

1	Application of an online ion chromatography-based instrument for gradient flux
2	measurements of speciated nitrogen and sulfur
3	
4	Ian C. Rumsey ^{1,*} , and John T. Walker ²
5	¹ Department of Physics and Astronomy, College of Charleston,
6	Charleston, South Carolina, 29401, U.S.A.
7	² Office of Research and Development, U.S. Environmental Protection Agency,
8	Research Triangle Park, North Carolina, 27711, U.S.A.
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31 22	
32 33	
37	* Corresponding author
35	Email: rumsevic@cofc.edu
36	Telephone: (843) 953-0731
37	
38	
39	
40	

41 42	Abstract
43	The dry component of total nitrogen and sulfur atmospheric deposition remains uncertain. The
44	lack of measurements of sufficient chemical speciation and temporal extent make it difficult to
45	develop accurate mass budgets and sufficient process level detail is not available to improve
46	current air-surface exchange models. Over the past decade, significant advances have been made
47	in the development of continuous air sampling measurement techniques, resulting with
48	instruments of sufficient sensitivity and temporal resolution to directly quantify air-surface
49	exchange of nitrogen and sulfur compounds. However, their applicability is generally restricted
50	to only one or a few of the compounds within the deposition budget. Here, the performance of
51	the Monitor for AeRosols and GAses in ambient air (MARGA 2S), an commercially available
52	on-line ion chromatography-based analyzer is characterized for the first time as applied for air-
53	surface exchange measurements of HNO ₃ , NH ₃ , NH ₄ ⁺ , NO ₃ ⁻ , SO ₂ and SO ₄ ²⁻ . Analytical
54	accuracy and precision are assessed under field conditions. Chemical concentrations gradient
55	precision are determined at the same sampling site. Flux uncertainty measured by the
56	aerodynamic gradient method is determined for a representative 3-week period in fall 2012 over
57	a grass field. Analytical precision and chemical concentration gradient precision were found to
58	compare favorably in comparison to previous studies. During the 3-week period, percentages of
59	hourly chemical concentration gradients greater than the corresponding chemical concentration
60	gradient detection limit were 86%, 42%, 82%, 73%, 74%, and 69% for NH ₃ , NH ₄ ⁺ , HNO ₃ , NO ₃ ⁻
61	, SO ₂ , and SO ₄ ²⁻ , respectively. As expected, percentages were lowest for aerosol species, owing
62	to their relatively low deposition velocities and correspondingly smaller gradients relative to gas
63	phase species. Relative hourly median flux uncertainties were 31%, 121%, 42%, 43%, 67%, and
64	56% for NH ₃ , NH ₄ ⁺ , HNO ₃ , NO ₃ ⁻ , SO ₂ , and SO ₄ ²⁻ , respectively. Flux uncertainty is dominated by

- 65 uncertainty in the chemical concentrations gradients during the day but uncertainty in the
- 66 chemical concentration gradients and transfer velocity are of the same order at night. Results
- show the instrument is sufficiently precise for flux gradient applications.

- . –

88 1. Introduction

89	Development of risk assessments and mitigation strategies such as critical load
90	frameworks (Burns et al., 2008) to protect ecosystems from nutrient and acidic deposition
91	requires accurate speciated deposition budgets of nitrogen (N) and sulfur (S) compounds. In the
92	United States, wet deposition has been well characterized by the National Atmospheric
93	Deposition Program (NADP). The U.S. Environmental Protection Agency's (U.S. EPA's)
94	Clean Air Status and Trends Network (CASTNet) was established in 1991 to characterize
95	temporal and spatial trends in atmospheric concentrations and dry deposition of select nitrogen
96	(N) and sulfur (S) compounds in rural locations. Air concentrations of sulfur dioxide (SO ₂), nitric
97	acid (HNO ₃) ammonium aerosol (NH ₄ ⁺), nitrate aerosol (NO ₃ ⁻), and sulfate aerosol (SO ₄ ²⁻) are
98	measured on a weekly time-scale using a filter pack (Sickles et al., 1999), from which dry
99	deposition fluxes are estimated using a multi-layer resistance model. While NADP and
100	CASTNet are, in combination, very useful for estimating deposition of some compounds, the
101	nitrogen budget derived from these measurements is incomplete, particularly the dry deposition
102	fraction. For example, fluxes of ammonia (NH ₃) are not quantified. Furthermore, CASTNet dry
103	deposition is not directly measured, rather it is estimated using a resistance model. This model,
104	and others used within regional chemical transport models such as the Community Multi-scale
105	Air Quality Model (CMAQ), have not been rigorously evaluated across the range of chemical,
106	meteorological and canopy characteristics of ecosystems for which deposition budgets are
107	urgently needed. Thus, the dry component of total N and S deposition remains uncertain due to a
108	lack of measurements of sufficient chemical speciation and temporal extent to develop complete
109	annual mass budgets or of sufficient process level detail to improve current air-surface exchange
110	models.

111	Over the past decade, significant advances have been made in the development of
112	continuous air sampling measurement techniques with sufficient sensitivity and temporal
113	resolution to directly quantify air-surface exchange of nitrogen and sulfur compounds. With
114	respect to nitrogen, these range from bulk measurements of groups of compounds, such as fast
115	chemiluminescence with thermal conversion for total reactive nitrogen ($\sum N_r$) (Marx et al., 2012),
116	thermal dissociation – laser induced fluorescence (TD-LIF) for total peroxy nitrates (\sum PNs) and
117	total alkyl and multifunctional alkyl nitrates ($\sum ANs$) (Farmer et al., 2006). More selective
118	methods for specific compounds have also emerged, including chemical ionization mass
119	spectrometry (CIMS) (Sintermann et al., 2008) and tunable diode laser spectroscopy (TDLS)
120	(Whitehead et al., 2008) for NH ₃ ; thermal dissociation-chemical ionization mass spectrometry
121	(TD-CIMS) for peroxyacetyl nitrate (PAN), peroxypropionyl nitrate (PPN) and
122	peroxymethacryloyl nitrate (MPAN) (Wolfe et al., 2009); and aerosol mass spectrometry for
123	inorganic particles (Farmer et al., 2011; Nemitz et al. 2008). These methods are sufficiently fast
124	such that fluxes may be quantified by the eddy covariance (EC) technique. However, their
125	applicability is generally restricted to only one or a few of the compounds within the deposition
126	budget.
127	NH ₃ and HNO ₃ , which are thought to together dominate the nitrogen deposition budget in
128	many areas (Dennis et al., 2013) are difficult to measure due to their tendency to stick to surfaces
129	within the sampling and analytical components of online measurement systems. For this reason,
130	wet chemical techniques such as the Gradient of Aerosols and Gases Online Register
131	(GRAEGOR) (Thomas et al., 2009; Wolff et al., 2010) Ammonia Measurement by ANnular
132	Denuder sampling with online Analysis (AMANDA) (Wyers et al., 2013) and GRadient
133	Ammonia High Accuracy Monitor (GRAHAM) (Kruit at al., 2007) systems are the preferred

methods for air-surface exchange applications. These systems are configured such that the air 134 135 sample travels only a short distance ($\sim 0.1 \text{ m}$) before diffusion into solution within a wet rotating 136 denuder. Opportunity for loss to surfaces within the sampling system are therefore minimized. A secondary benefit of the wet chemical techniques is that the use of ion-chromatography or flow 137 injection analysis allows for simultaneous measurement of multiple compounds, thereby 138 minimizing the bias introduced by constructing deposition budgets from multiple measurement 139 140 systems. For the NH₃-HNO₃-NH₄NO₃ system, simultaneous measurement of gas and aerosol 141 components is essential to assess potential errors in fluxes related to aerosol thermodynamic 142 instability (Wolff et al., 2010; Nemitz et al., 2004). Furthermore, simultaneous measurement of 143 sulfur and nitrogen compounds allows for examination of co-deposition effects between SO₂ and NH₃ related to surface acidity (Erisman and Wyers, 1993) as well as the degree of ammonium 144 sulfate aerosol neutralization. While wet chemical techniques meet the rigorous precision and 145 146 accuracy requirements of air-surface exchange applications, their temporal resolution is on the order of 30 minutes to an hour. In contrast to the direct EC technique, in which air concentrations 147 are measured at 10 Hz or faster using a single concentration measurement, fluxes must be 148 149 quantified using the aerodynamic gradient method (AGM), which uses gradient concentrations at a 30 to 60 minute temporal average. Furthermore using gradient concentration measurements 150 requires additional experiments to determine the precision associated with using two sampling 151 152 collection devices.

The Monitor for AeRosols and GAses in ambient air (MARGA, Metrohm-Applikon, the Netherlands) is a commercially available on-line ion chromatography-based analyzer that semicontinuously measures gases and soluble ions in aerosols (ten Brink et al., 2007; Makkonen et al., 2012; Rumsey et al., 2014) The MARGA is quasi-similar to the GRAEGOR system

157	described by Thomas et al. (2009) and Wolff et al. (2010), which has been used for flux
158	measurements. The major difference between the MARGA 2S and GRAEGOR systems is that
159	the MARGA employs ion chromatography for analysis of both anions and cations whereas the
160	GRAEGOR employs ion chromatography for anions and flow injection analysis (FIA) for
161	cations. The MARGA also employs mass flow control to regulate air sampling flow rates, as
162	opposed to control by critical orifice in the GREAGOR. Another difference between the
163	GRAEGOR and the MARGA that may influence the performance of the instruments is the
164	integration of instrument control and chromatography in the MARGA software, which includes
165	real-time instrument performance and data quality indicators for air and liquid flows, sample
166	collection device conditions, and chromatography. The performance of the GRAEGOR in
167	measuring air-surface fluxes has been described by Thomas et al. (2009) and Wolff et al. (2010),
168	however, there has been no evaluation of the performance of the MARGA in measuring air-
169	surface fluxes. Furthermore, neither the Thomas et al. (2009) or Wolff et al. (2010) studies
170	assessed the performance of the GRAEGOR for sulfur compounds in comparison to empirical
171	gradient flux data.
172	In this study, the performance of the MARGA in measuring gradient flux of speciated
173	nitrogen and sulfur is evaluated and described for the first time. This study uses a MARGA 2S
174	system, which is different from the MARGA 1S system described by Rumsey et al. (2014) in
175	two key ways. First, the 2S system employs two sampling boxes interfaced to a single analytical
176	system. The two sampling boxes in this case are positioned at two heights above the terrestrial

177 surface to simultaneously measure the vertical concentration gradient. Second, the MARGA 2S,

as configured for this work, draws the air sample through a much shorter length of tubing (30

179 cm) relative to the 1S configuration described by Rumsey et al. (2014).

The objective of this paper is to comprehensively evaluate and describe the performance 180 of the MARGA in the measurement for air-surface exchange measurements of HNO₃, NH₃, NH₄⁺, 181 NO_3^{-} , SO_2 and SO_4^{2-} . This requires two sets of experiments, one set to describe the performance 182 of the MARGA as an analytical instrument and another to determine the performance of the 183 MARGA as a gradient flux system. The analytical performance of the instrument is assessed by 184 determining the accuracy, precision and analytical detection limit of the instrument using liquid 185 186 standards in field conditions. To assess the performance of the MARGA as a gradient flux system, 187 the precision of the concentration gradient which can also be defined as the gradient detection limit is determined in field conditions. The concentration gradient precision (uncertainty) and overall 188 189 flux uncertainty (concentration gradient uncertainty + transfer velocity uncertainty) are then 190 examined for a representative 3-week period over an unfertilized grass surface during the fall of 191 2012. A companion paper focusing on the air-surface exchange processes of individual compounds 192 over a longer period of study is forthcoming.

193

194 2. Methods

195 2.1. Study site

196 Measurements were conducted in an unfertilized 15 ha grass field in the Blackwood

197 Division of Duke Forest, Orange County, North Carolina, USA (35.97_N, 79.09_W).

198 Vegetation is primarily tall fescue (Festuca arundinacea Shreb.), with less common species

199 consisting of a mixture of C3 and C4 grasses, herbs, and forbs (Fluxnet, 2014). The field is

200 generally cut twice per year, once in summer and fall, and the clippings are removed for use as

animal feed at local farms.

202

203 2.2. Description of MARGA gradient system

204 As previously mentioned, the MARGA is a commercially available on-line ion 205 chromatography-based analyzer that semi-continuously measures gases and soluble ions in aerosols. The 2S version used in this study employs two sampling boxes interfaced to a single 206 207 analytical system. The two sampling boxes (SB1 and SB2) are positioned at two heights above the surface to measure simultaneous concentration gradients from which the vertical chemical 208 209 fluxes are calculated. Air is sampled through a short length (30 cm, 0.5" O.D.) of PFA Teflon 210 tubing with a coarse Teflon screen over the inlet to exclude large material such as insects and entrained vegetation. 211

212 Each sample box contains a wet rotating denuder (WRD) and steam jet aerosol collector (SJAC). The sample air first flows (as laminar flow) into the WRD (Wyers et al., 1993; Keuken 213 et al., 1990) which rotates continuously so that the walls of the denuder are coated with 214 215 absorption solution (double de-ionized (DDI) water with 10 ppm hydrogen peroxide), ensuring that the gases diffuse into the liquid film. The level of the bulk liquid within the WRD is kept 216 constant using a level sensor and pump connected to the absorbance solution. Particles pass 217 218 through the WRD and are collected directly downstream in the SJAC (Khlystov et al., 1995). Within the SJAC, a supersaturated environment is created in which particles grow by 219 deliquescence, allowing them to be collected by inertial separation. The supersaturated 220 221 environment is created using a temperature-controlled steamer continuously supplied with absorbance solution. Air is drawn through the WRD and SJAC at 16.7 Lpm using a vacuum 222 pump (KNF Model N840FT.18, KNF Neuberger, Inc., Trenton, NJ) and mass flow controller 223 224 (Brooks Smart Mass Flow Controller, Brooks Instrument, Hatfield, PA). The liquid samples from the WRD and SJAC are collected in a syringe pump module located in the detector box. 225

226	The syringe n	umn module co	neiste of three	sets of syringes.	one set for the V	VRD another for the
220	The synnge pu	ump module co		sets of synniges.	one set for the v	wKD, another for the

- 227 SJAC and a third for the internal standard. The syringe pumps operate in tandem such that while
- a set of samples is being collected, the set collected during the previous hour is being analyzed.
- 229 Prior to analysis, each sample (volume = 25 ml) is mixed with an internal standard (LiBr)
- solution, which uses two smaller syringes (volume = 2.5 ml). Further information on the internal
- standard, the absorption solution and other chemical solutions used for MARGA ion
- chromatography system is included in the supporting information. The samples are analyzed
- using cation and anion ion conductivity detectors (IC, Metrohm USA, Inc., Riverview, FL,
- USA). For the cation chromatography, the MARGA uses a 500 μ L injection loop and a Metrosep
- 235 C4 150mm column (Metrohm USA, Inc.) in conjunction with a methanesulfonic acid (MSA)
- eluent. For the anion chromatography, the MARGA uses a 250 µL injection loop and a Metrosep
- 237 A Supp-10 75mm column (Metrohm USA, Inc.) in conjunction with an eluent containing sodium

238 carbonate monohydrate and sodium bi-carbonate anhydrous.

- Software integrated within the MARGA calculates atmospheric concentrations based on
 air sample flow rate, syringe speed during injection (relatively constant) and ion concentrations
 (corrected for internal standard) in the collected solutions. These results, as well as the anion and
 cation chromatograms and various hardware parameters, are recorded by the MARGA software.
- 243

244 2.3. Analytical Experiments

245 *2.3.1. Accuracy*

To verify the analytical accuracy of the MARGA as controlled by the internal LiBr standard and to assess potential contamination in the liquid solutions and in the liquid flow path of the MARGA system, an experiment was conducted during field deployment using a liquid

249	blank and four liquid external standards with different concentrations. Furthermore, the
250	relationship between the expected and observed external standard concentrations as well as the
251	blank concentrations were used to adjust the raw concentration data prior to flux calculations.
252	Both the blanks and the external standards experiments were conducted with the air pumps
253	disconnected and denuder inlets sealed. A blank was assessed using the absorption solution for a
254	period over 24 hours. The external standard test was conducted by replacing the absorption
255	solution with a known liquid standard containing SO42-, NH4+, NO3-, Na+ and K+. Although Na+
256	and K ⁺ atmospheric concentrations are the not the focus of this particular study, the analytical
257	performance of the MARGA for these compounds is included to give additional information on
258	the performance of the MARGA for a range of compounds. The ranges of concentrations for the
259	external standard were chosen to represent the typical ambient concentrations observed at the
260	study site. Additional information on the external standard liquid solutions is provided in the
261	supporting information. The external standard experiments were conducted for a minimum of 12
262	hours.
263	
264	2.3.2. Analytical Detection Limit
265	The detection limit of an analytical instrument is defined as the lowest concentration that

can be determined to be statistically different from a blank at a certain level of statistical
confidence. In this study, the MARGA detection limit is calculated using a method from Currie
(1995) where

 $269 \qquad D_L = 2t_{1-\alpha,\nu} \sigma_0 \tag{1}$

where σ_0 is the standard deviation of the distribution of concentration when the concentration is just above the detection limit, *v* is the degrees of freedom, α is the level of statistical significance

272	and t is the Student's t-statistic. The analytical detection limits of the MARGA were calculated
273	using an observed liquid concentration after being adjusted for the internal standard.
274	The detection limit was determined by combining data from all analytical channels (in
275	this study, there are four different channels including denuder and SJAC samples from both

- sample boxes) into a single data set. From this single data set, the standard deviation and number
- of analyses are used to determine the detection limit. However, using this approach means that
- the standard deviation may reflect a combination of random error plus systematic error between
- channels. To investigate this possibility, the detection limit methodology was conducted in
- conjunction with the Dunn's test (Dunn, 1964) and the Brown-Forsythe test (Brown and
- Forsythe, 1974) to compare differences across channels. Additional information on the detection
- 282 limit methodology as well as descriptions of the Dunn's test and Brown-Forsythe test
- 283 methodologies are provided in the Supporting Information.
- 284 When quantifying the detection limit using an external standard, the aim is to use a
- concentration that is slightly above the detection limit as variance may increase with increasing
- concentration. Therefore an appropriate external standard level was selected for each compound.
- In addition, two different solutions used to determine SO_4^{2-} and Na^+ detection limits allow an
- opportunity to investigate the relationship between concentration level and variance and thus its
- 289 potential impact on the detection limit.
- 290

291 2.4. Gradient flux experiments

292 2.4.1. Aerodynamic gradient method

Air-surface exchange fluxes were quantified using the aerodynamic gradient method
(AGM). The AGM is based on the application of Fick's Law to turbulent diffusion, which relates

- the flux of heat, mass, and momentum to the vertical gradient and turbulent transfer coefficient
- (eddy diffusivity) of the particular scalar of interest, in this case air concentration (C). Following
- 297 Thomas et al. (2009), which is an adaptation from Thom (1975), the flux may be expressed as:

298
$$F_x = -C_* u_*$$
 (2)

- where u_* is friction velocity, calculated from the momentum flux measured by EC and C_* is the
- 300 concentration scale calculated as:

$$C_* = \frac{k}{\ln\left(\frac{z_2 - d}{z_1 - d}\right) - \psi_H\left(\frac{z_2 - d}{L}\right) + \psi_H\left(\frac{z_1 - d}{L}\right)} \cdot \Delta C$$
(3)

Here ψ_H is the integrated stability function for sensible heat (Thom, 1975), z_1 and z_2 are the measurement heights above ground between which the concentration gradient (ΔC) is measured, *L* is the Monin-Obukhov length calculated from the EC derived sensible heat flux, and *k* is the von Karman constant (k = 0.41), *d* is the zero plane displacement height, which is determined by canopy height using the relationship provided by Stanhill (1969). During the period for which fluxes are presented average grass height within the field was 1.2 m and gradient sampling heights were 1.25 and 4.0 meters above ground.

309 AGM fluxes were calculated from hourly average concentration gradients and hourly EC momentum and sensible heat fluxes measured above the canopy. EC momentum and sensible 310 heat fluxes were measured with a sonic anemometer (R.M. Young Model 81000V, Traverse 311 City, MI) placed approximately 2.6 m above the ground. EC fluxes were calculated off-line from 312 313 10 hz data using SAS (SAS Institute, Cary, NC) software following standard approaches EC. Hourly average concentration gradients were based on adjusted air concentration data. Air 314 315 concentration measurements were adjusted using the internal lithium bromide (LiBr) standard, external liquid standard calibrations and air flow quality control (QC) checks. Air flow rates 316

317	were independently	y measured at the	denuder inlet at le	ast weekly usi	ing a National Institute of
-----	--------------------	-------------------	---------------------	----------------	-----------------------------

- 318 Standards and Technology (NIST)-traceable primary standard (Bios DryCal DC-Lite flowmeter,
- 319 Mesa Laboratories, Inc., Lakewood, CO). If the measured airflow rate was > 5% different from
- the target airflow rate of 16.7 Lpm, the MARGA mass flow controllers were recalibrated using
- the MARGA calibration feature, which consists of a 3-point calibration at 0, 15, and 18 Lpm.
- 322 The MARGA software continuously records the air flow rate, which is used to calculate air
- 323 concentrations from liquid concentrations. Air concentrations were also adjusted for the
- 324 systematic difference in gas and aerosol concentration measurement between the sampling
- boxes, during colocated sampling in which the two sample boxes are positioned side-by-side.
- 326 The systematic difference is determined by plotting the concentrations during the colocation
- 327 against each other and calculating the slope and intercept by orthogonal least squares regression
- 328 (Wolff et al., 2010) Slope and intercepts significantly different from 1 and 0, respectively,
- 329 indicate systematic error between the two boxes, which, if present, is subsequently removed prior
- to calculation of the concentration gradient.
- 331 2.4.2. Flux uncertainty and concentration gradient uncertainty
- 332 The flux uncertainty σ_F is calculated as (Wolff et al. 2010):

333
$$\sigma_F = F \cdot \sqrt{\left(\frac{\sigma_{v_{tr}}}{v_{tr}}\right)^2 + \left(\frac{\sigma_{\Delta C}}{\Delta C}\right)^2}$$
(4)

where F is the flux, ΔC is the concentration gradient and $\sigma_{\Delta C}$ is the precision (uncertainty) of the concentration gradient, and v_{tr} and $\sigma_{v_{tr}}$, are the transfer velocity and precision (uncertainty) of the transfer velocity, respectively. Equation (4) is used to assess the uncertainty in the measured fluxes and to quantify the relative contributions of uncertainty in chemical and meteorological

338 measurements. In addition, each observation may be assigned a data quality indicator as being

above or below the flux detection limit. v_{tr} is taken as:

340

$$v_{tr} = \frac{u_* \cdot k}{\ln\left(\frac{z_2 - d}{z_1 - d}\right) - \psi_H\left(\frac{z_2 - d}{L}\right) + \psi_H\left(\frac{z_1 - d}{L}\right)}$$
(5)

341 The transfer velocity and thus the uncertainty in the transfer velocity is a function of friction 342 velocity (u_*) , the measurement $(z_1 \text{ and } z_2)$ and displacement (d) heights, and the integrated 343 stability function at each height (ψ_H), which is a function of u_* , the sensible heat flux (H), 344 buoyancy parameter (g/T), air density (ρ) , specific heat (c_p) , and von Karman's constant (k) (e.g., Arya et al., 2001). As noted by Wolff et al. (2010), there are no published estimates of the full 345 346 uncertainty in v_{tr} . Here we approximate the uncertainty in the transfer velocity (σv_{tr}) by calculating v_{tr} using measurements of L and u_* from six colocated R.M. Young Model 81000V 347 348 sonic anemometers. The standard deviation of this population (n = 6) of measurements of v_{tr} 349 represents a lower limit of its transfer velocity uncertainty (σv_{tr}), as uncertainty in d and ψ_H are not explicitly considered. In this case, the precision of v_{tr} was quantified as the standard 350 351 deviation of the residuals of orthogonal least squares regression of v_{tr} from individual sonic anemometers against the mean for the corresponding hourly observation. The v_{tr} precision 352 experiment was conducted adjacent to the MARGA measurement location and comprises 110 353 354 hourly observations. 355 The uncertainty of the gradient concentration is also quantified during co-location tests.

Again, the concentrations from the two sample boxes are regressed against each using a slope and intercept from orthogonal least squares regression. The residuals of the regression represent the random error of the concentration difference between the two boxes. The standard deviation of the residuals provides a measure of the precision of the denuder and SJAC measurements for

360	individual analytes, which also represents the precision of the concentration gradient ($\sigma_{\Delta c}$), which
361	can also be defined as the gradient detection limit following Wolff et al. (2010). The relationship
362	between precision and concentration is quantified by regressing $\sigma_{\Delta c}$ on the average concentration
363	(C) between the two boxes. Precision is expected to be a function of concentration. Therefore
364	concentration gradient precision was calculated at three different co-location events (June, July
365	and October 2012) during the sampling periods in order to have a wide range of concentrations.
366	Air-surface exchange fluxes and their associated concentration gradient uncertainty and
367	flux uncertainty were determined over 3-week representative period (23 September - 14
368	October, 2012) at the sampling site.
369	

370 2.5. Ancillary measurements

371 A variety of meteorological parameters and surface characteristics were measured during 372 sampling. The influence of these factors on air-surface exchange flux will be examined in the companion paper. In this paper, the meteorological parameters, wind speed, air temperature and 373 global radiation will be presented to provide basic information on meteorological conditions 374 375 during the 3-week representative period. Wind speed and air temperature were measured using 376 the sonic anemometer (R.M. Young Model 81000V, Traverse City, MI) at a height of 2.6 m. 377 Global radiation was measured using the Reb Q7.1. Net Radiometer (Campbell Scientific, Logan, UT). Other surface characteristics reported in this paper include canopy height, which 378 379 was measured manually and leaf area index. Single-sided leaf area index (LAI) was measured by 380 destructive (prior to canopy closure) and optical methods (LICOR Model LAI-2000, LICOR 381 Biosciences, Lincoln, NE)

382

383 3. Results and Discussion

- 384 3.1. Analytical Experiments
- 385 *3.1.1. Accuracy*

In the following analysis, results from liquid standard tests are expressed as equivalent air 386 concentration unless otherwise noted. Also, though liquid standards obviously only contain 387 dissolved ionic forms (i.e., NO₃⁻, NH₄⁺, SO₄²⁻), results are reported for both SJAC and denuder 388 389 samples, adjusting for molecular weight to express denuder results in equivalent gas phase concentration (i.e., HNO₃, NH₃, SO₂). The results of the liquid blank are provided in the 390 Supporting Information. Only SO_4^{2-} had a significant blank (value > 0.001 µg m⁻³). Further 391 392 analysis by an independent IC system has confirmed that both the absorption solution and the MARGA system components contribute to the SO_4^{2-} blank. The relationship between the 393 expected and observed (response) concentrations of the external liquid standards was 394 395 investigated by regression analysis (See Figure in Supporting Information). For NH4⁺, NH3 and K^{+} there is good agreement between expected and observed concentrations, with the linear 396 regression slopes for all compounds between 1.00 and 1.04, and offsets close to zero (< 0.006). 397 398 For Na⁺, the external standard response was not as accurate, producing slope values of 0.90 for both SB1 and SB2 and offsets of 0.013 and 0.011 for SB1 and SB2, respectively. This appears to 399 be related to peak integration characteristics but is currently under investigation. 400 For the sulfur compounds (SO₄²⁻ and SO₂) associated with anion IC detection, excellent 401 regression slopes were also observed (1.00), however, offsets (intercepts) can be observed using 402 linear regression, which are not reflected in the blank. These offsets range from 0.09-0.13 μ g m⁻³ 403 for SO₂ and SO₄²⁻. Linear regression analysis of NO₃⁻ and HNO₃ produced good regression 404 slopes, ranging from 1.06-1.07 and similarly offsets that are not reflected in the blank, ranging 405

406	from 0.05-0.06 μ g m ⁻³ (see Figure in Supporting Information). Further investigation of the
407	difference between expected and observed concentrations for NO3 ⁻ and HNO3 at individual
408	external standard levels show that the difference (observed concentration minus expected
409	concentration) at the lowest concentration external standard (equivalent expected air
410	concentrations are 0.131 μg m $^{-3}$ and 0.133 μg m $^{-3}$ for NO3 $^{-}$ and HNO3, respectively) is
411	considerably smaller than for the other higher external standard concentrations (see Table in
412	Supporting Information). Therefore, a nonlinear (quadratic) standard curve was fitted which
413	produced slightly higher r^2 values and lower offset values and in comparison to the linear fit (see
414	Figure in Supporting Information). Thus it is hypothesized that a nonlinearity response occurs at
415	low NO_3^- concentrations. It is proposed that a similar nonlinear behavior at low concentrations
416	may also exist for SO_4^{2-} and SO_2 . However, in this experiment, the lowest SO_4^{2-} and SO_2
417	external standard concentrations (expected equivalent air concentrations are 0.476 $\mu g~m^{\text{-}3}$ and
418	$0.318~\mu g~m^{\text{-}3}$ for SO4^2- and SO2, respectively) may have been too large to observe this
419	nonlinearity as use of a quadratic standard curve on the SO_4^{2-} and SO_2 data (see Figure in
420	Supporting Information) did not reduce the intercept relative to linear regression. More recent
421	results (not shown), however, support the presence of non-linearity in SO_4^{2-} and SO_2 responses at
422	low concentrations. These results suggest that the response is non-linear below a SO_4^{2-}
423	concentration of 0.27 μ g m ⁻³ (equivalent to a SO ₂ concentration of 0.18 μ g m ⁻³). Therefore, it
424	was concluded that it was more appropriate to not adjust concentrations for the linear regression
425	slope and offset below these concentration values and to only subtract the experimentally
426	determined blank. For HNO ₃ and NO ₃ ⁻ , quadratic standard curves are used for external standard
427	adjustments and linear functions are used for the other remaining compounds.
428	

429 *3.1.2. Analytical Detection Limit*

430	A summary of the detection limit analysis for each analyte is provided in Table 1.
431	Detection limits in Table 1 were determined by incorporating data from all four channels for
432	each analyte. Calculated detection limits were low for all compounds ranging from (in equivalent
433	air concentration) 0.020 μg m $^{-3}$ for NH_3 to 0.064 μg m $^{-3}$ for SO4 $^{2-}$. In summary, the results of
434	Dunn's test and Brown-Forsythe test indicate that the sampling components of the MARGA are
435	influencing the detection limit of all the compounds except K^+ (for full results and analysis of the
436	Dunn's test and Brown-Forsythe test, see the appropriate section in the Supporting Information).
437	Therefore, the influence of systematic difference among channels was examined by calculating
438	the detection limit for individual channels using Equation (1), then averaging the four detection
439	limits. Using this methodology, detection limits were lower for all the compounds that had been
440	identified as having a significant difference in median channel concentration or channel
441	concentration variance (all compounds except K ⁺) with the exception of the 1.75 $\mu g L^{\text{1}} \text{Na}^{\text{+-1}}$
442	standard, which was approximately the same. The largest decrease in detection limit was for the
443	19.47 $\mu g \ L^{\text{-1}} \ SO_4{}^{2\text{-}}$ standard, which decreased by 0.009 $\mu g \ m^{\text{-3}}$. The average decrease in
444	detection limit for the compounds was 0.004 μg m $^{\text{-3}}$. For K+, the only compound that was
445	determined to have no significant difference in median channel concentration or channel
446	concentration variance, the detection limit was slightly higher than for the previous method
447	$(0.038 \ \mu g \ m^{-3})$ with a value of 0.040 $\mu g \ m^{-3}$. The NH ₄ ⁺ , NO ₃ ⁻ , HNO ₃ , SO ₂ and SO ₄ ²⁻ detection
448	limits from this study (using detection limits from Table 1 for this study) are lower than those
449	determined under field conditions in the Thomas et al. (2009) and Wolff et al. (2010) studies,
450	which used the GRAEGOR system (see Table in Supporting Information). NH ₃ detection limits
451	determined in this study are lower than those reported by Thomas et al. (2009) and Wolff et al.

- 452 (2010) at a grassland site, but are similar to Wolff et al. (2010) at the a forest site. This
- 453 aforementioned comparison takes into account differences in the methodology used for
- 454 determining detection limits. The lower detection limits observed in this study may be attributed
- 455 to differences in temperature related detector stability, stability of liquid flow rates or other
- 456 factors. The detection limit values as well as additional information on adjusting detection limits
- 457 for different methodologies is provided in the Supporting Information.
- 458
- 459 3.2. Gradient flux experiments
- 460 *3.2.1. Concentration Gradient Precision (Gradient Detection Limit)*
- 461 As previously described, the concentration gradient precision, which can also be defined
- as the gradient detection limit is the standard deviation of the residuals of the orthogonal least
- squares regression of SB1 (y) versus SB2 (x) following Wolff et al. (2010). Scatterplots of SB1
- 464 versus SB2 concentrations measured during three colocation experiments in June, August, and
- 465 October, 2012 are included in the Supplemental Information. The three colocation experiments
- 466 consist of approximately 89, 138, and 73 hourly observations, respectively.
- 467 Results of the orthogonal least squares analysis by colocation period are summarized in a
- Table provided in the Supporting Information. Slopes are within ± 0.06 of unity with the
- 469 exception of NO₃⁻ and HNO₃ during the first period, in which SB1 was lower than SB2 by \approx
- 470 15%. The reason for this underestimate is not obvious. A low bias of SB1 relative to SB2 for
- 471 both NH₃ and HNO₃ may indicate an effect of inlet tubing condition. Routine visual observation
- 472 of the SB inlet tubing indicates that SB1, which is positioned closed to the ground, tends to
- 473 accumulate dust more rapidly than SB2. As the colocation experiments are meant to serve as a
- 474 QC measure for fluxes measured during the period prior to colocation, inlets are replaced after,

- 475 rather than before, colocation experiments. Thus, the bias observed during colocation period 1
- 476 may reflect a dirtier inlet on SB1. This would not, however, explain the bias for NO_3^- aerosol
- 477 unless the loss of NH₃ and HNO₃ in the inlet promoted NH₄NO₃ dissociation.
- 478 Results of the combined colocation experiments are summarized in Table 2. In general,
- 479 concentrations during the three experiments were low, $< 0.65 \,\mu g \, m^{-3}$, with the exception of SO₄²⁻
- 480 The gradient detection limit, defined as the standard deviation of the residuals of the orthogonal
- 481 least squares regression of SB1 versus SB2 concentrations ($\sigma_{\Delta C}$) ranges from 0.02 µg m⁻³ for
- 482 NO_3^- to 0.049 µg m⁻³ for SO₂. The residual standard deviations determined in this study, which
- 483 assume a Gaussian distribution, are considerably lower than the Gaussian standard deviations
- 484 (i.e., gradient detection limits) determined by Wolff et al. (2010) for NH₃, NH₄⁺, HNO₃, and
- 485 NO₃⁻, which range from 0.093 μ g m⁻³ for HNO₃ at a forest site to 0.44 μ g m⁻³ for NO₃⁻ at a
- 486 grassland site. Expressed as a percentage of the average concentration during co-location, the
- 487 gradient detection limit ($\sigma_{\Delta C}/C_{ave}$) ranges from 2.1% for SO₄²⁻ to 9.0% for NH₃. Unfortunately, a
- 488 direct comparison of $\sigma_{\Delta C}$ expressed as a percentage of average concentration between this study
- 489 and Wolff et al. (2010) study cannot be made as the average concentration during the co-location
- 490 experiments is not reported by Wolff et al. (2010).
- When comparing gradient detection limits, it is important to consider the relationshipbetween concentration gradient precision and concentration. As discussed by Wolff et al.
- 493 (2010), for some species the standard deviation of the orthogonal least squares residuals tends to
- 494 increase with air concentration. Thus, the gradient detection limit varies with air concentration.
- 495 The relationship between gradient detection limit and air concentration observed during our
- 496 experiments is provided in a Figure in the Supporting Information. For this analysis, orthogonal
- 497 least squares residuals were combined for the three colocation experiments and sorted into 7 bins

498	defined by air concentration. Within each bin, which individually contained ≈ 42 observations,
499	the standard deviation of the residuals and corresponding bin average concentration were
500	calculated. With the exception of NO3 ⁻ , all species show an increase in gradient precision with
501	increasing concentration. In most cases, it appears that that relationship between gradient
502	precision and concentration weakens as concentrations increase. Consistent with Wolff et al.
503	(2010), our results suggest that for some compounds, and most likely including NO_3^- , the
504	relationship between precision and air concentration should be considered when calculating
505	gradient and flux detection limits at the hourly time scale. The lack of relationship observed for
506	NO_3^- may be due to a relatively narrow range of low concentration observed during the
507	colocation experiments. It is likely that this precision/concentration relationship is a general
508	feature of the measurement system and would likely be present over a larger range of NO_3^-
509	concentrations. Similar to Wolff et al. (2010), empirical functions relating gradient precision and
510	concentration were used in this study. These were derived using the plot between bin residual
511	standard deviation and concentration (see Figure in Supporting Information) to predict a gradient
512	detection limit for each hourly observation based on corresponding air concentration. The
513	relationship between gradient precision and concentration were determined using regression and
514	are presented in the Supporting Information. In this study, median relative gradient detection
515	limit uncertainty ($\sigma_{\Delta C}/\Delta C$) was 19.6% for NH ₃ , 90.4% for NH ₄ ⁺ , 29.6% for HNO ₃ , 29.2% for
516	NO_3 . These are all lower than the equivalent median relative gradient detection limit uncertainty
517	values ($\sigma_{\Delta C}/\Delta C$) reported by Wolff et al. (2010) at a grassland site, which were 36.3%, 129.6%,
518	40.1% and $49.4%$ for NH ₃ , NH ₄ ⁺ , HNO ₃ and NO ₃ , respectively. Thomas et al. (2009) used a
519	different methodology to determine concentration gradient precision that is not comparable to the
520	methodology used in this study.

521

522 *3.2.2. Flux Uncertainty*

523	Of 504 possible hourly observations (during period of 3 weeks), there were $\approx 445/380$
524	gradient measurements and $\approx 410/360$ flux measurements for gas/aerosol compounds,
525	respectively. During this period, canopy height was approximately 1 m with a single-sided leaf
526	area index of about $3.5 \text{ m}^2 \text{ m}^{-2}$. Example time series of meteorology, air concentrations, and
527	fluxes are given in the Supporting Information. Summary statistics for select meteorological
528	variables, air concentrations, and fluxes are provided in a Table in the Supporting Information.
529	Hourly air concentrations of nitrogen compounds ranged from near zero to $\approx 2.0~\mu g~m^{\text{-3}},$ with
530	mean concentrations ranging from 0.3 $\mu g~m^{\text{-3}}$ for HNO3 to 0.7 $\mu g~m^{\text{-3}}$ for NH4 ⁺ . While HNO3,
531	$\rm NH_3$, and $\rm NO_3^-$ showed distinct diurnal patterns with mid-day peaks, $\rm NH_4^+$ did not. Relative to
532	nitrogen compounds, SO ₂ and SO ₄ ²⁻ exhibited a wider range of hourly concentrations from near
533	zero up to 8.8 and 4.3 μ g m ⁻³ , respectively. SO ₂ displayed a distinct recurring diurnal pattern of
534	peak concentration during the day while SO_4^{2-} temporally correlated with NH_4^+ . Average
535	concentrations of SO ₂ and SO ₄ ²⁻ were 0.5 and 1.9 μ g m ⁻³ , respectively.
536	Over the period of fluxes analyzed, air temperatures generally ranged from 5 to 10 $^{\circ}$ C at
537	night to a maximum near 25 °C during the day. Wind speed and $u*$ ranged from near zero at
538	night to daytime maxima of ≈ 1.5 to 2.0 and 0.25 to 0.3 m s ⁻¹ , respectively. Fluxes of all
539	compounds followed the diurnal profile of friction velocity, with peak fluxes during the daytime
540	and fluxes near zero at night. With the exception of NH ₃ , all fluxes on average were directed
541	toward the grass canopy. NH ₃ showed a distinct diurnal profile of emissions during the day and
542	fluxes near zero or slightly negative overnight. As previously mentioned, a companion paper

543 focusing on the air-surface exchange processes of individual compounds over a longer sampling

544 period is forthcoming.

545	Individually, percentages of hourly chemical concentration gradients larger than the
546	corresponding gradient detection limit were 86% , 42% , 82% , 72% , 74% , and 69% for NH ₃ ,
547	NH4 ⁺ , HNO ₃ , NO ₃ ⁻ , SO ₂ , and SO ₄ ²⁻ , respectively. As expected, percentages were lowest for
548	aerosol species, owing to their relatively low deposition velocities and correspondingly smaller
549	gradients relative to gas phase species. The majority of concentration gradients exceeded the
550	gradient detection limit. As the hourly flux detection limit is calculated by replacing ΔC with $\sigma_{\Delta c}$
551	in Equation (3), the percentage of gradients larger than the gradient detection limit also
552	represents the percentage of fluxes greater than the flux detection limit.
553	Patterns of flux uncertainty are summarized in Figures 1 and 2. Overall uncertainty in the
554	transfer velocity (σ_{vtr}) was estimated as 0.0041 m s ⁻¹ ($n = 660$), which is applied as σ_{vtr}/v_{tr} to
555	estimate the hourly fractional or percentage uncertainty in v_{tr} . Figure 1 shows diurnal patterns of
556	uncertainty in v_{tr} and chemical gradients for each compound. The graphs generally show that
557	total flux uncertainty (Equation 4) is dominated by uncertainty in the chemical gradients during
558	the day but that uncertainty in the chemical gradients and v_{tr} are of the same order at night.
559	Because the chemical gradients are influenced by air concentration and the impact of the air
560	surface exchange process itself on the magnitude of the gradient, both of which are changing in
561	time, diurnal patterns in uncertainty of the chemical gradient are less distinct than that of v_{tr} ,
562	which ranges from > 50% at night to ~ 5% during the day. However, $\sigma_{\Delta c}/\Delta C$ generally peaks
563	during the day when concentration gradients are smallest due to turbulent mixing. It should be
564	noted that the largest flux uncertainty occurs at night when fluxes are near zero. Because the

565 majority (> 90%) of the cumulative flux occurs during the day, these very large uncertainties

- characterize only a minor fraction of the overall flux to the ecosystem.
- 567 Total flux uncertainty is summarized in Figure 2. When both day and night periods are considered, median total flux uncertainties are 31%, 121%, 42%, 43%, 67%, and 56% for NH₃, 568 NH₄⁺, HNO₃, NO₃⁻, SO₂, and SO₄²⁻. Considering only concentration gradients above the 569 gradient detection limit, reduces the median uncertainties to 28%, 69%, 37%, 41%, 56%, and 570 571 50%, respectively. Flux uncertainties for nitrogen compounds are generally similar to those 572 reported by Wolff et al. (2010). However, when comparing flux uncertainties between studies it 573 should be acknowledged that the transfer velocity uncertainty will vary from site to site 574 depending on meteorological conditions. Furthermore, the methodology for determining the 575 transfer velocity uncertainty could be different, as it is between this study and the Wolff et al. (2010) study. When only daytime concentration gradients above the detection limit are 576 577 considered, the uncertainties further reduce to 26%, 67%, 34%, 36%, 53%, and 47%. 578 4. Conclusions 579 580 This paper presents for the first time an assessment of the performance of a MARGA 2S instrument as applied for the measurement of air-surface exchange of nitrogen and sulfur 581 compounds. Analytical detection limits were low for all compounds from 0.02 μ g m⁻³ for NH₃ to 582
- 583 $0.064 \ \mu g \ m^{-3}$ for SO₄²⁻. The NH₄⁺, NO₃⁻, HNO₃, SO₂ and SO₄²⁻ detection limits reported in this
- study are lower than those determined under field conditions in the Thomas et al. (2009) and
- 585 Wolff et al. (2010) studies, both of which used the GRAEGOR system. Three colocation
- 586 experiments were conducted to determine concentration gradient precision. Concentration
- gradient precision ranged from $0.02 \ \mu g \ m^{-3}$ for NO₃⁻ to $0.049 \ \mu g \ m^{-3}$ for SO₂. Chemical

588	concentration gradients determined in this study compares favorably to those determined by
589	Wolff et al. (2010). Over a period of three weeks in early fall, 2012, we find that the majority of
590	chemical gradients exceed the corresponding detection limit and are therefore distinct from zero.
591	Over the range of meteorological conditions observed, median flux uncertainty ranges from \approx
592	31% for NH ₃ to \approx 121% for NH ₄ ⁺ . Flux uncertainties reported here for nitrogen compounds are
593	similar to those of the GRAEGOR as reported by Wolff et al. (2010).
594	While the characteristics of the analytical system reported here should be generally
595	applicable to the MARGA 2S, the assessment of gradient precision and flux uncertainty will vary
596	to some extent for different meteorological and atmospheric chemical conditions, though not
597	dramatically. Overall, we find that the flux uncertainties are similar to other wet chemical
598	methods and that the instrument is sufficiently precise for flux gradient applications. It is
599	recommended that colocation experiments be conducted regularly for long-term deployments
600	(e.g., monthly) or for each short term intensive deployment to properly account not only for any
601	short term systematic bias that may develop between the two sample boxes but also to assess the
602	relationship between concentration gradient precision and concentration. A companion paper
603	focusing on the air-surface exchange processes of individual compounds over a longer period of
604	study at our site is forthcoming.
605	

606 Acknowledgements

607 We would like to acknowledge Rob Proost (Metrohm Applikon) and Rene Otjes (Energy

608 Research Center, Netherlands) for technical assistance as well as Aleksandra Djurkovic (EPA)

- and David Kirchgessner (EPA) for laboratory and field support. We also acknowledge Gary
- 610 Lear (EPA) and Gregory Beachley (EPA) for helpful discussions regarding the MARGA

- 611 instrument. This manuscript has been reviewed by EPA and approved for publication. Mention
- of trade names does not constitute endorsement or recommendation of a commercial product by
- 613 U.S. EPA.

615 Description of Supporting Information

- 616 Solutions used in the MARGA ion chromatography system; additional information for the
- 617 methodology used to determine the detection limit; Additional information on external standard
- 618 liquid solutions; results and analysis of the Dunn's and Brown-Forsythe tests; additional results
- of the detection limits in comparison to previous studies; additional tables, figures and
- 620 references.

644	References
645	
646	Arya, S. P. Introduction to Micrometeorology, Academic Press: Cornwall, U.K., 2001.
647	
648	Brown, M.B., Forsythe, A.B. Robust tests for equality of variances. J. Am. Statist. Assoc. 69
649	(346), 364–367, DOI 10.1080/01621459.1974.10482955, 1974.
650	
651	Burns, D.A., Blett, T., Haeuber, R., Pardo, L.H. Critical loads as a policy tool for protecting
652	ecosystems from the effects of air pollutants. Front. Ecol. Environ., 6 (3), 156–159,
653	DOI:10.1890/07004, 2008.
654	
655	Currie, L. Nomenclature in evaluation of analytical methods including detection and
656	guantification capabilities (IUPAC Recommendations 1995). Anal. Chim. Acta. 391 (2), 105
657	– 126, DOI 10.1016/S0003-2670(99)00104-X, 1999.
658	
659	Dennis, R.L., Schwede, D.B., Bash, J.O., Pleim, J.E., Walker, J.T., Foley, K.M. Sensitivity of
660	continental United States atmospheric budgets of oxidized and reduced nitrogen to dry
661	deposition parameterizations. Phil. Trans. R. Soc. B., 368 (1621), 20130124, DOI
662	10.1098/rstb.2013.0124, 2013.
663	
664	Dunn, O.J. Multiple comparisons using rank sums. Technometrics 6 (3), 241-252, DOI
665	10.1080/00401706.1964.10490181, 1964.
666	
667	Erisman, J. W., Wyers, G. P. Continuous measurements of surface exchange of SO ₂ and NH ₃ :
668	implications for their possible interaction in the deposition process. Atmos. Environ., 27 (13),
669	1937–1949, DOI 10.1016/0960-1686(93)90266-2, 1993.
670	
671	Farmer, D. K., Kimmel, J. R., Phillips, G., Docherty, K. S., Worsnop, D. R., Sueper, D., Nemitz,
672	E., Jimenez, J.L. Eddy covariance measurements with high-resolution time-of-flight aerosol
673	mass spectrometry: A new approach to chemically resolved aerosol fluxes. Atmos. Meas.
674	Tech., 4 (6), 1275–1289, DOI 10.5194/amt-4-1275-2011, 2011.
675	
676	Farmer, D. K., Wooldridge, P. J., Cohen, R. C. Application of thermal-dissociation laser induced
677	fluorescence (TD-LIF) to measurement of HNO ₃ , \sum alkyl nitrates, \sum peroxy nitrates, and NO ₂
678	fluxes using eddy covariance. Atmos. Chem. Phys., 6 (11), 3471–3486, DOI 10.5194/acp-6-
679	3471-2006, 2006.
680	
681	Fluxnet: Duke Forest Open Field, available at: http://fluxnet.ornl.gov/site/867 (last access: 11
682	September, 2014).
683	

684 685	Keuken, M. P., Schoonebeek, C. A. M., van Wensveen-Louter, A., Slanina, J. Simultaneous sampling of NH ₃ , HNO ₃ , HCl, SO ₂ and H ₂ O ₂ in ambient air by wet annular denuder system.
686	Atmos. Environ., 22 (11), 2541–2548, DOI 10.1016/0004-6981(88)90486-6, 1990.
687	
688	Khlystov, A., Wyers, G. P., Slanina, J. The steam-jet aerosol collector. Atmos. Environ., 29 (17),
689	2229–2234, DOI 10.1016/1352-2310(95)00180-7, 1995.
690	
691	Kruit, R. J. W., van Pul, W. A. J., Otjes, R. P., Hofschreuder, P., Jacobs, A. F. G., Holtslag, A.
692	A. M. Ammonia fluxes and derived canopy compensation points over non-fertilized
693	agricultural grassland in The Netherlands using the new gradient ammonia – high accuracy –
694	monitor (GRAHAM). Atmos. Environ., 41 (6), 1275–1287, DOI 10.1016/j.atmosenv.
695	2006.09.039, 2007.
696	
697 698	Makkonen, U., Virkkula, A., Mäntykenttä, J., Hakola, H., Keronen, P., Vakkari, V., Aalto, P. P. Semi-continuous gas and inorganic aerosol measurements at a Finnish urban site:
699	comparisons with filters nitrogen in aerosol and gas phases and aerosol acidity. Atmos
700	Chem Phys. 12 (12) 5617-5631 DOI 10 5194/acp-12-5617-2012 2012
701	
702	Marx, O., Brummer, C., Ammann, C., Wolff, V., Freibauer, A. TRANC - a novel fast-response
703	converter to measure total reactive atmospheric nitrogen. Atmos. Meas. Tech., 5 (5), 1045–
704	1057, DOI 10.5194/amt-5-1045-2012, 2012.
705	
706	Nemitz, E., Jimenez, J. L., Huffman, J. A., Ulbrich, I. M., Canagaratna, M. R., Worsnop, D. R.,
707	Guenther, A. B. An eddy covariance system for the measurement of surface/atmosphere
708	exchange fluxes of submicron aerosol chemical species – First application above an urban
709	area. Aerosol Sci. Tech., 42 (8), 636-657, DOI 10.1080/02786820802227352, 2008.
710	
711	Nemitz, E., Sutton, M. A. Gas-particle interactions above a Dutch heathland: III. Modelling the
712	influence of the NH ₃ -HNO ₃ -NH ₄ NO ₃ equilibrium on size-segregated particle fluxes. Atmos.
713	Chem. Phys., 4 (4), 1025–1045, 10.5194/acp-4-1025-2004, 2004.
714	
715	Rumsey, I., Cowen, K., Walker, J.T., Kelley, T.J., Hanft, E.A., Mishoe, K., Rogers, C., Proost,
716	R., Beachley, G.M., Lear, G., Frelink, T., Otjes, R.P. An assessment of the performance of
717	the Monitor for AeRosols and GAses in ambient air (MARGA): a semi-continuous method
718	for soluble compounds. Atmos. Chem. Phys., 14 (11), 5639–5658, DOI 10.5194/acp-14-
719	5639-2014, 2014.
720	
/21	Sickles II, J.E., Hodson, L.L., Vorburger, L.M. Evaluation of the filter pack for long duration
/22 722	sampling of amolent an. Atmos. Environ., 55 (14), 2187–2202. DOI 10.1010/S1352- 2310/08/00/25 7, 1000
123	2J10(70)0042J-1, 1777.

724	
725	Sintermann, J., Spirig, C., Jordan, A., Kuhn, U., Ammann, C., Neftel, A. Eddy covariance flux
726	measurements of ammonia by high temperature chemical ionisation mass spectrometry.
727	Atmos. Meas. Tech., 4 (3), 599-616, DOI 10.5194/amt-4-599-2011, 2011.
728	
729	Slanina, J., ten Brink, H. M., Otjes, R. P., Even, A., Jongejan, P., Khlystov, A., Waijers-Ijpelaan,
730	A., Hu, M. The continuous analysis of nitrate and ammonium in aerosols by the steam jet
731	aerosol collector (SJAC): extension and validation of the methodology. Atmos. Environ., 35
732	(13), 2319–2330, DOI 10.1016/S1352-2310(00)00556-2, 2001.
733	
734	Stanhill, G. A simple instrument for field measurement of turbulent diffusion flux. J. Appl.
735	Meteorol., 8 (4), 509-513, DOI 10.1175/1520-0450(1969)008, 1969.
736	
737	ten Brink, H., Otjes, R., Jongejan, P., Slanina, S. An instrument for semi-continuous monitoring
738	of the size-distribution of nitrate, ammonium, sulphate and chloride in aerosol, Atmos.
739	Environ., 41 (13), 2768–2779, DOI 10.1016/j.atmosenv.2006.11.041, 2007.
740	
741	Thom, A. S. Momentum, Mass and Heat Exchange, Academic Press: Chichester, U.K., 1975.
742	
743	Thomas, R.M., Trebs, I., Otjes, R., Jongejan, P.A.C., ten Brink, H., Phillips, G., Kortner, M.,
744	Meixner, F.X., Nemitz, E. An automated analyzer to measure surface-atmosphere exchange
745	fluxes of water soluble inorganic aerosol compounds and reactive trace gases. Environ. Sci.
746	Technol., 43 (5), 1412-1418, DOI 10.1021/es8019403, 2009.
747	
748	Whitehead, J.D., Twigg, M., Famulari, D., Nemitz, E., Sutton, M.A., Gallagher, M.W., Fowler,
749	D. Evaluation of laser absorption spectroscopic techniques for eddy covariance flux
750	measurements of ammonia. Environ. Sci. Technol., 42 (6), 2041-2046, DOI
751	10.1021/es071596u, 2008.
752	
753	Wolfe G.M., Thornton, J.A., Yatavelli, R.L.N., McKay, M., Goldstein, A.H., LaFranchi, B.,
754	Min, KE., Cohen, R.C. Eddy covariance fluxes of acyl peroxy nitrates (PAN, PPN and
755	MPAN) above a Ponderosa pine forest. Atmos. Chem. Phys., 9 (2), 615–634, DOI
756	10.5194/acp-9-615-2009, 20009.
757	
758	Wolff, V., Trebs, I., Ammann, C., Meixner, F.X. Aerodynamic gradient measurements of the
759	NH ₃ -HNO ₃ -NH ₄ NO ₃ triad using a wet chemical instrument: an analysis of precision
760	requirements and flux errors. Atmos. Meas. Tech., 3 (1), 187-208, DOI 10.5194/amt-3-187-
761	2010, 2010.
762	

763 764	Wyers, G. P., Otjes, R. P., Slanina, J. A continuous-flow denuder for the measurement of ambient concentrations and surface-exchange fluxes of ammonia. Atmos. Environ. 27 (13)
704	anotent concentrations and surface-exchange fluxes of animoma. Atmos. Environ., 27 (15),
765	2085–2090, DOI 10.1010/0900-1080(95)90280-C, 1995.
766	
767	
768	
769	
770	
771	
772	
773	
774	
775	
776	
777	
778	
779	
780	
781	
782	
783	

Tables

Table 1. Detection limit (liquid and air equivalent) results incorporating data from all 4 channels

for each analyte.

	Expected Concentration (µg L ⁻¹)	Median Observed Concentration (µg L ⁻¹)	Observed Standard Deviation ^b (µg L ⁻¹)	N	t-value	Liquid Detection Limit (µg L ⁻¹)	Air Equ Dete Lin (µg	uivalent ction mit m ⁻³)
							Aerosol	Gas
NO ₃ -	5.34	7.75	0.87	72	1.29	2.25	0.056	0.057
SO_4^{2-a}	0	1.82	0.75	142	1.29	1.93	0.048	0.032
SO_4^{2-}	19.47	26.5	1.00	72	1.29	2.58	0.064	0.043
NH_4^+	4.91	5.01	0.33	73	1.29	0.86	0.021	0.020
Na ⁺	1.75	1.47	0.44	73	1.29	1.15	0.029	-
Na ⁺	5.00	7.06	0.33	80	1.29	1.03	0.026	-
K^+	4.91	5.22	0.60	80	1.29	1.54	0.038	-

^a Detection limits for SO₄²⁻ and Na⁺ were determined using two liquid standards with different concentrations. $^{b} \pm 1$ standard deviation.

		Cave	$\sigma_{\Delta C}$	$\sigma_{\rm C}$	C_{max}	\mathbf{C}_{\min}	$\sigma_{\Delta C}/C_{ave}$
	N ^a	(µg m ⁻³) ^b	(µg m ⁻³) ^c	$(\mu g m^{-3})^{d}$	$(\mu g m^{-3})^{e}$	(µg m ⁻³) ^f	(%) ^g
NH ₃	300	0.48	0.043	0.51	3.22	0.05	9.0
$\mathrm{NH_4}^+$	299	0.62	0.028	0.38	1.81	0.05	4.5
HNO ₃	282	0.61	0.035	0.60	2.52	0.03	5.8
NO ₃ ⁻	300	0.24	0.020	0.21	1.18	0.00	8.3
SO_2	285	0.61	0.049	0.82	4.29	0.01	8.0
SO4 ²⁻	297	2.04	0.042	1.06	5.65	0.33	2.1

813 Table 2. Summary of colocation results.

^aN is number of observations for all three colocation experiments.

815 ^b C_{ave} is average air concentration during co-location.

816 $\sigma_{\Delta C}$ is the standard deviation of the orthogonal least squares residuals (i.e., gradient detection limit).

817 ${}^{d}\sigma_{C}$ is the standard deviation of the air concentration.

818 ° C_{max} is the the maximum air concentration

819 ${}^{f}C_{min}$ is the minimum air concentration.

820 ${}^{g}\sigma_{\Delta C}/C$ (%) is the gradient detection limit expressed as a percentage of the average air concentration.

824 Figure 1. Diurnal profiles of uncertainty in chemical concentration gradients and transfer

825 velocity expressed as a percentage of the corresponding concentration gradient (ΔC) and transfer 826 velocity (v_{tr}). Data points represent median value for the corresponding hour.

Figure 2. Summary of flux error (Equation (4)) expressed as a median percentage of the flux
magnitude. Data are summarized as all data, all fluxes in which the chemical gradient exceeds

the gradient detection limit, all daytime data, and daytime data in which the chemical gradientexceeds the gradient detection limit. Error bars represent interquartile range.