one will obtaisufes that cannot be
interpreted in terms of climate change as the taicgy of the ZTD residuals may be underestimatgé fiactor of 3 to 12
compared to the white noise only assumption.
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Figure 1: 120 selected global stations from the repcessed TIGA solution. The selection is based onehime length of the ZTD
time series and their quality. We have only seleatithose sites having a minimum length of 6 years.
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Figure 2: Globally distributed 120 stations are sukdivided into five different climate zones based orKéppen-Geiger general
climate classification: tropical (red), dry (yellow), warm temperate (green), continental (dark blue)and polar and Alpine (light
blue).
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Figure 3: PSD of ZTD for BJFS (Beijing, China). Peak at annual, semi-annual, 3- and 4-monthly as wedls daily and sub-daily
frequencies can be easily identified in the plot. Tépower of the original series is plotted in red, hile the power of residuals with
respect to the model from equation (2) is in blueRemaining peaks in high frequencies were found toebnon-significant.
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Figure 4: Annual amplitudes for 120 selected statits. Stations are classified into five different cihate zones as in Figure 2. The
length of arrow depicts the amplitude of the annuakine curve with a reference to 40 mm. Phase shiftse counted as clockwise
beginning from the North which means positive peakn January.
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stations w.r.t latitude.
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Figure 8: Examples of power spectra of five statiamfrom different five climate zones. (a) tropicalMANA, Managua, Nicaragua.
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Table 1. Median annual and diurnal amplitudes (mm)or each of five climate zones considered in thisugly.

Climate zone Median annual amplitude (mm)| Median diurnal amplitude (mm)
Tropical 42.0+0.8 29+0.8
Dry 43.4+0.8 3.2+0.8
Warm temper ate 41.3+0.8 1.4+0.8
Continental 48.6 £0.8 0.8+0.8
Polar and Alpine (NH) 40.9+£0.8 0.4+0.8
Polar and Alpine (SH) 11.5+0.8 0.4+0.8
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Table 2. Trends and uncertainties (mm/yr) for diffeent noise models tested in this study. Five statis are
juxtaposed: MANA, MAS1, AUCK, BJFS and SYOG, that represent five different climate zones: tropical, dy, warm
temperate, continental and polar and Alpine, respeévely. The selection of the best noise model wasded on BIC
and MLE values. The optimal model minimizes BIC andnaximizes MLE are in bold.

Noise (a) MANA, Managua, Nicaragua (b) MAS1, Maspalomas@Gran Canaria, Spain
Trend Error BIC MLE Trend Error BIC MLE
WH -0.03 0.11 1360907 -680423 0.32 0.05 1763497 1738
PL+WH -0.35 2.10 1195210 -597572 3.44 3.14] 1355913 -677918
ARFIMA(1,0)+WH -0.35 2.04 1192072 -596002 1.03 0.44 1354127 -677025
AR(1) -0.35 0.30 1213441 -606689 0.82 0.27 1372466 -686196
AR(1)+WH -0.35 0.50 1192131 -596033 0.89 0.40] 18841 -677046
ARMA(1,1)+WH -0.35 0.50 1192133 -596033 0.89 0.40 354170 -677046
AR(4)+WH -0.35 0.69 1192091 -596009 0.53 0.32 13840 -677004
Noise (c) AUCK, Whangaparaoa Peninsula, New Zealand (d) B-S, Beijing China
Trend Error BIC MLE Trend Error BIC MLE
WH 1.29 0.08 1788817 -894370 0.49 0.07 141151p 265
PL+WH -1.83 5.49 1325702 -662609 0.62 1.93] 1224722 -612328
ARFIMA(1,0)+WH 0.79 0.93 1320723 -660320 0.53 0.29 1217661 -608795
AR(1) 1.40 0.56 1322653 -661287 0.53 0.27 1243018 621475
AR(1)+WH 1.33 0.60 1321365 -660642 0.53 0.26] 127767 -608805
ARMA(1,1)+WH 1.33 0.60 1321367 -660642 0.53 0.26 12679 -608805
AR(4)+WH 1.29 0.50 1320626 -660270 0.41 0.49 1214766 -608798
. (e) SYOG, Syowa, Antarctica
Noise
Trend Error BIC MLE
WH -0.31 0.03 1638636 -819283
PL+WH 1.10 0.89 1357870 -678898
ARFIMA(1,0)+WH 1.59 1.11 1340947 -670435
AR(1) -0.29 0.11 1398359 -699143
AR(1)+WH 0.06 0.30 1342770 -671348
ARMA(1,1)+WH 0.06 0.30 1342772 -671348
AR(4)+WH 0.06 0.30 1340825 -670372
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Table 3. The median values of noise parameters felach of five climate zones considered in this studyhe associated
error bound of median amplitudes of noise and media fraction of AR are the 1-IQR (Inter-Quartile Range) values.

The associated error bounds of median coefficienare the 1o standard deviations.

Median amplitudes of noise (mm)+1-IQR

Climate zone WN AR
Tropical 13.0045.67 9.59+8.12
Dry 9.23+6.18 6.80+5.72
Warm temperate 9.70+8.28 8.75+7.93
Continental 8.77+7.62 7.0746.03
Polar and Alpine
(NH) 7.1746.45 4.85+4.06
Polar ?gj)A' pine 8.91+8.05 4.07+3.60
Median coefficients of AR(4)+1e
Climate zone AR(1) AR(2) AR(3) AR(4)
Tropical 0.90+0.08 0.05+0.08 0.01+0.03 0.03+0.01
Dry 0.78+0.04 0.19+0.03 0.05+0.01 0.01+0.01
Warm temperate 0.72+0.03 0.17+0.02 0.08+0.01 -0.01%0.01
Continental 0.80+0.02 0.08+0.01 0.09+0.01 -0.03+0.01
Polar fm)A' pine 0.61+0.02 0.27+0.01 0.11+0.01 -0.02+0.01
Polar ?gj)A' pine 0.61+0.01 0.28+0.01 0.13+0.01 0.01+0.01

Median fraction of AR+1-IQR

Climate zone

Tropical 0.33+0.22
Dry 0.30+0.23
Warm temperate 0.44+0.37
Continental 0.40+0.31

Polar and Alpine
(NH) 0.26+0.21

Polar and Alpine
0.21+0.18

(&)
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