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Abstract. Rain time series records are generally studied using rainfall rate or accumulation parameters, which are estimated 

for a fixed duration (typically 1 min, 1 hour or 1 day). In this study we use the concept of “rain events”. The aim of the first 

part of this paper is to establish a parsimonious characterisation of rain events, using a minimal set of variables selected among 

those normally used for the characterization of these events. A methodology is proposed, based on the combined use of a 15 

Genetic Algorithm (GA) and Self Organising Maps (SOM). It can be advantageous to use a SOM, since it allows a high 

dimensional data space to be mapped onto a two-dimensional space while preserving, in an unsupervised manner, most of the 

information contained in the initial space topology. The 2D maps obtained in this way allow the relationships between variables 

to be determined and redundant variables to be removed, thus leading to a minimal subset of variables. We verify that such 

2D maps make it possible to determine the characteristics of all events, on the basis of only five features (the event duration, 20 

the peak rain rate, the rain event depth, the standard deviation of the rain rate event, and the absolute rain rate variation of the 

order of 0.5). From this minimal subset of variables, hierarchical cluster analyses were carried out. We show that clustering 

into two classes allows the conventional convective and stratiform classes to be determined, whereas classification into five 

classes allows this convective / stratiform classification to be further refined. Finally, our study made it possible to reveal the 

presence of some specific relationships between these five classes and the microphysics of their associated rain events. 25 

 

1. Introduction  

 
The analysis of “precipitation events” or “rain events” can be used to obtain information concerning the characteristics of 

precipitation at a particular location, and for a specific application. This is a convenient way to summarize precipitation time 30 

series in the form of a small number of characteristics that make sense for particular applications. 

The concept of a precipitation event is not new, and has been used for many years (Eagleson, 1970; Brown et al., 1984). A 

wide variety of definitions, varying according to the context of each study, has been reported in the literature (Larsen and 

Teves, 2015). Moreover, when a rain rate time series (generally based on rain gauge records) is broken down into individual 

rainfall events, a wide variety of their characteristics, such as average rainfall rate, rain event duration and rainfall event 35 

distribution (known as hydrological information), can be computed for each event. Our analysis of the literature has led to the 

identification of seventeen features used to characterize rainfall, which makes it quite difficult to compare different studies. 

The first goal of the present study is to select a reduced set of features characterizing rainfall events, through the use of a data-

driven approach, without taking a priori knowledge of the field of application into account, thereby characterizing rainfall 

events in the most parsimonious and efficient manner. 40 
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The second goal is to assess, without using any a priori criteria, whether the rain events are still correctly clustered by the most 

relevant observed features. Indeed, atmospheric process specialists distinguish between stratiform and convective events, 

arguing that the physical processes involved in their evolution are different. The goal here is to check that a small sample of 

variables, derived from spot measurements to describe rain events, can allow this distinction to be made, and ultimately be 

used to refine it. Hydrological (hereafter referred to as “macrophysical”) information makes use of rain gauge measurements 5 

to characterize rain events. This information is defined in order to characterize the features of global events, but not to provide 

any information concerning the raindrop microphysics of the event. Nevertheless, in many applications such as remote sensing, 

knowledge of the microphysics is essential. One key parameter in remote sensing is the raindrop size distribution, noted as 

N(D), which is defined by the number of raindrops per unit volume and per unit raindrop diameter (D). Information related to 

the raindrop size distribution is often derived from its proxies, as explained in section 5. Such features are not currently 10 

accessible through rain-gauge measurements, which provide macrophysical information only. However, more expensive 

devices referred to as disdrometers can provide both hydrological and microphysical information. There are currently several 

tens of thousands of rain gauges operated throughout the world, in locations equipped with a far smaller number (if any) of 

disdrometers. As described later in this paper, it is possible to retrieve some microphysical information from the hydrological 

data. As a consequence, rain gauge data could provide valuable information in microphysics studies, through the use of a 15 

statistical approach to indirectly infer the missing microphysics information. In the following, the terms "macrophysical" or 

“hydrological” information are associated with characteristics related to rain rates or rain accumulation, whereas the term 

"microphysical" is associated with the characteristics of the raindrop size distribution.  

In the present study, we use a data-driven approach to study the relationships between different rain properties. As disdrometers 

provide drop size distributions, they allow one-minute (or shorter) rain rates to be estimated, and in the present study these can 20 

be used to derive the hydrological information of interest, which is coherent with the data that would be provided by standard 

rain gauges. Through the combined interpretation of microphysical and hydrological information, we are also able to analyse 

the microphysical properties of the rain-event clusters provided by our algorithm. This makes it possible to retrieve 

(unobservable) microphysical information from rain gauge measurements.  

From a single rain-rate times series, observed with a one minute time resolution, we seek to answer the following questions: 25 

- among the large number of hydrological variables described in the literature, which are the most significant?  

- does the resulting description of rain events allow different types of rain event to be discriminated?  

- what (unobserved) microphysical properties of an event, or type of rain event, can be inferred from its macrophysical 

description? 

Our paper is structured as follows. Section 2 presents the data used in our study, and lists various hydrological parameters that 30 

are commonly found in the literature. Seventeen macrophysical variables are identified, requiring appropriate normalisation. 

Section 3 presents our methodology, which is based on the use of a genetic algorithm (GA) implementing a self-organizing 

map (SOM also referred to as a topological map). This unsupervised approach is used to select a small subset of variables from 

the 17 identified variables, allowing a parsimonious characterisation of rainfall events to be applied. An exploratory statistical 

analysis of rainfall events is provided. In section 4, the rainfall events are grouped in clusters, and are divided into two classes. 35 

It is then shown that this grouping of the dataset corresponds to the standard convective / stratiform classification. We then 

propose a five-subclass classification, which corresponds to a refinement of the two initial groups. In section 5 we include 

some additional microphysical features of rainfall events, allowing the microphysical properties of the five previously defined 

event classes to be studied. Our conclusions are presented in section 6.  
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2. The disdrometer datasets - data processing methodology 

This research relies on the analysis of raindrop measurements obtained with a Dual-Beam Spectropluviometer (DBS) 

disdrometer, first described by Delahaye et al. (2006). This instrument allows the arrival time, diameter and fall velocity of 

incoming drops to be recorded. As the capture area of the sensor is 100 cm2 its observations can be considered, in spatial terms, 

to be “point-like”. In the present study the integration time Tint was set to one minute, and the raindrop measurements were 5 

used to estimate the corresponding one-minute rain-rate time series RRt(t). In order to eliminate false raindrop detections that 

could be generated by dust or insects, a threshold T0=0.1 mm.h-1 was applied. Rain rates lower than T0 are thus set to zero. 

This conventional threshold is also chosen to ensure coherency with previous studies (Verrier et al., 2013; Llasat et al., 2001). 

In the present study, we worked with two datasets recorded during the period between July 2008 and July 2014, at the “Site 

Instrumental de Recherche par Télédétection Atmosphérique” (SIRTA1) in Palaiseau, France. 10 

 2.1 Rain event definition 

In everyday life, it is common knowledge that rain starts at a certain moment, and stops some time later. However, due to its 

discreet nature, rain (which generally consists in a very large number of raindrops) is not an easy concept to define. Indeed, 

the exact definition of a rain event will depend on the sensor’s characteristics (specific surface capture, detection threshold, 

instrumental noise), as well as the spatial or temporal resolution chosen for the study. This definition may also depend on the 15 

purpose of the study, and thus on the scientific community behind it. There is thus a wide range of criteria used to break down 

precipitation records into rain events. For this reason, it is important to define and apply an unambiguous definition of a “rain 

event”. 

In this study, the pattern produced by the one-minute rain rate time series RRt(t) can be simplified by grouping non-null rain 

rates into a set of separate “primitive events” (Brown et al., 1985). On the basis of an assigned Minimum Inter-event Time 20 

(MIT) (Coutinho et al., 2014) each rain rate value, corresponding to a specific one-minute period of observation, is assigned 

to a given rainfall event, i.e. either the rainfall event in progress, or a subsequent event that is considered to be independent 

and “new”. The MIT could also be defined as the duration of a dry period Ddry following which the next occurrence of non-

null rainfall marks the beginning of a new event. For dry periods shorter than the MIT, rain rates from either side of this period 

are considered to belong to the same “composite event”. Various authors have proposed different values of MIT that ensure 25 

event independence. Llasat (2001) noted that: “The definition of an episode is quite subjective. In this case it was felt possible 

to distinguish between two different episodes, when the time which elapses between them without rainfall exceeds 1h, which 

ensures that, the two episodes come from different ‘clouds‘”. Bocquillon and Moussa (2014) wrote: “the constant rain 

observations on less than thirty minutes represent only 5% of all the rainy periods. The representative threshold of the 

discretization of the data is 30 minutes to an hour.”  30 

Dunkerley (2008 a, b) carried out an analysis of the Inter-Event Time (IET) in order to check the influence of this variable on 

the definition of rainfall events, and its influence on the average rainfall rate. As emphasized in this study, when determining 

a value for the MIT, it is crucial to find an appropriate compromise between the independence of rain events and the intra-

event variability of rain rates. The choice of MIT thus has a direct impact on the macrophysical characteristics that are 

ultimately determined by the analysis. Other researchers have proposed to use MIT values of 20 minutes, 1hour or even 1day 35 

(see Dunkerley, 2008a for a detailed list). In the present study it was decided to set the MIT to 30 minutes. This is in agreement 

with the value used by Coutinho et al. (2014), Haile et al. (2011), Dunkerley (2008a, b), Balme et al. (2006) and Cosgrove and 

Garstang (1995). 

                                                 
1  http://sirta-dev.ipsl.jussieu.fr/joomla/index.php/85-article-sans-categorie/71-sirta-home-page 
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When applied to our dataset, this choice leads to the identification of 545 rain events, which can be divided up into two subsets, 

i.e. one for learning and the other for testing (Tab. 1). The learning dataset is composed of observations collected over a two-

year period between 2013 and 2014, with an availability of 96.4%, whereas the test dataset collected during the 2008 – 2012 

period contains periods with missing data, due to a malfunction of the recording device. 

 5 
Table 1:  Observation periods and availability of DBS observations, and numbers of rain events for the learning and test datasets 

 

2.2 Macrophysical description of rain events 

Rain events contain a wealth of information, which generally needs to be condensed into a limited set of well-chosen features. 

However, there is no conventional or commonly accepted list, or specific set of macrophysical features that can be used to 10 

accurately describe and summarize an event. In the present study it was thus decided to consider a large number of features, 

allowing the macrophysical rain event information described in the literature to be correctly represented. Seventeen 

characteristics were selected and identified (Llasat, 2001; Moussa, 1991), and are listed in Tab. 2. Some of these are parameter-

dependent, such as Pc which uses 3 values of the parameter c. These 3 values lead to 3 Pc indices, namely Pc1, Pc2, Pc3. 

Finally, a total of 23 descriptors were defined and numbered from 1 to 23 (column 1 in Tab. 2). 15 

Table  2: The 23 variables identified in the literature, used for the characterization of rain events  

 
Among the 23 indicators (hereafter referred to as variables) corresponding to the previously defined features, some are very 

well known. These include the event duration (De), the quartile (Qi), the mean event rain rate (Rm) and the standard rain rate 20 

deviation (��). Other less traditional parameters such as the parameter βL (indicator for the convective nature of the rain, see 

Llasat (2001)), the absolute rain rate variation of order c (Pc), or the absolute rain rate variation (Ps,c). Some variables that are 

usually used to describe time series, such as the fractal dimension, multi-fractal parameters, trend, seasonality, and 

autocorrelation, require a long series of data and are not well suited to an event-by-event analysis. This set of 17 features is 

not exhaustive, and some other features could also be included, depending on the application. One example is the case of 25 

hydrology, for which the positions of the intensity peaks inside the event could be a relevant feature. Although, for events 

comprising a very small number of samples (very low value of variable De), the computation of some indicators (��, Qi) is 

questionable, in the present study the 23 variables were computed for each of the 545 rain events.  

2.3 PCA analysis and normalization step 

It is important to note that very few of these 23 variables are compatible with the probabilistic assumptions generally associated 30 

with exploratory statistical methods. They are often highly variable, with highly skewed distributions, and therefore do not 

have normal distributions. It is thus more difficult to make direct use of standard statistical methods with this data, as it may 

lead to misleading interpretations (Daumas, 1982). It is thus necessary to introduce an additional step in order to transform the 

original distributions into quasi normally distributed distributions. The most suitable type of normalizing transformation for 

each of these variables was selected empirically, by testing 7 different possible transformations (Tab. 3).  For each variable, 35 

the retained transformation is that leading to a distribution having the strongest similarity to a normal distribution, i.e. with a 

kurtosis close to 3, and a skewness close to 0. For each indicator, the selected transformation is provided in the last column of 

Tab.2.  

 
 40 
Table  3: Transformations used to normalize the variables listed in Table 2. 
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Following the normalisation step, Principal Component Analysis (PCA) was carried out on the learning data set (cf. end of 

section 2.1 and Tab.1). It follows that the two principal axes contain 73% of the total information, whereas the first 5 principal 

axes are needed to represent 90% of the total information. The IETp variable (#7) is very well correlated with axis 5, whereas 

the other variables are not. This means that there is no linear relationship between IETp and the other variables. For this reason, 

this variable was not considered as a possible candidate, in the variable selection process, during the remainder of the study. 5 

The results obtained in Section 4.2 confirm that there is no relationship between this variable and the other 22 variables. The 

correlation circle on axes 1 & 2 (Fig. 1.a.) shows that among the 23 variables, 16 are well correlated with the axis (close to a 

unit circle) and are distributed in approximately 5 groups (hereafter referred to as PCA groups). A first PCA group (G1) can 

be identified by the variables, which are grouped close to the first axis, and are well correlated with it. As an example, this is 

the case for the variables �� (#9), ��� (#17 – 18) and β (#21 to 23). A second PCA group (G2) comprises the variables Rmax 10 

(#11) and PC3 (#16), just above axis 1. The third PCA group (G3) is formed by the variable PC2 (#15) only. The fourth PCA 

group (G4) comprises the variables Pc1 (#14) and Ps,c (#20) and is well correlated with axis 2. The last PCA group (G5) is 

formed by the variable De (#1). The correlation circle on axis 1 & 3 (fig. 1.b.) shows that the variables Q1 (#4), Q2 (#5) and 

M0 (#10) are quite well represented by these two axes. A similar remark can be made for variables Dd (#3) and βL1 (#21) on 

axes 1 & 4 (not shown).  15 

Finally, PCA analysis clearly shows that, within each PCA group, many variables are highly inter-correlated, i.e. linearly 

dependant on each other. This means that several variables could be removed with no substantial loss of information. This 

leads to the following question: which variables can be removed in order to retain the most parsimonious subset of variables 

representative of the full dataset?  The PCA extracts summary variables, which are a linear combination of original variables, 

but do not allow for the selection of variables. To answer to this question, we propose a method for the global selection of 20 

variables, which seeks to identify the relevant variables in a dataset. As it appears to be intuitively more advantageous to select 

variables with a physical sense, rather than using dimension reduction methods (e.g. PCA which is more suitable for the 

detection of linear relationships), the proposed method is based on the use of a genetic algorithm. The following section 

provides a brief introduction into the concept of genetic algorithms, and shows how they can be advantageously used for the 

selection of variables in the context of the present study. 25 

 

Figure 1:  PCA on the learning data set based on the 23 variables described in Tab. 3. Left: correlation circle on axes 1 & 2. Right: 

correlation circle on axes 1 & 3. All of the variables are normalised according to the last column of Table 2. 

 

3. Variable selection using a genetic algorithm   30 

Computer-assisted variable selection is important for several reasons. Indeed, the selection of a subset of variables in a high-

dimensional space can improve the performance of the model or its statistical properties, but also provides more robust models 

and reduces their complexity. In practice, it is not generally possible to try all potential combinations of variables, and to select 

the best of these, as a consequence of the enormous computational cost associated with such an approach. Among the many 

different variable-selection techniques described in the literature (Guyon and Elisseeff, 2003), we chose to develop a model 35 

based on the use of genetic algorithms, to search for an optimal subset of variables. Genetic algorithms (GAs) (Holland, 1975) 

are stochastic optimization algorithms based on the mechanics of natural selection, and the genetics described by Charles 

Darwin. In our study, a chromosome is defined as a subset made up from our 23 variables. A first generation composed of a 

population of 60 potential chromosomes is arbitrarily chosen. The performance of each chromosome (i.e. for each 

corresponding subset of 60 variables) is evaluated through a fitness function f. This fitness function is defined in such a way 40 
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that the higher its value, the greater the fitness function’s ability to represent the full dataset (of dimension 23), using the 

smallest possible number of variables. On the basis of the performance of these 60 chromosomes, we create a new generation 

of 60 potential-solution chromosomes, using classical evolutionary operators: selection, crossover and mutation. The 

performance of this new generation is then evaluated. This cycle is repeated until a predefined stop criterion is satisfied. The 

best chromosome from the current generation then provides the optimal subset of variables. 5 

 

3.1 Methodology 

We define by xk the chromosome number k:  �� = 	
�, 
, … , 
��. xk  is a binary vector in {0,1}� space such that each 

component has the following meaning: 

 10 

∀�	 ∈ {1, … ,23},			 �
� = 1 �ℎ�		 !"�!#$�		%&'#�"	�	�%	�!#. 2	)*$&'%	1	�+	+�$�),�-
� = 0 �ℎ�		 !"�!#$�	%&'#�"	�	�%	�!#. 2	)*$&'%	1	�+	%*,	+�$�),�- (1) 

 

The word “selected” in eq. 1 means that the corresponding variable will be used, both in the learning step described in “Step 

2” below, and for performance evaluation. Otherwise, if the corresponding variable is not selected it will be used only for 

performance evaluation. 15 

As previously stated, the fitness function allows a measure to be provided of how well a minimal subset of variables can 

represent the entire data space (in dimension 23). The fitness function f is thus defined as follows: 

 

.	��� = �
/01��2		34	���           (2) 

where 20 

�� ∶ )ℎ"*'*+*'�+	%&'#�"	6 

%#	��� : %&'#�"	*.	+�$�),�-	 !"�!#$�+	�%	)ℎ"*'*+*'�	
8,�	��� : ,*9*$*:�)!$	�""*"	!++*)�!,�-	,*	)ℎ"*'*+*'�	
8  

 

As the aim of this approach is to minimise the number of selected variables nb and the topological error te, we seek to maximize 

the fitness function. The estimation of the topological error made from a Self-Organizing Map (SOM) is somewhat 25 

complicated, and requires some explanation. The notion of a Self-Organizing Map, introduced by Teuvo Kohonen (Kohonen, 

1982, 2001), makes use of a popular clustering and visualization algorithm. SOM is a neural network algorithm based on 

unsupervised learning, derived from the technique of competitive learning (Kohonen, 1982, 2001; Vesanto and Alhoniemi, 

2000). It may be considered as a nonlinear generalization, which has many advantages over the conventional feature extraction 

techniques such as Empirical Orthogonal Functions (EOF), or Principal Component analysis PCA (e.g., Liu et al., 2006). SOM 30 

applications are becoming increasingly useful in geosciences (e.g., Liu and Weisberg, 2011). As stated by Uriarte and Martín 

(2008): “The SOM provides a nonlinear, ordered, smooth mapping of high-dimensional input data manifolds onto the elements 

of a regular, low-dimensional array. The main characteristic of the projection provided by this algorithm is the preservation of 
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neighborhood relationships; as far as possible, nearby data vectors in the input space are mapped onto neighboring locations 

in the output space”. This property makes it straightforward to compute a topological error (see Uriarte and Martín, 2008, eq. 

2). For each of the xk chromosomes, a Self-Organizing Map M(xk)  is learned  on the learning dataset. Only the selected 

variables are used during the learning process. Finally, for each Map M(xk), the topological error ,�	��� can be computed in 

accordance with eq. 2 in Uriarte and Martín (2008). Section 4 provides additional information concerning Self-Organising 5 

Maps. 

The Genetic Algorithm is based on the following five steps (Fig.2.):  

Step 1- Initialization: (initial population)  

Randomly generate a population {xk , k=1,… , 60} of 60 chromosomes of dimension 23. 

Step 2- Evaluation: For each of the xk chromosomes, a SOM M(xk)  is learned. Only the selected variables are used for learning. 10 

Once the learning has been completed, the test dataset and the 23 variables are used on each of the 60 maps to estimate their 

topological error te(xk) allowing their fitness score f(xk) to be computed.  

Step 3- Select the best chromosome xBest from the full set of 60 chromosomes according to the fitness score previously 

computed with the test dataset. If xBest remains unchanged over a period of 50 generations, stop the procedure and select the 

most relevant variables, i.e. those for which the corresponding components are equal to 1 in xBest. Otherwise, go to step 4. 15 

 Step 4- Selection: Create a new population of 60 chromosomes from the current population, by randomly sampling with 

replacement chromosomes based on their probabilities, determined using the formula: 

Pr1��2 = >	���
∑ >	�@�ABCDE           (3) 

Step 5- Reproduction: Mutation and Crossover possibilities in the new population. 

Mutation: This consists in modifying (or not) certain components of the chromosomes. The probability of mutation is in general 20 

very low, and is commonly set to 9 = 	10FG. In the present case, the number of generations needed to reach the objective is 

less than a few hundred, such that the probability of a mutation is very low. 

Crossover: In an initial step 
HI
 = 30 pairs of chromosomes are randomly drawn from the population. Then, for each pair (xk, 

xl) (called parents) one crossover point, noted Ic, is randomly drawn over the range [1, 23], using a discrete uniform law. Two 

new chromosomes (xk’, xl’) are created as follows: 25 

J�8K = 	
�8, 
8, … , 
LM8 , 
LNO�P 	, 
LNOP , … , 
�P �
�QK = 1
�P , 
P , … , 
LNP , 
LNO�8 	, 
LNO8 , … , 
�8 2     (4) 

Thus, from two parents, two children are generated, allowing a new generation to be produced with the same number of 

chromosomes. Finally, the algorithm returns to step 2.  

 
Figure 2: Diagram for the selection of variables based on a Genetic Algorithm associated with Kohonen Maps30 
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3. 2 Parsimonious description of a rain event  

The genetic algorithm is applied to our datasets in order to obtain an optimal subset of variables forming a subspace, which 

can (in a certain sense) provide relatively accurate information concerning the global space, whilst having the particularity of 

containing non-redundant information. At the 187th generation the algorithm produces a subspace comprising 5 variables, 5 

namely : Event duration R4  (#1), Standard deviation �� (#9), maximum rain rate during event STUV (#11), Rain event depth 

SW (#13), and Absolute rain rate variation �M� (#14).  

The 3 variables (R4 ,	STUV, SW) selected using this data-driven approach are commonly used in the study of hydrological 

processes (Haile and al., 2011). Moreover it should be noted that the commonly used variable ST, which is computed simply 

by dividing the Rain event depth (SW) by the duration (R4), was not selected by the algorithm. This result could be expected, 10 

since it is correlated with the latter variables, and the algorithm provides a parsimonious description. Concerning the Absolute 

rain rate variation (�M�), this variable was proposed by Moussa and Bocquillon (1991). It tends to provide information on the 

structure of the events, more specifically related to smooth events with a small number of sharp peaks. In fact, this variable 

promotes low variations of RRt because PC1 is in a certain sense a structure function of order c1 of the variable RRt (see #14 

column 4 in Tab. 2), with a low value for the exponent (c1 = 0.5). Finally, the standard deviation variable (��), which is a 15 

second-order moment, is the most commonly used indicator to describe the variability of the precipitation rate within the rain 

event.  

4. SOM learned with the five selected variables 

A SOM is a topological map composed of neurons. In the present case, a neuron is a vector of dimension 23 containing the 23 

variables defined in Tab. 2. Each neuron has 6 neighboring neurons. SOM is an unsupervised neural network trained by a 20 

competitive learning strategy that performs two tasks: vector quantization and vector projection. The SOM, which is different 

to k-means, uses the neighborhood interaction set to learn the topological structure hidden in the data. In addition, in order to 

achieve optimal referent vector (neuron) matching, its neighbors on the map are updated, leading to the generation of regions 

in which neurons located in the same neighborhood are very similar. The SOM can thus be considered as an algorithm that 

maps a high-dimensional data space onto a two-dimensional space called a map. A map can be used both to reduce the amount 25 

data by means of clustering, and to project the data in a nonlinear manner onto a regular grid (the map grid).  

In the present study we used the toolbox developed by “the SOM Toolbox Team”, which is available at the following site: 

http://www.cis.hut.fi/somtoolbox/. A SOM with 8×8 = 64 neurons is considered here. This choice corresponds to a 

compromise, since a smaller map would not be able to distinguish fine details whereas, in view of the number of observations, 

and a larger map would not be meaningful.  30 

After learning by the GA algorithm described in the previous section, the resulting map X	�YZ[\� can be used to assign to any 

event the best matching reference vector (neuron), in accordance with the 5 selected variables associated with the chromosome 

�YZ[\. The X	�YZ[\� map obtained with this procedure can be considered as an optimal representation of the initial data set.  

Fig. 3 shows the distance matrix. For each neuron, the color indicates the mean distance between a neuron and its neighbors. 

The value at the center of each neuron represents the number of rain events of the learning data set, captured by the 35 

corresponding neuron. All neurons capture rain events and slightly more than half of these capture between 3 and 5 rain events, 

which is close to the value that would be obtained (234	/	64 ≅ 4) if the rain events were uniformly distributed over the map. 
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Figure 3: Distance matrix for the `	�YZ[\� map: The colour of each neuron represents the average distance between itself and its 

neighbouring neurons. The value inside each neuron indicates the number of rain events that it has captured inside the learning 

dataset.  The black line separates the neurons into 2 classes, using the Hierarchical Ascendant Classification (see section 4.1). The 

arrows represent the gradients of the variables Rmax, ab and De 

 5 

4.1 Projection of the selected and unlearned variables onto the SOM 

The five variables R4 , ��, STUV, SW and �M� used for learning are referred to as 'selected' variables, whereas the remaining 18 

variables are referred to as 'unlearned' variables. In order to study the relationship between these variables, Fig. 4 shows the 

projections for each of the variables in the X	�YZ[\� map obtained with the aforementioned GA selection algorithm. The 

variables are discussed individually, by considering their structure, as well as the relationships between them. We note that the 10 

map is well structured for the majority of variables. This advantageous structuration of most of the variables confirms the 

ability of the selected variables to summarize all of the significant characteristics of rain events. Only a small number of 

characteristics are not adequately represented. It should be noted that almost all variables are structured according to the first 

or second diagonal. Among these, one may consider an initial subset comprising variables that are more or less structured 

according to the first diagonal. This is the case for the unlearned variable RW	, as well as for the selected variables �M� and R4 . 15 

A second subset comprising variables that are structured in approximate accordance with the second diagonal can be identified. 

This is the case for the unlearned variables Rm,r , Rm,, ���C  which are very similar to the selected variable ��.  The unlearned 

variables	Q�, ���,	�d,�  also belong to the second subset and have a structure close to that of the selected variable STUV.  

The map can be related to the previously implemented PCA (Fig.1). As can be seen in Fig. 4, the variables PC3 (#16) and Rmax 

(#11), which have a similar structure, also belong to the same PCA group, namely group G1 (see section 2.3, Fig. 1.a).  It is 20 

interesting to note that the variables  PS,C (#20) and Rmax (#11), which also have a similar structure, do not belong to the same 

PCA group (groups G4 and G2 respectively) and are uncorrelated (they are orthogonal in Fig.1a). This remark means that the 

topological map reveals a relationship that cannot be detected using PCA. As the Rain event depth (SW) depends on both the 

duration and the intensity of the events, the corresponding map has a top-down structure. Two distinct situations thus occur: 

-  Those events which contribute the greatest quantities of water (Fig. 4., brown neuron at the bottom right of Rd) are 25 

among the longest (see corresponding neuron of De), but do not have an extremely high peak rain rate (see corresponding 

neuron of Rmax) and are quite smooth (see corresponding neuron of Pc1 and �� ).  

- Other events which contribute large amounts of water (but less than previously) (Fig. 4. red neuron at the bottom left 

of Rd) have short durations (see corresponding neuron of De), but are violent (see corresponding neuron of Rmax) and are less 

smooth (see corresponding neuron of Pc1 and �� ). The latter case reflects situations that are typical of convective storms.  30 

The resulting map confirms the dependence structure of the two hydrological variables SW and De studied by Gargouri and 

Chebchoub (2010).  

The variable IETh (Previous IET): the map is not structured, reflecting the independence of the characteristics of a rain event 

with respect to the drought period preceding the event. This corroborates the results of several previous studies (Lavergnat and 

Gole, 1998, 2006; Akrour et al., 2015) dealing with rain support simulations. When studying temperate mid-latitudes for 35 

relatively short periods, these authors noticed that successive rain and no-rain periods are uncorrelated, such that a rain time 

series could be considered as an independently drawn, alternating series of rain events and periods without rain. This is 

equivalent to an inter-event time (IET) that does not characterize the rain events. The same effects are not necessarily observed 

at other locations, and under different climatological conditions. Brown et al. (1983) also investigated a possible correlation 

between IETp and the intra-event characteristics, and concluded that their data provided no evidence of this. 40 
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Since the variable iL: iL (Llasat, 2001) is considered to represent a measure of the convective nature of the rain, it makes 

sense that the three variables βL1, βL2, βL3 are structured similarly, with the peak rain rate variable Rmax. This relationship is 

clearly visible on the maps. 

Several other relationships, which are not described in detail here, can be observed. These include the correlation between the 

Normalized Absolute rain rate variation (���C) and the standard deviation of the intensity (σk). We conclude that the 5 

combination of the five selected variables provides a relatively accurate summary of the information needed to describe the 

rain events. The poor structuring of some variables is justified by the independence of these variables with respect to the 

properties of the rain events; this is the case for the variable Dry Percentage in event Dd or the variable IETP. 

 

Figure 4: Projection of the `	�YZ[\� map according to the 23 variables. The red-framed variables are those selected by the GA 10 
algorithm. The last two variables Dm and lm∗  are defined in section 5 

 

4.2 Representation of rain events on SOM  

In an effort to provide additional information for validation of the map, we compared each of the 23 variables with their 

corresponding value given by the SOM, for the learning dataset and the test dataset. For each of the 311 events of the test 15 

dataset, the best matching unit of the SOM, i.e. the neuron that is the closest to the event, is determined with respect to the five 

selected variables.  As an example, for each event Fig. 5 shows the current value of the unlearned variable io� as a function of 

the corresponding value given by the best matching unit of the event. A spread can be seen, in particular in the central zone, 

whereas the spread is relatively small for values located near to the edges (which are more numerous). A linear regression 

leads to a relatively good determination coefficient (R-square) (0.96 and 0.89 respectively, for the learning and test data sets). 20 

Table 4 lists the value of R-square for the 23 variables obtained with the learning and test data sets. As expected, the coefficient 

of determination of the variable IETp is very poor (0.31/0.26), since this variable is not related to the 5 selected variables, and 

as a consequence cannot be well represented by the SOM (Fig. 4). The selected variables have good determination coefficients, 

with both the learning and the test datasets; this confirms the quality of the learning and the generalization ability of the SOM. 

The quality of the learning step is confirmed by the fact that the R-square values of the selected variables obtained on the test 25 

set are close to those obtained on the learning set. The R-squares corresponding to the unlearned variables obtained on the 

learning data set emphasize the ability of the selected variables to provide the information contained in the unlearned variables; 

in the case of the test data set it denotes the ability of the SOM to derive all event characteristics from the selected variables 

only. 

  30 
Figure 5: the variable pqr versus its corresponding value, given by the best matching unit: from the learning data set (circles), and 

on the test dataset (stars). The solid line corresponds to the first diagonal 

 

 

 35 
 
Table 4: Coefficient of determination obtained on the learning and test data sets. The values with a dark grey background 

correspond to the 5 selected variables 

 

4.3 Hierarchical clustering of rain events 40 

We have shown that the distance matrix (Fig. 3) confirms the successful deployment of the map. Based on the distance between 

neurons, it appears that neurons can be grouped to obtain a limited number of classes, each with its own characteristics. In 

order to group the 64 neurons into a small number of classes, a hierarchical cluster analysis was carried out (Everitt, 1974). 
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Only the five selected variables were used for the classification, and a Euclidian distance was selected for the hierarchical 

algorithm. Fig. 6 shows the resulting dendrogram, applied to the 64 neurons. 

 

Figure 6  Dendrogram obtained from the Hierarchical Cluster Analysis of the 64 neurons in the SOM. The horizontal dashed line 

represents the threshold between the two classes.  5 
  

 

Depending on the physical processes involved, experts tend to separate rain events into two different classes: stratiform and 

convective events. Although this classification is relatively crude, since stratiform and convective events can sometimes exist 

inside the same rain event, it is very commonly used. Concerning the times series, most authors use a very simple scheme to 10 

distinguish between stratiform and convective rain types. For reasons of simplicity, rain classification is sometimes defined 

using the instantaneous rain rate and the standard deviation estimated over consecutive samples. As an example, Bringi et al. 

(2003) defined stratiform rain samples when the standard deviation of the rain rate, taken over five consecutive 2-min samples, 

is less than 1.5 mm.h-1, the convective rain samples are defined for a rain rate greater than or equal to 5 mm.h-1, and the standard 

deviation of the rain rate over five consecutive 2-min samples is greater than 1.5 mm.h-1.  15 

Firstly, we separate the dendrogram into two classes. The first class contains 51 neurons and 79% of the observations, whereas 

the second class contains 13 neurons and 21% of the observations. The solid black line in Fig. 3 corresponds to the dividing 

line between these two classes. The first class, containing the greatest number of neurons, is in most cases characterized by 

relatively low rain rates. This can be seen by examining the structure of the map, according to the mean rain rate variable (ST). 

Moreover, analysis of the standard deviation (small values of ��), absolute rain rates Pc (high values of Pc1 , and low values of  20 

Pc3) shows that this class is more or less characterised by quiet, homogeneous events. Our analysis of event durations (R4) 

shows that this class contains both short and long durations, but is dominated by the latter. These characterizations are relatively 

well matched to a description involving stratiform and stable precipitations, which are often the consequence of the slow, 

large-scale uprising of a large mass of moist air which then condenses uniformly.  

The second group is characterized by a smaller number of neurons. This corresponds to the higher values of the mean rain 25 

rates (ST) and peak rain rates (STUV). The variables ��, Pc have the opposite values with respect to those of the previous 

group. Most of the event durations (R4) in this group are short, with the exception of neuron #64 (bottom right on the maps). 

This group fits well with the definition of convective events resulting from the rapid rise of air masses loaded with moisture, 

for buoyancy. This convective moist air can lead to the development of cumulus clouds up to an altitude in excess of 10 km, 

and to heavy rain. 30 

Our analysis of the structure of the variables io�, io, io� in Fig. 4 confirms the previous interpretation of the two groups. 

These three variables, which are representative of convective rain, have high values for the neurons belonging to this group.  

Figs. 7.a and 7.b show the neurons in the Rm, io�and PC2 subspace. These 3 variables were not used in the learning step. 

Nevertheless, the two classes are well separated, although an overlap does occur in Fig 7a due to neuron #64 (bottom right on 

the map, Fig. 4). We checked although it belongs to the convective class, this neuron nevertheless has some characteristics of 35 

the stratiform class. 

 

 
Figure 7: Representation of the neurons in the Rm, pqrand Rm, and PC2 subspaces. The stars represent neurons from group 1 

(stratiform), and the squares correspond to neurons from group 2 (convective). Dashed lines indicate the neuron #64 40 
 

The hypothesis that the two categories of precipitation events corresponding to different dynamic regimes can be identified 

solely on the basis of hydrometeorological variables is in agreement with the findings of Molini et al. (2011). These authors 
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have shown that there is a strong agreement between the hydro-meteorological classification (based on the duration and extent 

of events from rain gauge network data), and dynamic classifications (the convective adjustment time-scale identified to 

distinguish between equilibrium and non-equilibrium convection derived from ECMWF analysis). We conclude that this 

unsupervised automatic clustering, based on the five selected variables, makes it possible to correctly implement a 

classification with these two well-known classes (stratiform and convective). It should be noted that, unlike other 5 

classifications described in the literature, this was established without making use of a priori information, since it is produced 

by an unsupervised process. 

4.4 Classification of events into several classes 

From the stratiform and convective classification described above, it is interesting to refine the two classes into a set of 

subclasses. The synoptic rainfall associated with mid-latitude depressions provides an example of stratiform precipitation, 10 

which forms in depressions in the vicinity of warm and cold fronts. The very light type of rainfall (drizzle) associated with 

stratus or stratocumulus is included in the class of stratiform precipitation. This can occur under anticyclonic conditions, or in 

the warm region of a depression. The associated rain depths (Rd) are minimal, and usually have no hydrological impact other 

than superficial wetting. In order to identify relevant subclasses, our classification was broken down into a number of unknown 

subclasses, such that % > 2.  15 

An important step in hierarchical clustering is the selection of an optimal number of partitions 	%st3� in the dataset (Grazioli 

et al., 2015). Many indices can be used to evaluate each partition, from the point of view of data similarity only. Most of these 

evaluate the scattering inside each cluster, with respect to the distance between clusters, and assign relatively favourable scores 

to partitions with compact and well-separated clusters. Although different indices were tested, these did not provide the same 

number of subclasses (between 2 and 32 with the indices tested in this study). It should be noted that these did not take the 20 

physical meaning of each class into account. Finally, we chose %st3 = 5, since higher values led to classes with the same 

physical sense. The new classification based on the use of five subclasses is shown in Fig. 8.  

  

Figure 8: Hierarchical Clustering of the map into five subclasses. The colours represent the subclass numbers: 

Subclass 1: Dark blue, Subclass 2 : blue, Subclass 3 : Green, Subclass 4 : Orange, Subclass 5 : Red 25 
 

 

From these five subclasses, two belong to the stratiform class and the other three belong to the convective class. In the learning 

dataset, the first subclass represents 12% of all events, and respectively 68%, 1.2%, 6.8% and 12% for subclasses 2 to 5. The 

characteristics of these five subclasses are summarized below and in Tab. 5. The five selected variables are remarkably 30 

heterogeneous between classes, meaning the accuracy of these variables for clustering: 

- Subclass 1 (drizzle and very light rain):  the main feature of this class is the very low mean value (ST) and standard deviation 

�� of rain rate events, in addition to the features of the superclass. The mean rain rate events lie in the range [0, 0.5] mm.h-1 

with a mean value of 0.36 mm.h-1 and ��in the range [0, 3] mm.h-1, with a mean value equal to 0.1 mm.h-1. Although this event 

has a significant duration, the corresponding subclass, which corresponds to drizzle, involves only small quantities of water. 35 

It can also be noted that a low value of io� is a good indicator (< 0.01) for drizzle. 

- Subclass 2 (“normal” events): this is a relatively broad class containing 68 % of all events, with a mean event rain rate (ST) 

in the range [0.5 , 6] mm.h-1 and a mean value of 1.48 mm.h-1. The standard deviation �� lies in the range [1, 10] mm.h-1 with 

a mean value of 2. This subclass is characterised by a significant relative variation of some parameters (De, Rm, Pc1 for instance), 

together with dry periods (Dd), which may be sufficiently long. 40 
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The three remaining subclasses correspond to convective classes of events, which are characterized by a strong temporal 

heterogeneity and significant intensities. Depending on the depth of rain events, this convective class is subdivided into: 

- Subclass 3: containing relatively long events (De) with high values for the rain event depth (Rd) variable and Pc1. This class 

represents events with a very small likelihood of occurrence (1.2%). 

- Subclass 4: containing relatively short events (De) with peak rain rate STUV > 50 mm.h-1, in addition to strong heterogeneities 5 

(��, PC2 and PC3 are high) and large values for the convective indicator (io�). 

- Subclass 5: the events in this subclass are characterised by relatively low values for the rain event depth (Rd). This is due to 

the short duration of the events (De). The variables �� and PC3 remain high. Another feature of this subclass is that it includes 

continuous events only, with no short, embedded dry periods (low values of RW in Fig. 4 and Tab. 5). 

 10 
Table 5: Summary of rain event subclasses computed with the learning dataset.  

 

 

To conclude this section, this new classification allows the conventional definition for stratiform events to be refined. The 

convective classification can be subdivided into five different subclasses, each of which is homogeneous. This classification 15 

is obtained for mid-latitude climates. As the dataset used in this study is representative of only one specific region and 

topography (i.e. the temperate climate encountered in the Ile de France region, France), its analysis cannot reveal information 

related to different processes, i.e. those which are not sampled in the dataset. Such processes could lead to the identification of 

additional specific clusters of events. In particular, there are no orographic rainfall events or oceanic observations. The final 

step in this study involves assessing whether the homogeneous character of each class is preserved at the microphysics scale, 20 

and attempting to identify any relationships between the information present at the scale of both the microphysics and the 

macrophysics of these events (hydrological information). 

5. Microphysical point of view 

Our study of the microphysical properties of rain is based on a comprehensive analysis of its drop size distribution N(D), 

corresponding to the number of raindrops per unit volume and per interval of diameter D. The shape of N(D) reflects the 25 

microphysical processes involved. The identification of various features of the drop size distribution, as well as the type of 

precipitation, is very useful for many applications. As an example, this information is used in the calculation of heating profiles 

in the precipitation parameterization of atmospheric models, to gain a more detailed understanding of microphysical processes, 

as well as for the development of rain retrieval algorithms applied to remote sensing observations. The microphysical 

characteristics of rainfall act as hidden variables that affect the relationship between microwave remote sensing measurements 30 

and the volume of water in a rainfall event (Ulaby, 1981; Iguchi, 2009). It can thus be very useful to use conventional rain 

gauges to determine the microphysical characteristics of rainfall events, thereby improving the quality of active or passive 

remote sensing observations, and the spatial properties of rainfall events in particular. 

A general expression for the drop size distribution defined by Testud et al. (2001) is commonly used in the literature. This 

allows a distinction to be made between the stable shape function f and the variability induced by rain. This variability is 35 

represented by two microphysical parameters, namely the mass-weighted volume diameter (Dm) and the parameter NI∗. In some 

studies, the term wx is used rather than NI∗. Not all authors use exactly the same units, in particular Bringi et al. (2003) and 

Suh et al. (2016) use  mm-1m-3 for the units of wx, rather than the unit m-4  which is used in this study for NI∗.  

w	R� = wI∗.	 y
yz�  [m-4]  (5) 

where Dm and wI∗ are defined as: 40 
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RT = {|{}   [mm] , 			wI∗ = ~|
�	~�

{}�{|| [m-4]  (6) 

and Mi is ith-order moment of the drop size distribution N(D):  

X� = � w	R�R�-RO�I   (7)   

Rain samples are usually analysed by computing the microphysical parameters (Dm and NI∗) for each rain sample obtained over 

a given time scale. In the present study, N(D) is obtained by considering the entire raindrop collection corresponding to each 5 

rain event of (variable) duration R4 . This approach leads to one pair (RT , wI∗) of microphysics variables per rain event, whereas 

most other authors rely on values computed over a fixed time scale.  

Projections of the learned map, according to RT and wI∗, are shown in Fig. 4 (bottom right). It can be seen that the two maps 

are well structured, and that these two parameters have opposite influences on the map projection. Although these two 

microphysical parameters were not learned, the relationship between them is clearly accounted for by the information used to 10 

structure the map (the 5 selected variables). Moreover, the existence of a relationship between the microphysical and 

macrophysical features of the rainfall is also confirmed in this figure, since both of the macrophysical variables used to learn 

the SOM, i.e. �� and STUV, have patterns similar to those revealed on the RT map.   

Many authors, including Atlas et al., 1999; Bringi et al., 2003; Marzuki et al., 2013; Suh et al. 2016, have endeavoured to 

associate specific microphysical properties with each type of precipitation (convective or stratiform). In view of the maps 15 

shown in Fig. 4 and the convective/stratiform classification developed in section 4.3, we are able to confirm that precipitation 

events classified as stratiform express small values for  RT and large values for wI∗. In the case of the convective class, the 

opposite trend is observed (i.e. larger values for RT and smaller values for wI∗). Similar observations have been reported by 

Testud et al. (2001). It can also be noticed that the two microphysical variables are relatively homogeneous in the convective 

class, whereas in the stratiform class they are characterised by a higher level of variability.  20 

In order to improve our analysis of the microphysical information embedded in the dataset, we analysed the relationship 

between the two microphysical parameters using the reference vectors (neurons) from the map, which include information 

related to the original rain events. 

Fig. 9 shows the variable RT as a function of wI∗ for the 64 neurons on the map. This relationship is indicated through the use 

of distinct markers to identify the five subclasses defined in section 4.4, thus facilitating the discussion of the microphysics 25 

associated with stratiform and convective rain. The two solid lines show the linear regressions computed for these two classes.  

In the case of the stratiform subclasses (1 and 2) a clear relationship can be observed between the two variables. The 

microphysics characteristics of these two subclasses are clearly distinct. Indeed, subclass 1 (drizzle and light rain) has the 

smallest RT and the highest wI∗, and varies over just a small range. Conversely, as in the case of the macrophysical variables 

(see section 4.4), the microphysical characteristics of subclass 2 (normal events) are considerably more heterogeneous. 30 

Knowledge of RT makes it straightforward to identify the corresponding subclass. As a consequence, an event with RT lying 

in the range [0.5, 1] millimetre belongs to subclass 1. Similarly, it is very likely that an event with RT lying in the range [1, 

1.7] millimetre belongs to subclass 2.  

For the convective events (subclasses 3, 4, 5), small differences can be noticed with respect to wI∗. In the range [1.7 , 2.5] mm, 

two neurons belonging to subclass 4 are close to a neuron belonging to subclass 5, and therefore have similar microphysics. 35 

Although they are located far from all other subclass 2 neurons, three isolated neurons belonging to subclass 2 (stratiform) can 

be noted. These are characterised by relatively strong values of Dm (2 mm) and low values of wI∗. The corresponding events 
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are a mixture of stratiform and convective rain. A typical case is given by convective rain associated with strong rain rates 

occurring at the beginning of an event, whereas the remainder of the event is stratiform with low rain rates and small variations. 

  

Figure 9: Microphysical variable lm∗  versus �� for the five rainy event subclasses. The three neurons corresponding to mixed events 

are circled. The dashed lines indicate the limits defined by �� > 1.66 and Log(lm∗ �>6.15 5 
 

Following our classification, Fig. 9 indicates that there are real relationships between the macrophysical and microphysical 

variables. Nevertheless, knowledge of the variables (RT , wI∗� does not allow the correct subclass to be determined in all cases. 

 

Researchers who study microphysical features and their association with specific types of precipitation use simple schemes, 10 

based on rain rate estimations over a fixed period of integration (a few minutes), in order to separate stratiform and convective 

rain types. They also use these simple schemes to label Dm and NI∗ as stratiform or convective (Testud et al., 2001). This 

approach is significantly different to the method presented here, which assumes that all of the samples in a given event belong 

to the same class. Our values for NI∗ and Dm are thus computed for the time scale of a given event, rather than for a fixed 

integration time. Thus, although in the present study a good agreement is found for the range of values covered by Dm, those 15 

determined for NI∗ do not cover the same range as in the case of the previously cited studies.  

Many previous authors have observed that the drop size distribution is closely related to processes controlling rainfall 

development mechanisms. In the case of stratiform rainfall, the residence time of the drops is relatively long, and the raindrops 

grow by the accretion mechanism. In convective rainfall, raindrops grow by the collision–coalescence mechanism, associated 

with relatively strong vertical wind speeds. Numerous studies have been published concerning the variability of NI∗ and Dm : 20 

Bringi et al. (2003) studied rain samples from diverse climates and analysed their variability in stratiform and convective 

rainfall; Marzuki et al. (2013) investigated the variability of the raindrop size distribution through a network of Parsivel 

disdrometers in Indonesia; and Suh et al. (2016) investigated the raindrop size distribution in Korea using a POSS disdrometer. 

In the case of stratiform rain, all of these authors observe that NI∗ and Dm are nearly log-linearly related, with a negative slope. 

This is consistent with the trend shown in Fig. 9 for the two stratiform subclasses (1 and 2). Even the three distinct neurons, 25 

which are isolated from the others, appear to be governed by the same relationship.  

Marzuki et al. (2013) noted that during convective rain the increase in value of NI∗ with decreasing Dm is nearly log-linear, 

with a flatter slope. In the present case, the dependence is also log-linear, with a slope that is slightly flatter for convective 

events than for stratiform events. In the aforementioned studies, the data was aggregated over time, campaign or site, on the 

basis of a criterion computed over a fixed period of time. We believe that this process is weakly suited to determining the 30 

properties of convective events, as a consequence of their strong variability and shorter characteristic time. In this study we 

were able to retrieve the log-linear relationship between NI∗ and Dm without having to learn it directly.  

When applying our algorithm to the various macroscopic properties by rain event, we also take into account the variability of 

rain within an individual rain event. Fig. 9 clearly shows that the spreading of parameters NI∗ and Dm inside each subclass has 

the same magnitude as the distance between subclasses. This remark confirms the hypothesis of Tapiador et al. (2010): the 35 

intra-event variability can exceed the inter-event variability, due to events arising from different precipitation systems. It is 

thus preferable to examine the properties of events with a more general approach, rather than using individual samples to study 

the distinction between stratiform and convective processes. The three isolated neurons in subclass 2 described above (circled 

in Fig. 9) have the same properties as the other events of their subclass (i.e. the same slope for the log-linear relationship 

between NI∗ and Dm). This example confirms the ability of our methodology to preserve the macroscopic information needed 40 

to cluster rain events, thus allowing the intra-event variability as well as microphysical information to be (partially) retrieved. 

Suh et al. (2016) also compare log		NI∗� and Dm pdf, for the case of stratiform and convective samples over a 4-year period. On 

the basis of the Dm pdf of both stratiform and convective classes, they compute a threshold value for Dm, such that when Dm > 
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1.66 mm the rainfall samples are mainly convective, and when Dm < 1.66 mm they are mainly stratiform. This finding is 

consistent with the results of Atlas et al. (1999), who also found a threshold value for Dm, distinguishing between convective 

and stratiform rainfall. In Fig. 9, it can be seen that this threshold is confirmed (vertical solid line), with Dm smaller than 1.6 

mm corresponding to stratiform events, whereas higher values correspond to mainly convective events. When we consider the 

events analysed in the present study, there are also three neurons corresponding to a “mixed event” beyond this threshold. 5 

Suh et al. (2016) show in Fig. 4c of their study that the pdf for convective rainfall is higher than that corresponding to stratiform 

rainfall, when log		NI∗� > 6.2 (Nw = 3.2 in their figure). As described above, by considering the data corresponding to rain 

events, rather than to samples recorded over fixed periods of time, our range of values for NI∗ is smaller than that used in other 

publications. In addition, log		NI∗� < 6.15 for all neurons labelled as convective in our study, which is very close to the value 

of 6.2 determined by Suh et al. (2016).  10 

In view of the generally satisfactory retrieval of microphysical information from macrophysical parameters, we are of the 

opinion that the topological map successfully restores some of the information implicitly embedded in the dataset. It is thus 

interesting to note that the macrophysical parameters of rainfall are related to its microphysical properties. Firstly, the map 

collects similar events, whilst ensuring, through the minimization of topological errors, that the unfolding of the map is correct. 

A neuron is thus closer to its neighbours than to any other neuron on the map. This criterion ensures that the data space is 15 

optimally partitioned into connected subparts, such that the neurons on the map can be related to the underlying processes 

governing rainfall.  

 

6. Conclusion 

Although the definition of a ‘rain xc event’ is relatively subjective, this study underlines the advantages of using event analysis 20 

rather than sample analysis. This data-driven analysis of events shows that rain events exhibit coherent features. As a 

consequence of the discrete and intermittent nature of rainfall, some of the features commonly used to describe rain processes 

are inadequate, in particular when they defined for a fixed duration. Excessively long integration times (hours or days) can 

lead to the mixing of observations that correspond to distinct physical processes, and also to the mixing of rainy and clear air 

periods, within the same sample. An excessively short integration time (seconds, minutes) leads to noisy data, which is 25 

sensitive to the sensor’s characteristics (sensor area, detection threshold and noise). By analyzing entire rain events, rather than 

short individual samples of fixed duration, it is possible to clearly identify certain relationships between the different features 

of rain events, in particular the influence of the microphysical properties of rain on its macrophysical characteristics. This 

approach allows the intra-event variability caused by measurement uncertainties to be reduced, thus improving the accuracy 

with which physical processes can be identified. 30 

Once an event has been clearly identified, it is possible to choose a small number of variables to describe it. We present a new 

data-driven approach, which can be used to select the most relevant variables for this characterization. This approach has 

generic properties and can be adapted to many multivariate applications. A genetic algorithm, when combined with Self-

Organizing Map (SOM) clustering, can allow the unsupervised selection of an optimal subset of five macrophysical variables. 

This is achieved by minimizing a score function, which depends on the topology error of the SOM and the number of variables. 35 

This score provides a parsimonious description of the event, whilst preserving as much as possible the topology of the initial 

space.  

Numerous variables derived mainly from rain rate recordings are used to describe precipitation in the context of rain time 

series studies, and a wide variety of topics of interest, including hydrology, meteorology, climate, and weather forecasting. 

The algorithm proposed in this study produces a subspace formed by only 5 of the 23 rain features described in the literature. 40 

We show that these five features can be selected by the algorithm in an unsupervised manner and, from the macrophysical 

point of view, can provide an adequate description of the main characteristics of rainfall events. These characteristics are: the 
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event duration, the peak rain rate, the rain event depth, the standard deviation of the event rain rate, and the absolute rain rate 

variation of order 0.5.  

 In order to confirm the relevance of the five selected features, we analyze the corresponding SOM and are able to clearly 

reveal the presence of relationships between these features. This approach also reveals the independence of the inter-event 

time (IETp) characteristic, and the weak dependence of the Dry percentage in event (Dd%e) characteristic, thus confirming that 5 

a rain time series can be considered as an alternating series of independent rain events, interrupted by periods without rain. 

Hierarchical clustering allows the well-known separation between stratiform and convective events to be clearly identified. 

This dual classification is then refined into a set of five relatively homogeneous subclasses. The stratiform class is divided into 

2 subclasses: a drizzle / very light rain subclass, and a normal event subclass. The convective class is divided into 3 subclasses, 

characterized by a strong temporal heterogeneity and significant rain rates.  10 

As this research was based on the analysis of observations made in mid-latitude plains in France, the relevance of this 

classification remains to be confirmed through the analysis of datasets recorded in different climatic zones, and under different 

meteorological conditions, such as those encountered in mountainous or coastal areas. If the SOM described in the present 

study were learned with a more exhaustive dataset, a larger map would be produced, and this could reveal new types of rainfall 

behavior, which remained undetected in the current dataset. This point will be addressed in future studies. 15 

The data-driven analysis of entire rain events (rather than the analysis of fixed-length samples) is relevant to the study of 

interactions between the macrophysical (based on the rain rate) and microphysical (based on raindrop) properties of rain. In 

the present study, several strong relationships were identified between these microphysical and macrophysical characteristics, 

and we show that some of the five subclasses identified in this analysis have specific microphysical characteristics. When a 

relationship between the microphysical and macrophysical properties of rain is identified, this can have many practical 20 

implications, especially for remote sensing. In the context of weather radar applications, the microphysical properties of rain 

are needed in order to estimate rain rates, through the use of the Z–R relationships. The estimation of microphysical rain 

characteristics, based on easily observable rain gauge measurements, could play a significant role in the development of the 

quantitative precipitation estimation (QPE). 
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Tables 

 

 5 

 Observation period Availability (%) Number of rain events 

Learning data set 01/01/2013-12/31/2014 96.4% 234 

Test data set 04/16/2008-01/31/2012 60% 311 

 

Table 1:  Observation periods, availability of DBS observations, and numbers of rain events for the learning and test datasets 
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Number 

(#) 

Feature name symbol Formula Normalisation 

1 Event duration R4 R4 = �4/W − �04��/ + 1 [min] 

With �04��/: Event start time and �4/W: Event end time 

1 

2 Mean event rain 

rate 

ST ST = �
y�∑ SS33�����3�����C�  [mm h-1] 2 

3 Intra-dry 

duration 

RW RW = ∑ �33�����3�����C�     [min] 

With �3 = �1 �.	SS3 = 0	[mm	ℎF�]	0 �$+�  

0 

4 First quartile �� The 25th percentile [mm h-1]  0 

5 Median � the 50th percentile [mm h-1] 0 

6 Third quartile �� The 75th percentile [mm h-1]  2 

7 Previous IET ���t ���t = �04��/	)&""�%,	� �%,� −	�4/W	9"� �*&+	� �%,� + 1 

[min] 

0 

8 Mean rain rate 

over the rainy 

period 

ST,� ST,� = �
	y�Fy��∑ SS33�����3�����C�    [mm h-1] 3 

9 Event Rain rate 

std. 

�� �� = � �
y�∑ 	SS3 − ST�3�����3�����C�     [mm h-1] 

2 

10 Mode XI XI =the most frequent RRt  0 

11  Rain rate peak  STUV STUV = max		SS3�		 2 

12 Dry Percentage 

in event 

RW%4 RW%4 = RWR4  
5 

13 Rain event 

depth 

SW SW =	ST ∗ R4	/60    [mm] 0 

14 
Absolute rain 

rate variation of 

order c 

�M� 

�MC = � |SS3O� − SS3|MC
3�����F�

3�����C�
 

For 	)� = 0.5, 1, 2 

6 

15 �M 3 

16 �M� 2 

17 Normalized 

Absolute rain 

rate variation of 

order ci 

���E ���C = �MCR4 

For 	� = 1	. . 3 

3 

18 ���  2 

19 ���} 0 

20 Absolute rain 

rate variation of 

order C and 

threshold S 

�d,�  �d,� = � |max[	SS3O� − ¡�, 0] − max[	SS3 − ¡�, 0]|�
3�����F�

3�����C�
 

With + = 0.3		!%-		) = 	2 

 

6 

21  io parameter io� ioC = ∑ SS3	¢	SS3 − £������������C�∑ SS3����������C�
 

For Li = 0.3	, 1	, 3	''	ℎF� 

With ¢	SS3 − £�� is the Heaviside function defined as 

¢	SS3 − £�� = 1	�.	SS3 ≥ £� 
¢	SS3 − £�� = 0	�.	SS3 < £�  

5 

io 0 

22  

0 23 io� 

Tablec2: The 23 variables identified in the literature, used for the characterization of rain events  
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Transformation 

number 
Transformation name  Formula f(x)  Note & remark 

0 Standardisation 

 −'�!%	
�+,-	
�  - 

1 Power 
/ % = 0.05 

2 

Boxcox  
	
¥ − 1�¦  

¦ = −0.1 

3 ¦ = −0.2 

4 ¦ = −0.3 

5 Arc-sin of square arcsin√
 
Data are between 0 and 

1 

6 decimal Logarithm Log	
 + )� ) = 0.1 

 

Table  3: Transformations used to normalize the variables listed in Table 2. 

 5 

 

 

 

Variables  De Rm Dd Q1 Q2 Q3 IETp Rm,r σR M0 Rmax Dd%e 

R2  

learninglearning 

data set 

0.96 0.91 0.58 0.57 0.48 0.77 0.31 0.93 0.97 0.50 0.96 0.52 

R2  Test data set 0.93 0.84 0.55 0.57 0.50 0.74 0.26 0.84 0.86 0.54 0.82 0.50 

             

Variables  Rd Pc1 Pc2 Pc3 PcN1 PcN2 PcN3 PS,C βL1 βL2 βL3 - 

R2  learning data 

set 

0.97 0.97 0.93 0.94 0.91 0.95 0.78 0.94 0.70 0.89 0.96  

R2  Test data set 0.94 0.99 0.91 0.83 0.83 0.85 0.71 0.82 0.61 0.76 0.89 - 

 
Table 4: Coefficient of determination obtained on the learning and test datasets. The values with a dark grey background 10 
correspond to the 5 selected variables 

 

 

 

 15 

 Stratiform events Convective events 

 Subclass 1 Subclass 2 Subclass 3 Subclass 4 Subclass 5 

Variables Mean Mean mean mean mean 

R4	'�%� 321 149 464 75 49 

�� 0.36 2.01 3.62 11.7 9.64 

STUV	''	ℎF�� 2.08 10 22 52.7 36.06 

SW	''� 1.99 2.62 11.24 6.9 2.72 

�M� 75.7 64.5 193 78.2 40.94 

ST	''	ℎF�� 0.37 1.48 2.35 7.85 7.11 

RW	'�%� 80 31 75 11 1 

io� 0.01 0.42 0.48 0.89 0.86 

 
Table 5: Summary of the rain event subclasses computed with the learning dataset.  
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Figures 

 

 

 

Figure 1:  PCA on the learning data set based on the 23 variables described in Table 3. Left: correlation circle on axes 1 & 2. 5 
Right:  correlation circle on axes 1 & 3. All of the variables are normalised according to the last column of Table 2. 
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 5 
Figure 2: Diagram for the selection of variables based on a Genetic Algorithm associated with Kohonen Maps
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Figure 3: Distance matrix for the `	�YZ[\� map: The colour of each neuron represents the average distance between itself and its 

neighbouring neurons. The value inside each neuron indicates the number of rain events that it has captured inside the learning 

dataset.  The black line separates the neurons into 2 classes, using the Hierarchical Ascendant Classification (see section 4.1). The 5 
arrows represent the gradients of the variables Rmax, ab and De 
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Figure 4: Projection of the `	�YZ[\� map according to the 23 variables. The red-framed variables are those selected by the GA 70 
algorithm. The last two variables Dm and lm∗are defined in section 5. 
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Figure 5: The variable pqr versus its corresponding value, given by the best matching unit: from the learning dataset (circles), and 

the test dataset (stars). The solid line corresponds to the first diagonal. 5 
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Figure 6  Dendrogram obtained from the Hierarchical Cluster Analysis of the 64 neurons in the SOM. The horizontal dashed line 

represents the threshold between the two classes.  

 5 
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Figure 7: Representation of the neurons in the Rm, pqrand Rm, PC2  sub-spaces. The stars represent neurons from group 1 5 
(stratiform), and the squares correspond to neurons from group 2 (convective). Dashed lines indicate the neuron #64.  
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Figure 8: Hierarchical Clustering of the map into five subclasses. The colours represent the subclass numbers: 

Subclass 1: Dark blue, Subclass 2 : blue, Subclass 3 : Green, Subclass 4 : Orange, Subclass 5 : Red 
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Figure 9: Microphysical variable lm∗  versus �� for the five rainy event subclasses. The three neurons corresponding to mixed events 

are circled. The dashed lines correspond to borders �� > 1.66 and Log(lm∗�>6.15 5 
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