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Abstract. Black carbon aerosols (BC) have often been assumed to be the only light-absorbing carbonaceous
particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar
balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near infrared radiation
significantly. Tar balls were produced in a laboratory experiment and their chemical and optical properties were
measured. The absorption of these particles in the range between 470 and 950 nm was measured with an
aethalometer which is widely used to measure atmospheric aerosol absorption. We find that the absorption
coefficient of tar balls at 880 nm is more than 10% of that at 470 nm. The considerable absorption of red and
infrared light by tar balls also follows from their relatively low absorption Angstrém coefficient (and significant
mass absorption coefficient) in the spectral range between 470 and 950 nm. Our results support the previous finding
that tar balls may play an important role in global warming. Due to the non-negligible absorption of tar balls in the
near-infrared region the absorption measured in the field at near-infrared wavelengths can not solely be due to soot

particles.

1 Introduction

In atmospheric science, black carbon (BC) aka soot aerosols have often been assumed to be the only light-absorbing
carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Organic
aerosols (OAs) are currently treated as either being weak absorbers of sunlight in the UV/blue region or having no
solar absorption in most radiation models (Myhre et al., 2013). Light-absorbing organic aerosols are also known as
brown carbon (BrC) since they absorb blue light significantly but have practically zero absorption in the red band,
yielding brownish colors (Andreae and Gelencsér, 2006). The distinction between the light absorption by BC and
BrC in field and laboratory studies has relied on the explicit assumption that no other carbonaceous particle type
except BC absorbs solar radiation at the wavelength of ~700 nm or larger (Bahadur et al., 2012; Kirchstetter and
Thatcher, 2012; Lu et al., 2015). This common assumption has been used in spite of the finding by Alexander et al.
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(2008) who showed a sizable absorption by a specific class of BrC at longer wavelengths. Alexander et al. (2008)
named these BrC particles “Brown Carbon Spheres” indicating that the morphology of these particles is similar to
that of tar balls. Alexander et al. (2008) derived the absorption using high spatial resolution electron energy-loss
spectroscopy (EELS) which is not a direct method for absorption measurements. Not long ago Saleh et al. (2014)
identified extremely low volatile compounds (ELVOC) in biomass burning aerosols and calculated the index of
refraction of these compounds. They found that these compounds absorb light in the near infrared range as well, and
as BrC components they have an important role in direct radiative forcing.

The sources of atmospheric BrC are manifold, ranging from biomass burning emissions to secondary formation in
photochemical reactions yielding absorbing particles of various absorption efficiencies (Limbeck et al., 2003;
Lukacs et al., 2007). Tar balls are widespread in biomass burning smoke (Pdsfai et al., 2004; Adachi and Buseck,
2011). These particles clearly belong to the class of BrC and not to BC, as they are distinctly different from BC in
their morphology and other definition properties (Petzold et al., 2013). Tar balls are typically present as spherical
solid particles with diameters in the range of 25-500 nm, and can be readily identified by transmission electron
microscopy (TEM-EDS), as against BC particles which always have fractal-like morphology. Both tar ball and BC
particles are refractory as they can withstand the high vacuum and the irradiation by the electron beam in the TEM
indefinitely. As far as elemental composition is concerned, fresh tar balls are nearly homogeneous mixtures of
carbon and oxygen at a molar ratio of about 10:1 as determined by TEM-EDS (Pésfai et al., 2004). While BC
particles are primarily formed in fossil fuel combustion and in the flaming stages of biomass fires, tar balls are
abundant in relatively aged smoke plumes from smoldering biomass fires (Posfai et al., 2004).

Recently Toth et al. (2014) have demonstrated that tar balls very similar to those observed in the atmosphere can be
directly produced in the laboratory from liquid tar obtained by the dry distillation of wood chops. Based on these
laboratory experiments the authors postulated that during biomass combustion tar ball particles are generated by the
direct ejection of liquid tar droplets from the pores followed by a thermal shock in the fire zone and further
atmospheric aging in biomass smoke plumes. This method allows us to directly measure the optical properties of tar
balls without the interference of a multitude of other combustion particles. Hoffer et al. (2016) measured the optical
properties of tar balls generated in the laboratory only up to 652 nm wavelength, thus the absorption characteristics
of tar balls in the IR region were not discussed in that paper. In this study we used the very same method to generate
tar ball particles in the laboratory as before, but the absorption characteristics of the tar balls were also measured
directly with a single-spot 7-wavelength aethalometer (AE42-7) at the wavelengths of 880 nm and 950 nm. This is
the first direct experimental measurement of the IR absorption-n of ‘pure’ BrC-type particles (tar balls) that are

abundant in biomass burning plumes but are definitely not BC.

2 Experimental procedure

In this study tar balls were generated in an experimental setup similar to that used by Hoffer et al. (2016). Briefly,
liquid tar was produced from dry distillation of 2 different wood types (Robinia pseudoacacia (black locust) and

Picea abies (Norway spruce)) similar to that described in To6th et al. (2014). The obtained liquid distillate consisted



10

15

20

25

30

35

of an aqueous phase and an oily phase. During the experiments, only the aqueous phase was used. This phase was
concentrated and taken up with methanol. Droplets were then generated from the methanol solution by an ultrasonic
atomizer (1.6 MHz, Exo Terra Fogger, PT2080, Rolf C. Hagen Corp), and they were aged by heat at 650°C for
about 1 second, using a tube furnace (Carbolite, MTF 10/25/130). This ageing process is of utmost important as it
influences the chemical composition and optical properties of the formed particles (Hoffer et al., 2016) During the
particle generation the system was continually rinsed with N, containing 4% (v/v) O,. The particles were then dried
and diluted with dry filtered air. Before the optical measurements a PM1 cyclone (SCC 2.229) was deployed to
remove the large particles (Dp> ~500 nm).

The absorption properties of the particles were measured with two optical instruments at different wavelengths. The
absorption coefficient at 467 nm, 528 nm and 652 nm was measured with a continuous light absorption photometer
(CLAP) with a time resolution of 5 seconds. In order to extend the measurements of the optical properties into the
longer wavelength range (at 880 and 950 nm) an aethalometer (MAGEE AE42-7) was applied with a time resolution
of 2 minutes. The CLAP data whose measurement principle is similar to that of PSAP are corrected according to
Bond et al. (1999) and Ogren (2010) with the data processing algorithm applied by NOAA. The aethalometer data
were corrected according to the Weingartner correction scheme (Weingartner et al., 2003) and also by the Schmid
correction (Schmid et al., 2006). The latter largely affects the Angstrém exponent, whereas the former correction
scheme has no effect on the Angstrém exponent (Coen et al., 2010). In the correction we used the absorption
coefficient measured by the CLAP at 528 nm as the reference value, keeping in mind that its reliability in the
absolute scale is about 25% (Schmid et al., 2006).

The scattering coefficient was measured by a TSI 3563 nephelometer at 3 different wavelengths (450, 550 and 700
nm) with a time resolution of 5 seconds. The collected raw data were corrected according to Anderson and Ogren
(1998).

During the experiment the size distribution between 7 and 800 nm was measured with a DMPS designed by the
University of Helsinki.

The morphology and the elemental composition of the tar balls collected on TEM grids (lacey Formvar/carbon TEM
copper grid of 200 mesh, Ted Pella Inc., USA) were studied in brightfield TEM images obtained using a Philips
CM20 TEM operated at 200 kV accelerating voltage. An ultra-thin-window Bruker Quantax X-ray detector was
attached to the electron microscope that allowed the energy-dispersive X-ray analysis (EDS) of the elemental

compositions of individual particles.

3 Results
3.1 Morphology and size distribution of generated tar balls

Figure 1 shows that the morphology of the generated particles is very similar to that of the freshly formed tar balls
(Adachi and Buseck, 2011), as the particles are perfect or slightly distorted spheres. The size distribution measured
with a DMPS was similar to that obtained previously by Hoffer et al. (2016). The volume size distribution consists

of double peaks; the larger is at 116 nm and 139 nm in the case of black locust and Norway spruce, respectively (see

3
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Figure 2). In this mode more than 96% of the particulate mass can be found. There is no difference in the molar C/O
ratio between tar balls generated from the two wood types; it varies between 8.1 and 11.6 with an average of 9.3 as

determined from TEM-EDS analyses.

3.2 Absorption properties of the generated tar balls

The absorption Angstrém exponents (AAE) of the tar balls generated from the aqueous phase of the dry distillate
from black locust and Norway spruce measured by the CLAP between 467 and 652 nm are 2.9 and 3.2, respectively
(see Figure 3). Similar values are obtained from the aethalometer data between 470 and 590 nm using the
Weingartner correction scheme (Weingartner et al., 2003). The AAE in the same wavelength range (470-590 nm)
for the black locust and Norway spruce calculated from the aethalometer data and corrected according the Schmid
correction scheme (Schmid et al., 2006) are 3.2 and 3.5, respectively.

The absorption measured at 370 nm by the aethalometer was, however, significantly lower than it would be
predicted from AAE curve fitting. That is why the absorption data at this wavelength was omitted in the AAE
calculations. Figure 3 shows that the AAE between 470 and 950 obtained by curve fitting is 3.1-3.2 and 3.4-3.6,
depending on the applied correction scheme (Schmid correction gives higher values) for the black locust and
Norway spruce, respectively. The error bars on Figure 3 indicate the estimated 25% uncertainty of the absorption
measurements for all wavelengths. This uncertainty value was reported for a one-wavelength PSAP by Schmid et al.
(2006). Also, we note that Chow et al. (2009) reported higher and wavelength-dependent uncertainties between the
filter-based and photoacoustic instruments (17-69%, larger differences at higher wavelengths), but the difference in
AAE measured with different instruments were below 25%.

Since tar balls in the ambient atmosphere might have a size distribution different from those generated in our lab, the
AAE of the atmospheric tar balls might also be somewhat different since AAE depends on the size distribution as
well. The particle generation procedure used in the present study, as well as the measurement of the optical
properties were similar to those used by Hoffer et al. (2016). These authors calculated the AAE for tar balls using
the ambient size distribution of these particles determined by Posfai et al. (2004) and found that the AAE decreased
from ~2.9 to ~2.4 in the range between 462 and 652 nm. Since the size distribution of the generated particles in the
present study was similar to that obtained by Hoffer et al. (2016) and the AAE of the tar balls in the same
wavelength range (462—-652 nm) were also similar, the AAE of freshly formed tar ball particles between 470 and
950 nm might be somewhat lower (by about 20% based on the results by Hoffer et al., 2016) under ambient
conditions than suggested by our calculations. On the other hand, Chow et al. (2009) showed that the AAE of
ambient aerosol obtained from a photoacoustic analyzer (PA) is noticeably higher (by 14-23%) than that obtained
using filter-based instruments such as the aethalometer. In view of this, we propose that ambient freshly formed tar
balls likely have an AAE of 2.7 ~ 3.6 in the wavelength range from 470 to 950 nm. (The value 2.7 is the lowest
AAE value of the generated tar balls from oak reported by Hoffer et al., 2016, whereas the upper value of the given
range is the highest AAE value obtained in the present study.)

As Figure 3 demonstrates the absorption of tar balls is non-negligible in the near IR range. The absorption

coefficient at 880 nm is more than 10% of that measured at 470 nm for both wood types, undermining the common
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assumption that all BrC particles have zero or negligible absorption at 880 nm. Even at 950 nm, the absorption
coefficient is about 10% of that at 470 nm. The mass absorption efficiency of tar balls in the near IR range is
expected to be substantial as well, given that the mass absorption efficiency of tar balls was estimated to be in the
range of 0.8-3 m?g* at 550 nm by Hoffer et al. (2016). As Chow et al. (2009) demonstrated absorption measured by
filter-based instruments poses significant uncertainties, follow-up studies are desired to reduce the uncertainty of
estimated tar ball absorption.

In spite of the uncertainties in the measurements of the absorption and other parameters, we estimated the index of
refraction of the generated tar balls at different wavelengths. In order to address the measurement uncertainties
nigrozin particles were generated and measured with the same setup used for tar ball measurements. The measured
absorption and interpolated scattering coefficients at 652 and 633 nm, respectively, were compared with those
calculated using the size distribution and the well-established refraction index of nigrozin at 633 nm wavelength
(Pinnick et al., 1973). The correction factors were calculated for nigrozin and then applied to the measured
scattering and absorption coefficients of tar balls, which together with the size distribution served as input
parameters for the inverse Mie calculations (Guyon et al., 2003). It was assumed that the same correction factors
apply to nigrozin and tar balls, and also for the other wavelengths as well. For the calculations the absorption and
scattering coefficient were extrapolated to the given wavelength, if it was necessary. Table 1 summarizes the
average refractive index of tar balls at different wavelengths. The obtained index of refraction data between 470 and
652 nm are very close to those obtained previously for turkey oak (Hoffer et al., 2016). The imaginary parts of the
refractive index of tar balls produced from different wood types are very similar to each other at higher wavelength
too. Here we note that, since tar balls form during burning and/or pyrolytic processes, in which the temperature
might highly affect the composition and consequently the optical properties of the formed particles, the data in the
table are not necessarily characteristic for every atmospheric tar ball particle. In our experiments we produced tar
balls whose elemental composition and morphology matches with those of atmospheric tar balls reported for the first
time by Posfai et al., (2004). The obtained index of refraction in the lower wavelength range (between ~460 and
~650 nm) is near the higher bound of the range found by Saleh et al. (2014) for ELVOC and agrees well at ~950 nm.
Since tar balls are produced and/or form in high temperature processes (and also withstand the electron beam in the
TEM) they are thermally stable compounds and as those that can be classified as extremely low volatile compounds.
On the other hand the obtained index of refraction is somewhat lower (especially at longer wavelengths) than those
reported by Alexander et al. (2008).

3.3 Estimated contribution of tar balls to the absorption at K-puszta station

The objective of this section is to assess the possible contribution of tar ball particles to the absorption at a given
station (where the size distribution and the number share of tar balls were measured previously by TEM analyses

(Posfai et al., 2004)), based on our finding that absorption of these particles in the near-IR range is non-negligible.
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During winter the K-puszta station is affected by biomass smoke from domestic heating. Pésfai et al. (2004)
investigated aerosol samples collected at this station and identified tar ball particles by electron microscopy. The
concentration of levoglucosan is also elevated at the station during winter (Puxbaum et al., 2007).

In order to estimate the contribution of tar balls to the absorption measured at K-puszta station we calculated the
absorption coefficient of a tar ball population with a Mie code at 652 nm and compared the calculated value with the
measured absorption coefficient at this wavelength. The index of refraction of tar balls at 652 nm (1.82 — 0.15i) was
taken from Hoffer et al. (2016). For the comparison we used the measured absorption coefficient (CLAP, at 652 nm)
as well as the measured particle number concentration (DMPS between 7 and 800 nm) at K-puszta during 10 days
between 07.01.2014 and 27.01.2014. The shape of the size distribution of tar balls was taken from Posfai et al.
(2004) as it was determined from tar balls collected at K-puszta. Furthermore we assumed that the number share of
tar ball particles is 20%, as Posfai et al. (2004) reported that the contribution of tar ball particles to the total number
concentration varies between 0 and 40% in K-puszta. If we consider that only tar balls and soot are the absorbing
components at 652 nm, the contribution of the tar balls to the absorption is 17-38%, on average 29%. Even if we
consider that only 5% of the particles are tar balls, the contribution to the absorption is still 4-9% (on average 7%) at
652 nm. This also indicates that the contribution of the tar balls to the absorption at higher wavelengths might be
significant too, since the AAE of tar balls is 2.7-3.6, which means that the absorption does not decrease steeply
towards the IR range of the spectrum. (Based on the comparison of the extrapolated measurement data with the
estimated absorption coefficient for tar balls obtained for 880 nm, the contribution of tar balls to the absorption at
880 nm is 5-19% at the K-puszta station.).

Here we note that the AAE measured at the station (1.58-1.88, on average 1.71 between 467 and 652 nm) during the
investigated period (10 days, between 07.01.2014 and 27.01.2014) is very close to that (AAE=1.76 between 467 and
652 nm) obtained by the estimation assuming soot (AAE=1) and tar ball (AAE=3.15) as the only absorbing
components, the latter causing on average 29% of the absorption at 652 nm. Since the contribution of humic-like
substances to the absorption (few per cent at 550 nm, Hoffer et al., 2006) is incorporated in the measured AAE, the
estimated contribution of the tar ball particles might be considered as an upper limit. If we assume that the
contribution of tar ball particles to the total particle number concentration is only 5% (which also means that the
contribution of tar balls to the absorption at 652 nm is 7%, see above), the calculated AAE, assuming soot and tar
ball as the only absorbing components, decreases significantly, it is on average 1.19 between 467 and 652 nm. Since
the measured AAE is higher than the calculated value, the contribution of 7% to the absorption (5% in number

concentration) can be considered as a lower value during the investigated period.

4 Summary

We have used a CLAP to measure the absorption of tar ball particles between 462 and 652 nm and an aethalometer
between 470 and 950 nm. The aethalometer has two measurement channels in the near-infrared region, 880 and 950
nm, thus allowing for direct measurement of the light absorption in the red-infrared part of the spectrum. The

Absorption Angstrém Exponent (AAE) of tar balls over 470 ~ 950 nm is in the range between 2.7 and 3.6, but more
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importantly, the absorption coefficient at 880 nm exceeds 10% of that at 470 nm for both wood types (Figure 3),
clearly disproving the common assumption that all BrC particles have zero or negligible absorption at 880 nm.

The determination of the contribution of BrC to aerosol absorption (Bahadur et al., 2012; Kirchstetter and Thatcher,
2012; Saleh et al., 2013; Lu et al., 2015) has been based on the explicit assumption that BrC has zero absorption at
the wavelength of 700 nm or larger. The findings of the present study strongly challenge this common assumption.
One of the resulting implications may be that the role of BC—a significant fraction of which is derived from fossil
fuel combustion (diesel soot)—is likely overestimated in global radiative forcing estimates if the aerosol absorption
in the red and near-infrared spectrum is attributed exclusively to BC. Our results support the finding by Alexander et
al. (2008) that spherical brown carbon particles effectively absorb near-infrared radiation as well as that by Jacobson

et al. (2014) that they also have an important role in global warming.
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20 Figure 1. TEM images of tar balls generated from (a) black locust (Robinia pseudoacacia) and (b) Norway spruce (Picea

21  abies).
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22 Figure 2. Examples for the measured size distribution of laboratory generated tar balls from the dry distillate of black
23 locust and Norway spruce.
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25 Figure 3. Absorption Angstrom exponent of tar balls prepared from the liquid distillate of black locust and Norway
spruce. The linear equations are calculated for the log A vs. log A values.
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29
30

31
32

33

Black locust

Absorption | Wavelenght Norway spruce Oak (Hoffer et al., 2016)
instrument (nm) Re Im Re Im Re Im
CLAP 467 1.86 0.34 1.88 0.33 1.84 0.27
CLAP 550 1.86 0.25 1.88 0.24 1.84 0.21
CLAP 652 1.77 0.18 1.82 0.16 1.82 0.15
CLAP 880 1.64 0.10 1.84 0.09
CLAP 950 1.61 0.09 1.85 0.08
Aethalometer 880 1.64 0.09 1.83 0.08
Aethalometer 950 1.60 0.07 1.83 0.07

Table 1. The average Real (Re) and imaginary (Im) part of the complex index of refraction of laboratory generated tar
balls from different wood types.
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