
We thank the Referees for the comments and suggestions. We have improved the

manuscript accordingly. Below, we reply and discuss the issues raised up by the Referee.

I. REPLY TO COMMENTS OF REFEREE 1

1. Section 2 (”State of the art”) is a collection of equations that relate various turbulence

characteristics with each other. These equations have been taken from a large number

of different sources, and it is not clear what the underlying physical assumptions are

and to what extent they are consistent across the various sources. For example, it is not

explained whether the one-dimensional spectra E11(k) and E22(k1) and the frequency

spectrum S(f) are meant to be one-sided spectra or two-sided spectra.

E11(k), E22(k1) and S(f) are the one-sided spectra which, after integration over ar-

gument from 0 to ∞ equal the variance of the signal. Eij(k1) are defined as twice

the one-dimensional Fourier transform of Rij(r1e1) = 〈ui(x, t)uj(x + r1e1, t)〉 (Pope,

2000). We assume that the flow is statistically stationary and statistics do not depend

on time. We ammended Section 2, Eqs. [11] in the manuscript were be corrected to

R11(r1e1) =

∫ ∞
0

E11(k1) cos (k1r1)dk1, (1)

R′′11(r1e1) = −
∫ ∞
0

E11(k1)k
2
1 cos (k1r1)dk1. (2)

2. Moreover, it is not mentioned which of the relationships follow from Kolmogorov’s

theory of fully developed, locally homogeneous and isotropic turbulence Kolmogorov

(1941a,b) and which are valid for any statistically homogeneous vector fields, regardless

of whether or not they are isotropic (Monin and Yaglom, 1975, pp. 16-22)

Eqs. [11-14] in the manuscript are valid under the assumption of homogeneity alone,

however, for further relations (relationship between λg and λf and Eqs. [15] and [16])

the assumption of local isotropy (Kolmogorov, 1941) is needed, to finally find the value

of the dissipation rate.

As the airborne measurements provide signals of velocity along the 1D aircraft flight

path, the local isotropy assumption is needed to estimate the dissipation rate ε of a 3D

turbulent field and the assumption of homogeneity alone (Monin and Yaglom, 1975)

is not sufficient.
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We added this discussion to Section 2, page 5, lines 8-11.

3. Additionally, I find it worrisome that the authors sometimes confuse k1 and k and

that some of their equations contain transcendental functions with dimensional argu-

ments...

Integration in equations [25], [26] and [31] in the old manuscript was performed over

non-dimensional variables kβη and k1βη. In the manuscript we denoted them by k and

k1 which was confusing. In the ammended version we denoted the non-dimensional

variables by ξ and ξ1, see Eqs. [27] and [38] in the new manuscript and added a sentence

with details of derivation of Eq. [27].

4. I find it difficult to follow the flow of the authors’ reasoning in detail. I am not surprised

that the zero-crossing methods can provide ε estimates with a quality comparable to the

ε estimates obtained with traditional spectral retrieval methods. The relative advantages

and disadvantages, however, are less clear, and the authors do not discuss and explain

them in sufficient depth from a physical point of view.

In the manuscript we proposed two extensions of zero-crossing method to estimate

TKE dissipation rate for low-pass filtered signals, in particular from airborne tur-

bulence measurements with spatial resolution of meters or tens of meters along 1D

aircraft tracks. The first of them, described in Sections 3.1 and 4.1 applies additional

filtering of the signal and, similarly as the structure function or power spectra methods,

is based on the inertial-range arguments.

In spite of the same underlying physical arguments the structure function and power

spectra methods are often used simultaneously, for better ε estimates (Chamecki and

Dias, 2004). Here, the proposed method offers yet another option. Moreover, the

second proposed method assumes a model spectrum for the inertial and the dissipation

range, hence it is based on different physical arguments than the methods based on the

inertial-range scaling only, it additionally makes use of the first similarity hypothesis

of Kolmogorov (1941) and a model for the dissipation range spectrum. Still, it can

be used for signals with spectral cut-offs, hence it offers an alternative to the spectral

retrieval methods.

The possible advantages of the newly proposed approaches (apart from the simplicity
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of the number of crossings detection) follow from the simulation analysis performed

according to the suggestion of Referee 2. Results are presented in Section 4.2, it seems

that at least for the generated synthetic turbulent signals, the number of crossings

method is less sensitive to the bias error and an error due to aliasing than the spectral

retrieval method.

Advantages and disadvantages of the new approaches are now discussed in more detail

in Conclusions.

5. Page 2, line 23: State of the art This section heading is unnecessarily vague and

mislead- ing. I would suggest to replace it with Previous methods to retrieve the energy

dissipation rate from measured velocity time series or something similar

We changed the title of the section, according to the Referee’s suggestion.

6. Eq. [2] fails at wave numbers small compared to 1/L, where the turbulence is usually

anisotropic and is no longer universal.

In principle, we agree here with the Referee. However, one can assume that the lowest

wavenumbers of the spectrum E11 available from the measurements are within the

validity of the local isotropy assumption and that the largest scales of the flow do

not influence the value of dissipation rate. In the revised manuscript on page 3, text

before Eq. (3) now reads: “Within the validity of the local isotropy assumption of

Kolmogorov (1941), the energy-spectrum function can be approximated by the formula

(Pope, 2000):”

7. P. 3, lines 12ff.: Within the validity of the Taylors hypothesis (1) can be converted to

the frequency spectra, where k = (2f)/U and U is the mean velocity of the aircraft.

This statement is erroneous or misleading in two respects. First, Taylors frozen-

turbulence hypothesis converts the frequency f to the longitudinal wave number k1,

not to the magnitude k = |k| of the three-dimensional wave vector k. Second, U is not

the mean velocity of the aircraft but the magnitude of the vector difference between the

aircraft velocity and the wind velocity. This magnitude is sometimes referred to as the

true air speed.

We agree with the Referee, we amended the manuscript, accordingly (see page 3 line

12).
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8. The integrals in Eqs. 25 and 26 contain the term e−k, the exponential function, how-

ever, is a transcendental function and its argument must be dimensionless, such as the

argument βkη in Eq. [24]. Because k is not dimensionless (its dimension is 1/Length),

Eqs. [25] and [26] cannot be correct.

Integration in Eqs. [25] and [26] in the old manuscript was performed over non-

dimensional variables. Below we present the derivation in detail and change the nota-

tion to ξ and ξ1 instead of k and k1.

In order to derive Eqs. [25] and [26] we considered a relation between Ncut and NL

u
′2N2

L = u
′2
cutN

2
cut

(
1 +

∫∞
kcut

k21E11dk1∫ kcut
0

k21E11dk1

)
, (3)

and assumed a certain form of the energy spectrum applicable in the inertial and the

dissipation range

E(k) = Cε2/3k−5/3e−βkη, (4)

the corresponding one-dimensional spectrum E11, for the range of scales where the

local isotropy assumption holds, was calculated using Eq. [2] form the manuscript

E11(k1) = Cε2/3
∫ ∞
k1

k−8/3e−βkη
(

1− k21
k2

)
dk. (5)

With the following change of variables ξ = βkη in this integral we obtain

E11(k1) = Cε2/3(βη)5/3
∫ ∞
k1βη

ξ−8/3e−ξ
(

1− (k1βη)2

ξ2

)
dξ. (6)

We next introduce (6) into (3) and once again change the variables to ξ1 = k1βη. We

obtain

u
′2N2

L = u
′2
cutN

2
cut

1 +

∫∞
kcutβη

ξ21
∫∞
ξ1
ξ−8/3e−ξ

(
1− ξ21

ξ2

)
dξdξ1∫ kcutβη

0
ξ21
∫∞
ξ1
ξ−8/3e−ξ

(
1− ξ21

ξ2

)
dξdξ1

 = u
′2
cutN

2
cutCF , (7)

where the correcting factor CF equals

CF = 1 +

∫∞
kcutβη

ξ21
∫∞
ξ1
ξ−8/3e−ξ

(
1− ξ21

ξ2

)
dξdξ1∫ kcutβη

0
ξ21
∫∞
ξ1
ξ−8/3e−ξ

(
1− ξ21

ξ2

)
dξdξ1

. (8)

The form of both equations is identical as [25] and [26], but the integration variables

are denoted ξ and ξ1, instead of k and k1. We amended the manuscript, accordingly.

At the same time we note that the results of analysis performed in Sections 4 and 5

remained unchanged.
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II. REPLY TO COMMENTS OF REFEREE 2

1. They do not perform a sensitivity study on the choice of dissipation range model. They

use a specific exponential model from Pope (2000), but if they had read the discussion

in that reference, they would have noted that Pope does not consider that model to be

accurate. And as the authors point out, the dissipation range spectrum has a significant

effect on the number of zero crossings.

In the cited reference [Pope, 2000] three different forms for the function fη were con-

sidered, the exponential, the Pao and an improved form, which will be further re-

ferred to as the ”Pope spectrum”, see Eqs. (6.248), (6.249), (6.254) therein. All the

three forms of the dissipative spectra integrate to ε i.e. they satisfy the requirement

ε = 2ν
∫
k2E(k)dk. According to the analysis of experimental data, the Pope spectrum

provides the best fit in the dissipative range [Pope 2000].

In the revised manuscript, in Section 4.3 we compared results with both the exponential

and the Pope forms of function fη. We show that the obtained ε estimates are very

close to each other. To explain this we first note that in the proposed model (Eq. [22]

in the manuscript) only the integral of the dissipative spectrum k21E11(k1) is present.

The spectral cut-off of the data considered in our work (5Hz) is in the inertial range,

where k21E11(k1) with both forms of fη functions are almost indistinguishable, see Fig.

1. At the same time integrals of the remaining (recovered) parts of k21E11(k1) are

almost equal (as both dissipative spectra 2νk2E(k) integrate to ε). As a result, for the

given spectral cut-off the ε estimates are almost the same, independently of the form

of the fη function. This might change for larger cut-off frequencies. We expect that in

case the cut-off frequency is placed in a region influenced by the form of fη function,

the Pope spectrum will provide better estimates of the TKE dissipation rate. We

included the new results and the above discussion in the revised manuscript in Section

4.3.

2. Furthermore, they do not address practical issues inherent in digital signal processing:

spectral bias due to finite temporal windows, aliasing due to temporal sampling, as well

as sensor bias and noise. It seems that these artefacts might have a significant impact

on a zero- crossing method. For example, it is not hard to see how sensor bias and
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FIG. 1. Functions E11(k1) and k21E11(k1) calculated for the measured signal (black line), exponen-

tial spectrum (dot-dashed blue line), Pope spectrum (dashed magenta line).

noise, could significantly impact zero crossings, especially for low SNR data.

As suggested by the Referee we performed simulation analysis, [Frehlich et al. (2001),

Sharman et al. (2014)], in order to address the issues of the influence of finite temporal

windows and aliasing on ε estimates. In the revised manuscript, in Section 4.2, we

present and discuss the obtained results. As far as the sensor bias is concerned, in

fact both the variance of the noise as well as variance of its derivative influence the

measured number of crossings. This issue was studied in detail by Sreenivasan et al.

(1983), hence, we did not discussed it in the manuscript. Moreover, Poggi & Katul

(2010) suggested to use the threshold- instead of the zero-crossings in case of low SNR

signals. In our application the noise influences largely the higher frequencies (above

5Hz) which are removed by the low-pass filter used in the proposed number of crossings

method. Moreover, use of the threshold- instead of zero-crossings did not lead to any

systematic change of our estimates. In the revised manuscript we included a discussion

concerning the sensor bias, referring to the two mentioned papers, in Section 4.2.

3. So, they need to address the question of why one would want to use their method over

more standard approaches (unless of course, one had data with significant content in

the dissipation range), and how their method is susceptible/tolerant to signal processing
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artifacts. I feel strongly that they need to perform a simulation analysis to answer these

questions in a statistical sense (see for example, Frehlich, et al. JAM 2001).

Based on the results of the performed simulation analysis we argue that the number

of crossing method has certain advantages over standard methods. We created sets of

artificial velocity signals with a prescribed form of the energy spectrum [Frehlich et al.

(2001), Sharman et al. (2014)]. Results are presented in Section 4.2. At least for these

artificial velocity signals, the obtained ε values were less sensitive to the aliasing error

than the estimates from the power spectral method. Moreover, the bias due to the

finite temporal windows was smaller for the number of crossing method, however, on

the cost of larger uncertainty (larger standard deviations) of the estimated dissipation

rate values.

These differences in errors of the number of crossing and the power spectral method

can make the former an additional tool to improve ε estimates from the atmospheric

measurements.

Moreover, we argue that the number of crossings method applied to the fully-resolved

signals has become a fairly standard tool for ε estimates, used also in the atmospheric

measurements, see e.g. Poggi & Katul (2010). Therein, the discussed advantages of

the method are that no gradient measurements are required (to estimate the Taylor

microscale λ), no assumptions about scaling laws in structure functions (and power

spectra) are needed and no simplifications in the TKE budget are adopted (for which

ε is computed as residual). The method proposed in the current manuscript, in par-

ticular, the second approach based on the recovered part of the spectrum, generalises

number of crossing method and makes it applicable also for signals with spectral cut-

off. Off course, an additional cost is that certain form of the energy spectrum must be

assumed. The method can be interesting in particular for data with cut-offs reaching

the dissipation range, but still with part of this range missing (or contaminated with

noise). In such case, using only the inertial-range estimates may lead to a significant

loss of information, as the data from the dissipation range are not taken into account.

In the revised manuscript we extended the discussion about advantages and disadvan-

tages of the new methods in Conclusions.

7



III. LIST OF CHANGES

1. We modified Section 2, according to the suggestions of Referee 1, we described the

applied assumptions, corrected Eqs. [11] and in Eq. [4] we use constant C1 instead of

α. We corrected the text on page 3, line 13 to k1 = (2πf)/U and defined U according

to the suggestion of Referee 1.

2. In Eq. [9] we use k1 instead of k

3. We corrected the definition of R11 on page 4, line 23. We now write “We will now

introduce the two-point correlation of velocity Rij(r1e1) = 〈ui(x, t)uj(x+ r1e1, t)〉 and

assume that the flow is statistically stationary and statistics do not depend on time.”

4. According to suggestions of Referee 2 in Section 3.2 we discuss both the simple expo-

nential and the Pope spectrum in Eq. (23), (24) in the following formulas instead of

eβkη we write fη(βkη)

5. We added Section 4.2 ”Simulation analysis and error estimates” according to sugges-

tions of Referee 2.

6. In Section 4.3 we added result of ε estimates with the use of the Pope spectrum and

a discussion of results.

7. In conclusions we discuss advanteges and disadvantages of new proposals in more

detail, as suggested by both Referees.

8. We replaced Fig. 13 with results obtained from more precise calculations of integrals

on non-uniform grid.
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Abstract. In this paper we propose two approaches to estimating the kinetic energy dissipation rate, based on the zero-crossing

method by Sreenivasan et al. [J. Fluid Mech., 137, 1983]. The original formulation requires a fine resolution of the measured

signal, down to the smallest dissipative scales. However, due to finite sampling frequency, as well as measurement errors,

velocity time series obtained from airborne experiments are characterized by the presence of effective spectral cut-offs. In

contrast to the original formulation the new approaches are suitable for use with signals originating from such experiments.5

The fittingness of the new approaches is tested using measurement data obtained during the Physics of Stratocumulus Top

(POST) airborne research campaign
::
as

::::
well

::
as

::::::::
synthetic

:::::::::
turbulence

::::
data.

1 Introduction

Despite the fact that turbulence is one of the key physical mechanisms responsible for many atmospheric phenomena, informa-

tion on Turbulent Kinetic Energy (TKE) dissipation rate ε based on in-situ airborne measurements is scarce. Research aircraft10

are often not equipped to measure wind fluctuations with spatial resolution better than few tens of meters (Wendisch and

Brenguier, 2013). Due to various problems related to e.g. inhomogeneity of turbulence along the aircraft track and/or artifacts

related to inevitable aerodynamic problems (Khelif et al., 1999; Kalgorios and Wang, 2002; Mallaun et al., 2015), estimates of

ε at such low resolutions using power spectral density or structure functions are complex and far from being standardised (e.g.

compare procedures in Strauss et al. (2015), Jen-La Plante et al. (2016)). The question arises: can we do any better? Or at least15

can we introduce alternative methods to increase robustness of ε retrievals?

In the literature, there exist several different methods to estimate ε using the measured velocity signal as a starting point. One

of them is the zero- or threshold-crossing method (Sreenivasan et al., 1983) which, instead of calculating the energy spectrum

or velocity structure functions, requires counting of the signal zero- or threshold crossing eventsare, see Fig. 1a. Their mean

number per unit length is related to the turbulent kinetic energy dissipation rate. The zero-crossing method is based on a direct20

relation between ε and the root mean square of the velocity derivative 〈(∂u/∂t)2〉 (Pope, 2000), hence, the measured signal

should be resolved down to the smallest scales. However, this is not achievable in the case of the moderate-resolution flight

measurements, where the sampling frequency is typically 2− 3 orders of magnitude smaller than the frequency corresponding
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to the Kolmogorov scales. As a result, the number of zero-crossings per unit length NL for such signal is much smaller than

the one corresponding to a high resolution velocity signal where turbulence intensity is the same.

Interestingly, Kopeć et al. (2016) have shown, that the dissipation rates estimated from such NL using very low resolution

signals, although underestimated, were proportional to ε calculated using structure functions scaling in the inertial range. In5

the follow up analyses we found that this is also the case for moderate-resolution airborne data from different sources. This led

us to a question whether it would be possible to modify the zero-crossing method such that it can also be applied to moderate-

or low-resolution measurements whilst mitigating the observed underestimation at the same time. In this work we propose

two possible modifications of the zero-crossing method. The first one is based on a successive filtering of a velocity signal

and inertial-range
:::::
inertial

:::::
range

:
arguments. In the second approach we use an analytical model for the unresolved part of the10

spectrum and calculate a correcting factor to NL, such that the standard relation between ε and NL can be used.

The new approaches are tested on velocity signals obtained during the Physics of Stratocumulus Top (POST) research cam-

paign, which was designed to investigate the marine stratocumulus clouds and the details of vertical structure of stratocumlus-

topped boundary layer (STBL) (Gerber et al., 2013; Malinowski et al., 2013). The observed winds were measured using the

CIRPAS Twin-Otter research aircraft with sampling frequency fs = 40Hz, which corresponds to the resolution 1.375m for15

the speed of the aircraft U = 55m/s. The frequency fs is placed in the inertial range of the power spectral density (PSD) of the

measured signal
::::::
55m/s.

:::::::::
Additional

::::
tests

::
of

:::
the

::::::
method

::::
with

::::::::
synthetic

:::::::
velocity

::::::
signals

::
as

::::::::
suggested

::
by

:::::::::::::::::::::
Frehlich et al. (2001) are

:::
also

:::::::::
performed.

The present paper is structured as follows. In section 2 we review existing methods to estimate dissipation rate of the

turbulent kinetic energy. Next, in Section 3 we propose the two modifications of the zero-crossing method. They are applied to20

a single signal from flight 13 and
:::::::
synthetic

:::::::::
turbulence

::::
data

:::
and discussed in detail in Section 4. Next, in Section 5 we apply the

procedures to several data sets from flights 10 and 13 to show that the results of new approaches compare favourably with those

obtained from standard power-spectrum and structure function methods. This is followed by Conclusions where the advantages

of the new proposals and perspectives for further study are discussed.

2 State of
:::::::
Previous

::::::::
methods

::
to

:::::::
retrieve

:
the art

:::::
energy

::::::::::
dissipation

::::
rate

:::::
from

::::::::
measured

:::::::
velocity

:::::
time

:::::
series25

The need to estimate the turbulent kinetic energy dissipation rate ε as well as variety of available data resulted in formulating

a number of estimation methods. Two of the most commonly used approaches are the frequency spectrum and the structure-

function approach. Both are based on the inertial-range
:::::
inertial

:::::
range

:
arguments, which follow from the Kolmogorov’s second

similarity hypothesis
:::::::::::::::::
(Kolmogorov, 1941) , hence, they are also called "indirect methods" (Albertson et al., 1997). In the

homogeneous and isotropic turbulence
::::
With

:::
the

::::::::::
assumption

::
of

:::::
local

:::::::
isotropy the one-dimensional longitudinal and transverse30

wavenumber spectra in the inertial range are given by (Pope, 2000)
:::::::::::::::::::::::::::::::::::::::::::::::::
(Kolmogorov, 1941; Monin and Yaglom, 1975; Pope, 2000) :

E11(k1) = C1ε
2/3k

−5/3
1 , E22(k1) = C ′1ε

2/3k
−5/3
1 . (1)
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Here k1 is the longitudinal component of the wavenumber vector k
:::::::::::::
k = (k1,k2,k3), C1 ≈ 0.49 and C ′1 ≈ 0.65. E11 is related

to the energy-spectrum function E(k) :5

E11(k1) =

∞∫
k1

E(k)

k

(
1− k21

k2

)
dk., (2)

:::
here

:::::::
k = |k|.

:
As discussed in Pope (2000) experimental data confirm Eqs. (1) within 20% of the predicted values of C1 and

C ′1 over two decades of wavenumbers. The
:::::
Within

:::
the

:::::::
validity

::
of

:::
the

:::::
local

:::::::
isotropy

::::::::::
assumption

::
of

::::::::::::::::::
Kolmogorov (1941) ,

:::
the

energy-spectrum function in the whole wavenumber range can be approximated by the formula (Pope, 2000):

E(k) = Cε2/3k−5/3fL(kL)fη(kη), (3)10

here C ≈ 1.5 as supported by experimental data, fL and fη are non-dimensional functions, which specify the shape of energy-

spectrum in, respectively, the energy-containing and the dissipation range. L denotes the length scale of large eddies and

η = (ν3/ε)1/4 is the Kolmogorov length scale connected with the dissipative scales. The function fL tends to unity for large

kL whereas fη tends to unity for small kη, such that in the inertial range the formula E(k) = Cε2/3k−5/3 is recovered.

Within the validity of the Taylor’s hypothesis
:::
Eq. (1) can be converted to the frequency spectra, where k = (2πf)/U15

::::::::::::
k1 = (2πf)/U and U is the mean velocity of the aircraft

::::::::
magnitude

:::
of

:::
the

:::::
vector

:::::::::
difference

:::::::
between

:::
the

::::::
aircraft

:::::::
velocity

::::
and

::
the

:::::
wind

:::::::
velocity. In order to estimate the dissipation rate from the atmospheric turbulence measurements, several assumptions

should be taken. Most importantly, one assumes that the turbulence is homogeneous and isotropic and that the inertial range

scaling Eqs. (1) holds. Then, frequency spectrum of the longitudinal velocity component reads (e.g., Oncley et al., 1996; Siebert et al., 2006) :

::
in

:::
the

:::::::
inertial

:::::
range

:
is
::::::::::::::::::::::::::::::::::::::
(e.g., Oncley et al., 1996; Siebert et al., 2006) :

:
20

S(f) = αC1
::

(
U

2π

)2/3

ε2/3f−5/3. (4)

:::
All

::::::::::::::
one-dimensional

::::::
spectra

:::::::::
considered

::::
here

::::
are

:::
the

::::::::
one-sided

:::::::
spectra,

::::
that

::
is,

:::::::::
integrating

::::
E11, here α≈ 0.5. With this

:::
E22

::
or

::::
S(f)

:::::::::
functions

::::
over

::::::::
argument

:::::
from

:
0
:::

to
::
∞

::::::
yields

:::
the

:::::::
variance

:::
of

:::
the

::::::
signal.

::::
With

::::
Eq.

::
(4), the turbulent kinetic energy

dissipation rate can be estimated from the PSD of the measured signal.

Alternatively, one can consider the n-th order longitudinal structure functions Dn = 〈(uL(x+ r, t)−uL(x,t))n〉, here uL25

is the longitudinal component of velocity. In the inertial subrange, the second and third-order structure functions are related to

the dissipation rate ε by the formulas (Pope, 2000):

D2(r) = C2ε
2/3r2/3, D3(r) =−4

5
εr. (5)

Experimental results of Saddoughi and Veeravalli (1994) indicate that C2 ≈ 2. with an accuracy of ±15%.

Another method, also based on the formula (3) is the velocity variance method (Fairall et al., 1980; Bouniol et al., 2004;

O’Connor et al., 2010). Let us consider a stationary signal u(t). The variance of this signal 〈u2(t)〉= u
′2 is equal to the integral

of the power spectral density S(f) over the frequency space.

3



Let us now filter the signal u(t) with a band-pass filter with cut-off numbers [flow,fup] in the frequency space. We obtain a

signal uf (t) with the variance5

u
′2
f =

fup∫
flow

S(f)df. (6)

The above formula represents the portion of kinetic energy of u(t) contained in the frequencies between flow and fup. If we

introduce Eq. (3) for S(f) into (6) and integrate
:
, we finally obtain the following formula for the dissipation rate:

ε=

 2(2π)2/3u
′2
f

3αU2/3(f
−2/3
low − f−2/3up )

2(2π)2/3u
′2
f

3C1U2/3(f
−2/3
low − f−2/3up )

:::::::::::::::::::::


3/2

. (7)

Yet another method, also used in the atmospheric turbulence analysis (Sreenivasan et al., 1983; Poggi and Katul, 2009, 2010;10

Wilson, 1995; Yee et al., 1995), is based on the number of zero- or level-crossings of the measured velocity signal. It dates

back to the early work of Rice (1945) who considered a stochastic processes q and its derivative with respect to time ∂q/∂t.

He then assumed that these two processes have Gaussian statistics and are independent. The formulation of this method results

from investigating how frequently the signal crosses the level zero q(t) = 0, see Fig. 1a. Working under those assumptions

Rice (1945) showed that the number of crossings
::::::::::
up-crossings of the zero level per unit time is:15

N2 =
〈(∂q/∂t)2〉

4π2〈q2〉
. (8)

As 〈(∂q/∂t)2〉 is proportional to the dissipation rate of the kinetic energy, the zero-crossing method can be used to estimate this

quantity. As it was argued by Sreenivasan et al. (1983), Eq. (8) holds also with less restricted assumptions, with only q having

Gaussian statistics and, moreover, even for strongly non-Gaussian velocity signals the number of zero-crossings was close to

the theoretical value
::::
from

:::
Eq. (8). For a spatially varying signal, Eq. (8) can be expressed as follows, using the characteristic20

wavenumber kc (He and Yuan, 2001):

kc =

√∫∞
0
k2E11dk∫∞

0
E11dk

√∫∞
0
k21E11dk1∫∞

0
E11dk1

:::::::::::::

. (9)

The characteristic wavelength is equal to λc = 2π/kc. Hence, the mean number of crossings (up- and downcrossings) per unit

length NL, with, on average, two crossing per λc is

NL =
2

λc
=

1

π
kc. (10)

We will now introduce the two-point correlation of velocityR11(r1e1) = 〈u1(x)u1(x + r1e1)〉.
::::::::::::::::::::::::::::::
Rij(r1e1) = 〈ui(x, t)uj(x + r1e1, t)〉

:::
and

::::::
assume

::::
that

:::
the

::::
flow

::
is

::::::::::
statistically

::::::::
stationary

::::
and

:::::::
statistics

:::
do

:::
not

::::::
depend

:::
on

:::::
time.

:::::
Using

:::
the

::::::
inverse

:::::::
Fourier

:::::::::
transform,

R11 and its derivatives can be written in terms of the inverse Fourier transform of E11 (Pope, 2000) :
::
as

::::::
follows

::::::::::::
(Pope, 2000) :

:

R11(r1e1) =

∞∫
0

E11(k1)eikr1cos(k1r1)
:::::::

dk1, R′′11(r1e1) =−
∫
∞
0
:
E11(k1)k21eik1r1cos(k1r1)

:::::::
dk1. (11)5
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Using
::::
With

:
those relationships we can rewrite Eq. (9) in the following manner:

kc =

√∫∞
0
k21E11(k1)dk1∫∞

0
E11(k1)dk1

=

√
−R′′11(0)

R11(0)
. (12)

On the other hand, R′′11(0) and R11(0)
:::
We

::::::
further

:
define the Taylor longitudinal microscale λf (or the Taylor transverse

microscale λg = λf/
√

2 - if we consider the transverse velocity correlations):
:::
with

:::
the

:::
use

:::
of

::::::
R′′11(0)

:::
and

::::::
R11(0)

:

λf =

(
−1

2

R′′11(0)

R11(0)

)−1/2
. (13)10

Hence, Eq.10
:::
(10)

:
implies that the number of crossings per unit length is related to the longitudinal Taylor’s microscale λf

through

λf =

√
2

π

1

NL
=⇒ 1

λ2f
=

1

2
π2N2

L. (14)

A
::::::::
Relations

:::::::
(11–14)

:::
are

::::
valid

:::
for

:::
any

::::::::::
statistically

::::::::::::
homogeneous

:::::
vector

::::::
fields,

::::::::
regardless

:::
of

:::::::
whether

::
or

:::
not

::::
they

:::
are

::::::::
isotropic

:::::::::::::::::::::::
(Monin and Yaglom, 1975) .

::::::::
However,

:::::::::::
homogeneity

:::::
alone

:
is
:::
not

::
a
::::::::
sufficient

:::::::::
assumption

::
to
::::::::
estimate

::
the

:::::
TKE

:::::::::
dissipation

:::
rate

::
ε15

::
of

:
a
:::
3D

::::::::
turbulent

::::
field

::::
from

:::::::
velocity

::::::
signals

::::::::
measured

:::::
along

:::
the

:::
1D

::::::
aircraft

:::::
flight

:::
path

::::::::::::::::::::::::
(Chamecki and Dias, 2004) .

:::
We

::::::
further

:::
use

::
the

:::::
local

:::::::
isotropy

:::::::::
assumption

::
to

:::::
write

:
a relation between dissipation and the Taylor microscales reads (Pope, 2000)

:::::::::::
(Pope, 2000)

ε=
15νu′2

λ2g
=

30νu
′2

λ2f
.=

15νu′2

λ2g
,

::::::::

(15)

:::::
where

:::::::::::
λg = λf/

√
2

::
is

::
the

::::::
Taylor

:::::::::
transverse

:::::::::
microscale.

:
Hence, finally, substituting

:::
Eq. (14) into

:::
Eq. (15) we obtain (Poggi and

Katul, 2010)20

ε= 15π2νu
′2N2

L. (16)

:::
For

:::
the

::::::::
transverse

:::::::
velocity

::::
time

:::::
series

::::
Eq.

:::
(16)

::::
has

:
a
:::::
factor

:::
7.5

::::::
instead

::
of

:::
15.

:

3 New proposals to estimate dissipation rate from a velocity signal with a truncated high-frequency part of the

energy spectrum

Based on Eq
:::
Eqs. (9) and (10) it is clear that the number of zero-crossings is related to the dissipation spectra D11(k) =

2νk2E11(k):

π2u′2N2
L =

∞∫
0

k2E11dk. (17)

Figure 1b presents the profile ofD(k) = 2νk2E(k) where E(k) is described by the model spectrum (3) with fη = exp(−βkη)

(Pope, 2000), here β = 2.1 and η = 2mm. It is clear
::::
seen that the large wavenumber (small scale) part of the spectrum has the5

most significant impact on the resulting value of NL.
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Figure 1. a) A signal q(t) crossing the level q = 0. b) Dissipation spectra: the range of k-numbers covered by the POST measurements is

denoted by the colour shading.

At the same time the data available from the POST measurements, where the sampling frequency was restricted to fs =

40Hz, can only account for a small part of the total dissipation spectrum (shaded regions in Fig. 1
:
b). If one was to use this

zero-crossing method (Eq. 16) in order to estimate ε it is clear that the measured number of signal zero-crossings would lead

to significant underestimation of the spectrum integral as compared to the full spectrum measurements down to the very small10

scales. We would like to propose reformulation of the original zero-crossing method in order to estimate the dissipation rate

from the number of signal zero-crossings based on a restricted range of k-values available from the airborne measurements.

Two proposals for such procedures are given further in the article.

3.1 Method based on successive filtering of a signal

Let us consider a signal u1(t) resolved in a certain range of frequencies f0 < f < f1. Converting the wavenumber spectrum to15

the frequency spectrum we obtain from Eq. (17) the following relation for the number of signal-crossings per unit time

u′21 N
2
1 = 4

f1∫
f0

f2S(f)df. (18)

Similarly as in the velocity variance method described in Section 2, let us now filter the signal using a low-pass filter charac-

terized by a different cut-off frequency f2 < f1. In such a case we obtain a different signal u2(t) with a reduced number of

zero-crossings N2 <N1:5

u
′2
2 N

2
2 = 4

f2∫
f0

f2S(f)df. (19)

6



If we subtract
:::
Eq. (19) from

:::
Eq. (18) we obtain

(u
′2
1 N

2
1 −u

′2
2 N

2
2 ) = 4

f1∫
f2

f2S(f)df. (20)

In the inertial range S(f) is described by Eq. (4), hence, if both f1 and f2 belong to the inertial range

(u
′2
1 N

2
1 −u

′2
2 N

2
2 ) = 4αC1

::

(
U

2π

)2/3

ε2/3
f1∫
f2

f1/3df = 3αC1
::

(
U

2π

)2/3

ε2/3
(
f
4/3
1 − f4/32

)
. (21)10

If we proceed further and filter the signal using a series of cut-off frequencies fi < f2, we can estimate ε form Eq. (21) using a

linear least squares fitting method.

3.2 Method based on recovering the missing part of the spectrum

In this method we attempt to account for the impact of the missing part of the dissipation spectrum by introducing a correcting

factor to the number of zero-crossings per unit length NL. The number of crossings per unit length is calculated from the15

measured signal where the fine-scale fluctuations having the highest wavenumber kcut will be denoted byNcut and the variance

of this signal will be denoted by u
′2
cut. From Eq. (17) it follows that Ncut is related to NL by the formula

u
′2N2

L = u
′2
cutN

2
cut

∫∞
0
k21E11dk1∫ kcut

0
k21E11dk1

= u
′2
cutN

2
cut

(
1 +

∫∞
kcut

k21E11dk1∫ kcut
0

k21E11dk1

)
. (22)

We then assume a certain form of the energy spectrum
:
,
:::
Eq. (3)with fη = e−βkη, here β = 2.1 (Pope, 2000) and .

::::
We

::::
take

fL = 1, as the largest scales do not contribute much to the final value of the dissipation rate
:::
and

:::
we

::::
will

:::::::
consider

:::
two

::::::::
different20

:::::
forms

::
of

:::
fη ,

::
as

::::::::
proposed

::
in

:::::::::::
Pope (2000) .

::::
First

:::::
being

::
a

::::::
simple

:::::::::
exponential

:::::
form

fη = e−βkη,
:::::::::

(23)

::::
with

::::::
β = 2.1

::::
and

:
a
:::::::
second,

::::
more

::::::::
complex

::::::
formula

:

fη = e
{
−[(βkη)4+(βcη)

4]
1/4

+βcη
}
,

:::::::::::::::::::::::::::
(24)

:::
here

:::::::
β = 5.2

::::
and

:::::::
cη = 0.4. With this, the energy spectrum reads

E(k) = Cε2/3k−5/3e−βkηfη(βkη)
::::::

, (25)

here C = 1.5. The integral of the dissipation spectrum 2νk2E(k) should be equal to ε, which implies that
:::::
results

::
in β = 2.1 .

Hence, rather than being an empirical constant, the value of
::
in

:::
Eq.

:::
(23)

:::
and

::::::::
provides

:
a
:::::::
relation

:::::::
between β

:::
and

::
cη:in Eq. (25)is

fixed by theoretical constrains. The
::::
24).

:::
The

:::::
latter

::::
case,

:::
due

::
to
:::
the

:::::::::
additional

::::::
degree

::
of

:::::::
freedom

::
in

::
fη:::

fits
:::
the

:::::::::::
experimental

::::
data5

:::::
better

::
in

:::
the

:::::::::
dissipative

::::
range

::::::::::::
(Pope, 2000) .

:

7



:::
The

:
corresponding one-dimensional spectrum E11 can be calculated from Eq. (2)

E11(k1) = Cε2/3
∞∫
k1

k−8/3e−βkηfη(βkη)
::::::

(
1− k21

k2

)
dk. (26)

As a result of introducing Eq.
::::
Next

:::
we

::::::
change

:::
the

::::::::
variables

::
in

:::
the

::::::
integral

::::
Eq. (26)

::
to

::::::::
ξ = βkη,

::::::::
introduce

:::
Eq. (26) into Eq.

(22) and some additional rearrangements we obtain
:::
once

:::::
again

::::::
change

:::
the

::::::::
variables

::
to

:::::::::
ξ1 = βk1η.

:::
As

::
a

:::::
result

::
we

::::::
obtain10

u
′2N2

L ≈ u
′2
cutN

2
cut1+

∫∞
kcutβη

k21
∫∞
k1
k−8/3e−k

(
1− k21

k2

)
dkdk1∫ kcutβη

0
k21
∫∞
k1
k−8/3

e−k1− k21
k2

1 +

∫∞
kcutβη

ξ21
∫∞
ξ1
ξ−8/3fη(ξ)

(
1− ξ21

ξ2

)
dξdξ1∫ kcutβη

0
ξ21
∫∞
ξ1
ξ−8/3fη(ξ)

(
1− ξ21

ξ2

)
dξdξ1


︸ ︷︷ ︸

CF
::

= u
′2
cutN

2
cutCF ,

(27)

here CF is the correcting factor CF = 1 +

∫∞
kcutβη

k21
∫∞
k1
k−8/3e−k

(
1− k21

k2

)
dkdk1∫ kcutβη

0
k21
∫∞
k1
k−8/3e−k

(
1− k21

k2

)
dkdk1

.

:
. The value of ε can be calculated numerically using an iterative procedure.

As a starting point for this procedure, a first guess for the Kolmogorov length η = (ν3/ε)1/4 should be given. With this, we

calculate the correcting factor CF from Eq. (??) and next
:::
27)

:::::
taking

:::::
either

:::
the

:::::
form

:::
Eq.

::::
(23)

::
or

::::
(24)

:::
for

:::
fη .

::::
Next, from Eq. (16)15

the value of dissipation can be estimated as

ε= 15π2νu
′2N2

cutCF . (28)

We start the next iteration by calculating again the Kolmogorov length η = (ν3/ε)1/4, the corrected value of CF from Eq. (??
::
27)

and the new value of ε from Eq. (28). After several iterations the procedure converges to the final values of the dissipation rate

and Kolmogorov’s length η with an error defined by a prescribed norm ∆η = |ηn+1− ηn| ≤ dη . The successive steps are

summarized in a form of algorithm 3.2.
::::::::
Algorithm

::
1.
:

Algorithm 1 Procedure of iterative ε determination based on missing spectrum part recovery

ε← 15π2νu
′2N2

cut

η← (ν3/ε)1/4

∆η← 100dη

while ∆η > dη do

Use Eq. (??
:

27) to calculate CF
ε← 15π2νu

′2N2
cutCF

∆η← |η− (ν3/ε)1/4|

η← (ν3/ε)1/4

end while

It should be noted that in this approach we do not have the empirical inertial-range
::::::
inertial

:::::
range constantC, and we calculate

the dissipation rate directly from the formula with viscosity,
:::
Eq. (28), as in the original zero-crossing method see Eq. (16) and5

Poggi and Katul (2010).

8



10
-1

10
0

10
1

f [Hz]

10
-4

10
-3

10
-2

10
-1

10
0

S
(f

) 
[m

2
/s

]

10
1

10
2

10
3

r [m]

10
-2

10
-1

D
2
 [
m

2
/s

2
]

Figure 2. a) Frequency spectrum
:
of
:::
the

:::::::
measured

:::::
signal

::::::
(POST), b) second order structure function. Polynomial fit is presented as a coloured

dashed line.

4 In depth analysis of the proposed methods’ behaviour

4.1 Method based on the number of zero-crossings of successively filtered signal

In order to present the more detailed properties of the procedure we used velocity signal from one of the horizontal flight

segments that took place within the turbulent atmospheric boundary layer. This segment was a part of flight 13 of the POST10

airborne research campaign (Gerber et al., 2013; Malinowski et al., 2013). The data were provided in the East, North, Up (ENU)

coordinate system. For further study we have chosen the second (NS) velocity component. The signals sampling frequency was

fs = 40Hz and the duration was t= 438.75s. The mean flight
:::::::::
magnitude

::
of

:::
the

:::::
mean

:::::
vector

:::::::::
difference

:::::::
between

:::
the

:::::::
aircraft

::::::
velocity

::::
and

:::
the

::::
wind

:
velocity U during that time was about 55ms−1 and the standard deviation u′ = 0.28ms−1.

We have estimated the dissipation rate based on the number of zero-crossings, according to the methods outlined in section15

3.1. The dissipation rate calculated from the frequency spectrum and the structure function for the whole flight fragment Eqs.

(4) and (5) was equal, respectively, εPSD = 2.48× 10−4 m2s−3 and εSF = 2.52× 10−4 m2s−3. These values were obtained

from the linear least-squared fit procedure in the range f = 0.3− 5Hz for the frequency spectrum and r = 11− 183m for the

structure function, see Fig. 2.

Before applying the threshold crossing procedures the signal had to be filtered in order to eliminate errors due to large scale5

tendencies as well as small scale measurements noise. For this purpose we used the sixth order low-pass Butterworth filter

9
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Figure 3. Velocity
:::::::
Measured

::::::
velocity fluctuations: top graph - unfiltered signal, middle graph - signal filtered with fcut = 5Hz, bottom graph

- signal filtered with fcut = 1Hz.

::::::::::::::::
(Butterworth, 1930) implemented in Matlab (Butterworth, 1930)

::
®. Figure 3 presents the velocity signal over t= 50s before

filtering (top graph) and the same signal after filtering with fcut = 5Hz and fcut = 1Hz.

The probability density functions (PDF) of the normalised original signal and the filtered signals (Figure 4a) can all be

approximated by the normalised Gaussian distribution, hence, the application of the zero-crossing method is justified, also for10

the filtered signals. It is worth noting that the spectra (f2S(f), Fig. 4a) display a peak at f = 10Hz. This phenomenon has

been indicated in the previous analyses of POST (Jen-La Plante et al., 2016) and appears due to measurement errors. We will

address this issue further in this paper.

In order to use the method based on successive signal filtering we filtered the signal with different values of fcut in the

range fcut = 0.1− 19Hz. For each fcut = fi we calculated the number of zero-crossings Ni based on the filtered signal. The15

zero-crossing event was detected when the product of two consecutive values of velocity fluctuation v(t)v(t+ ∆t)< 0, here

∆t= 1/fs = 0.025s. First observation is that Ni decreases with decreasing fi, see Fig.5a. In order to estimate the value of

dissipation rate we used Eq. (21) that was for the convenience of use rewritten as

(u
′2
i N

2
i −u

′2
1 N

2
1 ) = 3αC1

::

(
U

2π

)2/3

ε2/3
(
f
4/3
i − f4/31

)
. (29)

Results for f1 = 0.3Hz and fi in the range (0.3Hz,5Hz) are presented in Fig. 5b. Using Eq. (29) we have used linear fitting5

of the differences u
′2
i N

2
i −u

′2
1 N

2
1 against f4/3i − f4/31 . The resulting value for the analysed flight section was εNCF = 2.54×

10
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Figure 4. a) PDF’s of the normalised unfiltered and filtered
:::::::
measured signals compared with the normalised Gaussian curve. b) Spectra

f2S(f) of the unfiltered signal (black line with symbols), signal filtered with fcut = 5Hz (green, solid line), signal filtered with fcut = 2Hz

(red dotted line), signal filtered with fcut = 1Hz (blue, dashed line).

10−4 m2s−3. This value is comparable with the estimations performed using classic methods based on the power spectra and

structure functions which resulted respectively in εPSD = 2.48× 10−4 m2s−3 and εSF = 2.52× 10−4 m2s−3.

4.2 Method based on missing spectrum recovery
::::::::::
Simulation

:::::::
analysis

::::
and

:::::
error

::::::::
estimates

The same signalwas also analysed using the second method proposed in Section 3.2, Eqs.
::::
Even

::
if

:::
the

::::
local

:::::::
isotropy

::::::::::
assumption10

::
of

::::::::::::::::::
Kolmogorov (1941) is

:::::::
satisfied

::::
with

:
a
:::::
good

::::::::
accuracy,

:::
the

::::
TKE

:::::::::
dissipation

::::
rate

::::::::
estimates

:::
are

::::::
subject

::
to

:::::
errors

::::
that

:::
can

:::::
result

::::
from

:
a
:::::
finite

::::::::
sampling

:::::::::
frequency

::
of

:
a
::::::
signal,

::
a
::::
finite

:::::
time

:::::::
window,

::::::
sensor

::::
bias

:::
and

:::::
noise.

::::
The

:::
last

:::
of

:::::
those

::::
three

::::::
causes

::::
was

::::::::::
investigated

::
in

:::::::::::::::::::::
Sreenivasan et al. (1983) ,

:::::
where

::
it

:::
was

::::::
shown

::::
that

::::
both

:::
the

:::::::
variance

::
of

:::
the

:::::
noise

::::
〈n2〉

::
as

::::
well

::
as

:::::::
variance

::
of

:::
its

::::::::
derivative

::::
〈ṅ2〉

::::::::
influence

:::
the

::::::::
measured

::::::
number

:::
of

::::::::
crossings.

::
A

:::::::
possible

:::::::
remedy

:::
was

::::::::
proposed

::
by

::::::::::::::::::::::::
Poggi and Katul (2010) who

::::::::
suggested

::
to

:::
use

:::
the

:::::::::
threshold-

::::::
instead

::
of

:::
the

::::::::::::
zero-crossings

::
in

::::
case

::
of

::::::
signals

::::
with

:::
low

:::::::::::::
signal-to-noise

:::::
ratios.

:::
As

:::
for

::
the

::::::
signal15

:::::::::
considered

::
in

:::
the

:::::::
previous

::::::
section

:::
we

::::::
assume

::::
that

:::
the

:::::
noise

::::::::
influences

::::::
largely

::
at
:::
the

::::::
higher

::::::::::
frequencies

:::::
(above

::::::
5Hz),

:::
see

::::
Fig.

(??, 28) . In order to simplify numerical implementation of the
:
2,
::::::
which

:::
are

:::::::
removed

::
by

:::
the

::::::::
low-pass

::::
filter

::::
used

::
in

:::
the

::::::::
proposed

::::::
number

::
of

::::::::
crossings

:::::::
method.

::::
This

::
is
:::::::::
confirmed

::
by

:::
the

::::
fact

:::
that

:::
the

:::
use

:::
of

:::
the

::::::::
threshold-

::::::
instead

:::
of

::::::::::::
zero-crossings

:::
did

:::
not

::::
lead

::
to

:::
any

:::::::::
systematic

::::::
change

::
of

:::
our

:::::::::
estimates.

::
In

::::
order

:::
to

:::::::
quantify

:::
the

::::
error

::::::::
resulting

::::
from

:::
the

:::::
finite

::::::::
sampling

::::::::
frequency

::::
and

::::
finite

::::
time

:::::::
window

::::
and

:::
test

:::
the

:::::::::::
performance5

::
of

:::
the

::::::::
proposed

::::::
method

:::
we

:::::::::
performed

::::
the

:::::::::
simulation

:::::::
analysis

::::::::::::::::::::::::::::::::::::
(Frehlich et al., 2001; Sharman et al., 2014) .

::::
We

::::::::
generated

::
a

11
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Figure 5. Scaling of N2
i u

2
i with filter cut-off fcut :::::::

calculated
:::
for

:::
the

:::::::
measured

:::::
signal

::::::
(POST). The linear fit from formula (29) is given by

the magenda
::::::
magenta dashed line.

::::::
number

::
of

:::::::
artificial

:::::::
velocity

::::::
signals

::::
with

::::::::
frequency

::::::
spectra

::::
and

:::
two

::::
point

:::::::::
correlation

::::::::
functions

:::::::::
prescribed

::
by

:::
the

:::::::::::::::::::::::
von Kármaán (1948) model.

:::
The

::::::::
equations

::::::::
resulting

::::
from

::::::::
aplpying

:::
this

::::::
model

::
to

:::
the

::::::::
one-sided

::::::
spectra

:::::::::
considered

::
in

::::
this

:::::
paper

::
are

:::::::
written

:::::
below.

:

R11(r1e1)≈ 0.592548 u′2
(
r

L0

)1/3

K1/3

(
r

L0

)
, S(f)≈ 0.475448

2π

U

u′2L0[
1 +L2

0

(
2πf
U

)2]5/6 ,
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(30)

:::
here

:::::
K1/3::

is
:::
the

::::::::
modified

::::::
Bessel

:::::::
function

::
of
:::::

order
::::
1/3.

:::::::::::
Coefficients

::
of

:::
the

:::::::
Fourier

:::::
series

::::::::
expansion

:::
of

:::::::
velocity

:::::
signal

:::::
were10

::::::::
calculated

::
as

:

wj =
√
Wj(a+ ib)

:::::::::::::::
(31)

:::
here

:::::::::
i=
√
−1,

:
a
::::
and

:
b
:::
are

:::::::
random

:::::::
numbers

:::::
from

:::
the

:::::::
standard

::::::::
Gaussian

::::::::::
distribution

::::
with

::::
zero

::::
mean

::::
and

::::::
unitary

:::::::
variance

::::
and

:::::::::::::
Wj = S(fj)∆f ,

:::::::::::
j = 1, . . . ,N .

::::::::::::
Alternatively,

:::
the

:::::::::
coefficients

::::
Wj :::

can
::
be

:::::::::
calculated

::
as

:::
the

:::::::
discrete

::::::
Fourier

::::::::
transform

::
of

:::::
R11,

::
as

::::::::
described

::
in

::::::::::::::::::
Frehlich et al. (2001) .

::::
The

:::::::
artificial

:::::::
velocity

:::::
signal

::
is

:::::
finally

::::::::::
constructed

::
as

:::
the

:::::::
discrete

::::::
inverse

::::::
Fourier

:::::::::
transform

::
of

:::
wj ,:::

see
::::::::::::::::::
Frehlich et al. (2001) .

:

::
In

::::
order

::
to
::::
test

:::
the

::::::::
proposed

:::::::
methods

:::
for

::::
TKE

:::::::::
dissipation

::::
rate

:::::::
retrieval

:::
we

::::
used

:::::::
artificial

::::::
signals

::::
with

:::::::::::
U = 55ms−1

::::
and

:::
the

:::::::
standard

::::::::
deviation

:::::::::::::
u′ = 0.28ms−1.

:::::
Those

::::::::::::
characteristics

:::::::::
correspond

::
to

:::
the

::::
ones

::
of

:::
the

:::::
signal

:::::::::
considered

::
in

:::
the

:::::::
previous

:::::::
Section

:::
4.1.

:::
We

:::
set

:::::::::
L0 = 83.9

::
in

:::
Eq. (30)

::
to

:::::
obtain

::::
also

:
a
::::::::::
comparable

:::::::::
dissipation

::::
rate

:::::::
estimate

:::::::::::::::::
ε= 2.5 · 10−4m2s−3.

::::
Our

::::
first

:::
aim

::::
was5

::
to

:::
test

::::
how

:
a
:::::
finite

:::::::
sampling

::::
rate

::::::::
influences

:::
the

:::::::
number

::
of

::::::::
crossings.

::::
For

:::
this

:::::::
purpose

::
in

::::
each

:::
run

:::
we

::::::
created

::
an

:::::::
artificial

::::::
signal

12



::
of

:::::
length

::::::::
N = 217

:::::
points

:::
and

::::
with

:::
the

::::::::
sampling

:::::::::
frequency

:::::
200Hz

::::
(five

:::::
times

:::::
larger

:::
as

::
the

::::::::
sampling

::
of

:::
the

::::::
signal

:::::::::
considered

::
in

::::::
Section

::::
4.1),

::::::
which

:::::::
resulted

::
in

:::::
signal

:::::::
duration

::::::::
t≈ 650s.

:::
We

::::::
treated

::::
this

:::::::
velocity

:::::
series

::
as

::
a

::::::::::
“reference”.

:::::
Next,

:::
we

::::
took

:::::
every

:::
fifth

:::::::
sample

::
of

::::
this

:::::
signal

::
to
::::::

create
:
a
::::::

40Hz
:::::::
velocity

::::
time

::::::
series.

:::
We

::::
then

:::::::::
calculated

:::
the

:::::::
number

::
of

:::::::::
crossings,

::
as

:::::::::
described

::
in

::::::
Section

:::
4.1

::::
and

:::
the

::::::
power

:::::::
spectral

::::::
density.

::::
We

:::::::
repeated

:::
the

:::::::::
procedure

::::
500

:::::
times

:::
and

:::::::::
calculated

:::::::
average

::
of

:::
the

::::::::
obtained10

::::::
profiles,

::::
see

::::
Fig.

::
6.

::::
Due

::
to

:::
the

:::::
finite

::::::::
sampling

:::::::::
frequency

:::
we

:::::::
observe

:::
the

:::::
effect

::
of

:::::::
aliasing

:
-
:::::::

spectral
::::::::

densities
:::
for

::
f

::::::
higher

:::
than

:::
the

:::::::
Nyquist

:::::::::
frequency

:::
are

:::::
added

::
to

:::
the

:::::::
spectral

:::::::
densities

::
at

:::::::::
f < 20Hz.

::::::::::
Distortions

:::
are

::::::
visible

::
for

::::::
higher

::::::::::
frequencies

::::
both

::
in

:::
the

:::::
power

:::::::::
spectrum,

:::
Fig.

::
6a,

:::
as

::::
well

::
as

:::::
N2
i u

2
i::::::::

profiles,
:::
Fig.

::
6b.

::::
We

::::::::
estimated

:::
the

::::
TKE

::::::::::
dissipation

:::
rate

:::::
from

:::
the

::::::::
averaged

::::::
profiles,

:::::
using

:::
the

:
method we notice that for the assumed form of the spectrum E(k) given

::::::::
described

::
in

:::::::
Section

:::
4.1,

:::
Eq. (29)

:
,

::::::
keeping

:::
the

:::::
lower

::::::
bound

::
of

:::
the

::::::
fitting

:::::
range

::::::::::
f1 = 0.3Hz

:::::::
constant

:::
and

::::::::
changing

:::
the

:::::
upper

::::::
bound

:::
f2 ::::

from
::
1

::
to

:::::
19Hz.

:::::::
Results

::
are

:::::::::
presented

::
in

::::
Fig.

:
7
::::

and
::::::::
compared

:::::
with

:::
the

::::::::::::
corresponding

:::::
εPSD::::::

values.
:::
We

:::::::
observe

:::
an

:::::::
increase

::
of

:::::
εPSD:::::::::

estimates
::::
with

::::::::
increasing

:::
f2 :::

and
::
a
::::::::
moderate

:::::::
increase

::
of

::::::
εNCF ::::

over
:::
the

::::
input

::::::::::::::::::
ε= 2.5 · 10−4m2s−3,

::::::
which

:::::::
suggests

::
a

:::::::
possible

::::::::
advantage

:::
of

::
the

:::::::
number

::
of

::::::::
crossings

::::::::
method.

:::
We

::::
note

::::
here

:::
that

::::::
εNCF ::::::::

calculated
:::::

from
:::
the

::::::::
averaged

::::::
profiles

:::
of

::::::
200Hz

:::::::::
“reference”

::::::
signal

:::::
(black

:::
line

::
in
::::
Fig.

:
7)

:::::
seem

::
to

::
be

:::::::
slightly

:::::::::::
overpredicted

::
in

::::::::::
comparison

::
to

:::
the

::::
input

:
ε
:
,
:::::::::
especially

:::
for

::::::
smaller

:::
f2.

:::
The

::::::
reason

::
is

:::
not5

::::
fully

::::
clear

::
to

:::
the

:::::::
authors.

::
It

::::
may

::
be

::::
that

:::
this

:::::
small

::::::::
difference

::
is
:::
an

::::::
artefact

::
of

:::
the

:::::::
applied

::::
filter,

::::::::
however,

::
it

:
is
::::
also

:::::::
possible

::::
that

::
the

:::::::
created

:::::::
artificial

:::::::
velocity

:::::
fields

::
do

::::
not

::::::::
reproduce

:::
the

:::::
N2
i u

2
i::::::::

statistics
::::
with

::::::::
accuracy

::
as

::::
good

:::
as

:
it
::
is
:::
the

::::
case

:::
for

:::
the

::::::
power

::::::::
spectrum.

::::
Next,

:::
we

:::::
tested

:::
the

::::::::
influence

::
of

:::
the

:::::
finite

:::::::
temporal

:::::::
window

:::
on

:::
the

::::::::
calculated

::::::::
statistics.

:::
We

:::::::::
generated

::::
1000

:::::::
artificial

:::::::
signals,

::::
each

::::
time

::::::::
changing

:::::::
slightly

:::
the

::
u′

:::::
value

::
in

::::
Eq. (30)

:::::
which

:::
led

::
to
::

a
::::::
change

:::
of

::::
input

::
ε,
::::

see
:::::::::::::::::::
Sharman et al. (2014) ,

:::
the

:::::
value10

::
of

:::
L0 ::::::::

remained
:::::::::
unchanged.

::::
For

::::
each

:::::
signal

:::
we

:::::::::
estimated

:::::
εPSD::::

from
:::

the
::::::::

standard
:::::
power

:::::::
spectral

:::::::
density

:::::
using

:::
the

:::::::
Welch’s

:::::::::
overlapped

:::::::
segment

::::::::
averaging

::::::::
estimator

:::::::::::
implemented

::
in

::::::
Matlab

::::::
®with

:
a
:::
213

:::::::
window

:::
and

:::::
εNCF:::::

from
:::
the

::::::
number

::
of

:::::::::
crossings,

:::
Eq. (29).

:::
To

:::::::::
investigate

:::
this

::::
type

::
of

:::::
error

::::::::
separately

:::::
from

:::
the

::::::
aliasing

:::::
error,

::::
tests

:::::
were

::::::::
performed

:::
on

::::::
200Hz

::::::
signals,

::::
and

::
in

:::
the

:::::
fitting

:::::
range

:::::::::
1− 19Hz.

:::
We

:::
first

:::::::::
decreased

:::
the

::::
time

::::::::
window,

:::::
taking

::::
each

:::::
time

::::
only

:::
1/8

:::
of

:::
the

::::::
created

:::::::
artificial

::::::
signal

:::
for

:::
the

:::::::
analysis,

::::::
which,

::
in

:::::
terms

::
of

::
L0:::::

from
:::
Eq.

::::
(30)

:::::::
resulted

::
in

::
the

::::::
signal

:::::
length

:::::
equal

::::::::::::
approximately

:::::::::
L≈ 50L0.

::::::
Results

::
of

:::::
εPSD::::

and

:::::
εNCF ::::::::

estimates
::
as

::::::::
functions

::
of

::::::::::::
corresponding

::::
input

::
ε

::::
from

:::
the

:::::::::
theoretical

:::::
profile

::::
Eq.

:::
(30)

:::
are

::::::::
presented

::
in
::::
Fig.

:
9

:::::
(upper

::::::
plots).

:
It
::::
can

::
be

::::
seen

::::
that

:::
the

::::
bias

::::
error

::
is

:::::
larger

:::
for

::::::
εPSD,

:::::::
however,

:::
the

::::::
scatter

::
of

::::::
εNCF ::

is
:::::
larger.

::::
The

:::::
linear

:::
fits

:::
and

:::
the

::::::::::
correlation

:::::::::
coefficients

:::
are

:

εPSD
::::

=
:

0.7604 ε− 7.08 · 10−6, r = 0.9967,
::::::::::::::::::::::::::::::

εNCF
::::

=
:

0.9572 ε− 4.01 · 10−5, r = 0.9476.
::::::::::::::::::::::::::::::

(32)

:::
We

:::::::
repeated

:::
the

:::::::::
simulation

:::::::
analysis

:::
for

::::::
signals

::::
with

:::
217

::::::
points,

:::
i.e.

::::
with

:::::::::
L≈ 400L0::::::::

obtaining
:

εPSD
::::

=
:

0.9699 ε+ 9.60 · 10−7, r = 0.9997,
::::::::::::::::::::::::::::::

εNCF
::::

=
:

0.9897 ε+ 3.63 · 10−6, r = 0.9926.
::::::::::::::::::::::::::::::

(33)5
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Figure 6.
::
a)

:::::
Mean

::::
S(f)

::::::
profiles

:::::::
calculated

::::
from

:::
the

::::::::
simulation

:::::::
analysis:

:::
blue

::::::
dashed

:::
lines

:
-
:::::::

synthetic
:::::
signal

:::::::
sampled

:::
with

::::::
200Hz,

::::
blue

:::
line

:::
with

:::::::
symbols

:
-
:::::::
synthetic

:::::
signal

::::::
sampled

::::
with

:::::
40Hz,

:::::
black

::::
lines

:
-
::::::
profiles

::::
from

:
a
:::::
single

:::::
signal

::::
with

:::::::::::::::
u′2 = 0.0885ms−1,

::
b)

:::::::::::
corresponding

::::::
averaged

::::::
N2
i u

2
i ::::::

profiles:
::::
solid

::::
line

:
-
::::::
200Hz

:::::
signal,

:::
line

::::
with

:::::::
symbols

:
-
:::::
40Hz

:::::
signal,

::::
thin

::::
black

::::
line

:
-
:::::
profile

::::
from

::
a
:::::
single

:::::
signal

::::
with

:::::::::::::
u′2 = 0.28ms−1.

:::
We

:::::::
repeated

:::
the

::::::::
procedure

:::
for

:::
the

:::::
40Hz

::::::
signals

::::
and

:::
the

:::::
fitting

:::::
range

:::::::::
0.3− 5Hz.

:::::::
Results

:::
are

::::::::
presented

::
in

::::
Fig.

::
9.

::::
The

:::::
linear

::
fits

:::
are

:

εPSD
::::

=
:

0.9104 ε− 2.32 · 10−5, r = 0.9898,
::::::::::::::::::::::::::::::

εNCF
::::

=
:

0.9878 ε+ 6.80 · 10−5, r = 0.9343.
::::::::::::::::::::::::::::::

(34)

::
for

:::
the

::::::
shorter

::::::
signals

::::
with

::::
214

:::::
points

::::::::::
(L≈ 50L0)

:::
and

:
10

εPSD
::::

=
:

1.0377 ε+ 4.56 · 10−6, r = 0.9898,
::::::::::::::::::::::::::::::

εNCF
::::

=
:

1.0379 ε+ 2.25 · 10−5, r = 0.9989.
::::::::::::::::::::::::::::::

(35)

::
for

::::::
signals

::::
with

::::
217

:::::
points

:::::::::::
(L≈ 400L0).

:

::::::
Hence,

::
for

::::
the

:::::
signal

:::::
length

::::::::::
comparable

::
to
:::
the

:::::::
lengths

::::
from

:::
the

::::::
POST

::::::::
campaign

:::
we

:::
can

::::::
expect

:
a
:::::
small

:::::::::::::
underprediction

:::
of

:::::
εPSD :::::::

estimates
::::
due

::
to

:::
bias

:::::
error

::::
(Fig.

::
8,

:::
left

:::::::
column,

:::::
lower

::::
plot)

:::
and

:::::
some

::::::::::::
overprediction

:::
due

::
to

:::::::
aliasing,

:::
see

::::
Fig.

::
7.

::::
Both

:::::
result15

::
in

:
a
:::::
small

::::::::::::
overprediction

::
of

:::::
εPSD::::

(Fig.
:
9,

:::
left

:::::::
column,

:::::
lower

:::::
plot).

:::
As

::
far

::
as

::::::
εNCF :

is
::::::::::
concerned,

:::
the

::::::::
simulation

:::::::
analysis

::::::
shows

::::
again

::::
that

:
it
::
is
::::
less

:::::::
sensitive

::
to

:::
the

::::
bias

::::
error

::::
(Fig.

:
9,
:::::
right

:::::::
column).

:::::::
Results

:::
for

::
the

:::::
40Hz

::::::
signal

:::
are

::::::
slightly

:::::::::::
overpredicted

:::::
(Fig.

::
9,

::::
right

:::::::
column,

:::::
lower

::::
plot)

:::
due

:::
to

::::::
aliasing

::::
and

:::
the

:::
fact

::::
that

:::
the

::::::
number

::
of

::::::::
crossing

::::::
method

:::::
gives

::::::::
somewhat

:::::
larger

::
ε
::::::::
estimates

::
in

:::
this

:::::
fitting

::::::
range,

:::
see

:::
Fig.

:
7.
:
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Figure 7.
:::::
Values

::
of

:::
the

::::::::
dissipation

:::
rate

::::
from

::::::::
simulation

:::::::
analysis

::
as

:
a
::::::
function

::
of
:::::
higher

:::::
value

::
of

::
the

:::::
fitting

:::::
range

::
f2:::::::

estimated
:::::
based

::
on

:::
the

::::::
averaged

::::::
profiles

::::
from

::::
Fig.

:
6
::
of:

:::::
S(f)

:::
blue

::::::
dashed

:::
line

:
-
:::::::
synthetic

:::::
200Hz

::::::
signal,

:::
blue

:::
line

::::
with

::
+

:::::::
symbols

:
-
::::
40Hz

:::::::
synthetic

:::::
signal;

::::::
N2
i u

2
i ,

::
Eq. (29),

::::
solid

:::
line

:
-
::::::
200Hz

:::::::
synthetic

:::::
signal,

:::
line

::::
with

:
∗
:::::::
symbols

:
-
::::
40Hz

:::::::
synthetic

:::::
signal.

::::
The

::::
input

::::::::::::::::
ε= 2.5 · 10−4m2s−3.

:

::
In

:::
the

::::
final

::::
test,

:::
we

:::
set

:::::::::::::
u′ = 0.28ms−1

::::
and

::::
input

:::::::
epsilon

:::::::::::::::::
ε= 2.5 · 10−4m2s−3

::::::::
constant

:::
and

::::::::
repeated

:::
the

:::::::::
simulation

::::
50020

::::
times

:::
for

::::::::::::
consecutively,

::::
1/8,

:::::
1/4,

::::
1/2,

:
1
::::
and

:::::
twice

:::
the

::::::
length

::
of

:::
the

:::::::
original

:::::
signal

:::
of

:::
217

::::::
points,

::::::
which,

::
in

:::::
terms

:::
of

:::
L0 in

Eq. (25) , the formula (26)for the
:::
30)

::::::::::
corresponds

::
to

::::::::::::
approximately

:::::::::::::::::::::::::::::
50L0,100L0,200L0,400L0.800L0.

::::
The

:::::
fitting

:::::
range

::::
was

::::::::
1− 19Hz.

:::
We

::::::::::
normalised

:::
the

::::::::
obtained

::::::
results

:::
by

:::
the

:::::
input

:
ε
::::
and

:::::::::
calculated

::::
their

:::::
mean

:::::::
〈ε+PSD〉,:::::::

〈ε+NCF 〉::::
and

:::
the

::::::::
standard

:::::::::
deviations.

::::::
Results

::::
are

::::::::
presented

::
in

::::
Fig.

::
10.

::::
We

:::::::
observe

:
a
:::::::

smaller
::::
bias

::::
and

:::::
larger

::::::::
standard

::::::::
deviation

::
of

::::::
ε+NCF .

:::::::::
However,

:::::::
standard

::::::::
deviation

:::::::
changes

::
as

:::::::::
∼ L/L−0.50 :::

for
::::
both

::::::
ε+NCF :::

and
::::::
ε+PSD.25

4.3
::::::
Method

::::::
based

::
on

:::::::
missing

:::::::::
spectrum

:::::::
recovery

:::
The

:::::::::::
measurement

::::::
signal

::::
used

::
in

::::::
Section

:::
4.1

::::
was

:::
also

::::::::
analysed

:::::
using

:::
the

::::::
second

::::::
method

::::::::
proposed

::
in

::::::
Section

::::
3.2,

::::
Eqs.

:::::::
(27,28).

:::
We

:::
will

::::::::
consider

::::
both

::::::::
formulas

:::
for

:::
the

:::::::
function

:::
fη ,

:::::
Eqs.

::::
(23)

:::
and

:::::
(24).

:::
The

:::::::::
advantage

:::
of

:::
the

:::::::
simpler,

::::::::::
exponential

:::::::
formula

:::
(23)

::
is
::::
that

:::
the one-dimensional spectrum

:::::::
function E11(k1)

:
,
:::
Eq.

::::
(26) can be written in terms of the incomplete Γ function as

follows

E11(k1) = Cε2/3 (βη)
5/3
[
Γ(−5/3,k1βη)− (βη)

2
k21Γ(−11/3,k1βη)

]
, (36)

15



0 0.002 0.004 0.006 0.008 0.01

input ǫ [m 2/s3]

0

0.002

0.004

0.006

0.008

0.01

ǫ
P

S
D
 [

m
2
/s

3
]

::::::

0 0.002 0.004 0.006 0.008 0.01

input ǫ [m 2/s3]

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

ǫ
N

C
F
 [

m
2
/s

3
]

0 0.002 0.004 0.006 0.008 0.01

input ǫ [m 2/s3]

0

0.002

0.004

0.006

0.008

0.01

ǫ
P

S
D
 [

m
2
/s

3
]

::::::

0 0.002 0.004 0.006 0.008 0.01

input ǫ [m 2/s3]

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

ǫ
N

C
F
 [

m
2
/s

3
]

Figure 8.
:::::::

Estimated
:::::
values

::
of

:::::
εPSD :::

and
:::::
εNCF ::

for
:::

the
::::::
200Hz

:::::::
synthetic

:::::
signals

:::
and

:::::
fitting

:::::
range

:::::::
1− 20Hz

:::
as

:::::::
functions

::
of

:::::::::::
corresponding

::::
input

:
ε
:::::::
resulting

::::
from

::
the

::::::::
theoretical

::::::
profile,

:::
Eq.

::::
(30),

::
for

:::::
upper

::::
plots:

::::::
signals

:::
with

:::::::::
L≈ 50L0,

::::
lower

:::::
plots:

:::::
signals

::::
with

:::::::::
L≈ 400L0.
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Figure 9.
::::::::
Estimated

::::
values

::
of
:::::
εPSD:::

and
:::::
εNCF :::

for
::::::
synthetic

:::::
40Hz

:::::
signals

:::
and

:::::
fitting

:::::
range

::::::::
0.3− 5Hz

::
as

:::::::
functions

::
of

::::::::::
corresponding

:::::
input

:
ε

::::::
resulting

::::
from

:::
the

::::::::
theoretical

::::::
profile,

::
Eq.

:::
(30)

::
for

:::::
upper

::::
plots:

::::::
signals

::::
with

::::::::
L≈ 50L0,

::::
lower

:::::
plots:

:::::
signals

::::
with

:::::::::
L≈ 400L0.

:
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Figure 10.
:::
TKE

:::::::::
dissipation

::::
rate

:::::::
estimates

:::::
from

::::::::
simulation

:::::::
analysis

:::
for

:::::::
synthetic

::::::
signals

:::::::
sampled

::::
with

:::::
200Hz

::::
with

:::::::::::::
u′ = 0.28ms−1

::::::::
normalised

::
by

:::
the

:::::
input

:::::
epsilon

:::::::::::::::::
ε= 2.5 · 10−4m2s−3.

:::::
Black

::::
lines

::::
with

::
+

::::::
symbols

:
-
::::::
εNCF ,

::::
blue

::::
lines

::::
with

:
∗
:::::::
symbols

:
-
:::::
εPSD ::

a)
:::::
mean,

:
b)
:::::::

standard
::::::::
deviations

here

Γ(a,x) =

∞∫
x

e−tta−1dt. (37)

The correcting factor (??
::
27) in terms of the Γ functions reads5

CF = 1 +

∫∞
kcutβη

k21
[
Γ(−5/3,k1)− k21Γ(−11/3,k1)

]
dk1∫ kcutβη

0
k21 [Γ(−5/3,k1)− k21Γ(−11/3,k1)]dk1

∫∞
kcutβη

ξ21
[
Γ(−5/3, ξ1)− ξ21Γ(−11/3, ξ1)

]
dξ1∫ kcutβη

0
ξ21 [Γ(−5/3, ξ1)− ξ21Γ(−11/3, ξ1)]dξ1

::::::::::::::::::::::::::::::::::::::

. (38)

This is a function of a single argument (kcutβη) . For reference it is plotted in Fig
:
If

:::
Eq.

:::
(24)

::
is

::::
used

:::
as

:
a
::::::
model

:::
for

:::
fη ,

::::
both

:::::::
integrals

::
in

:::
Eq. 11a

:::
(27)

::::
must

:::
be

::::::::
calculated

:::::::::::
numerically.

:::
On

::
the

:::::
other

:::::
hand,

::
as

::::::::
discussed

::
in

:::::::::::
Pope (2000) ,

::::
(24)

:::::::
provides

::
a
:::::
better

::
fit

::
of

:::::::::::
experimental

::::
data

::
in

:::
the

:::::::::
dissipative

::::
range.

With such preparation we applied the iterative procedure, as described in Section 3.2. In POST experiment the effective cut10

off frequency was estimated at fcut = 5Hz which corresponds to kcut = (2πf)/U = 0.57m−1. Using the sixth order Butter-

worth filter this resulted in u
′2N2

cut = 0.0000719 · 1/s2 for this signal. Accordingly we used the algorithm (3.2)
:::::::::
Algorithm

:
1
:
with ν = 1.5 · 10−5m2s−1 and dη = 10−6m. We approximated the integrals in Eq. (38) using the trapezoid rule. The re-

sults of successive approximations of CF and ε converge fast to a fixed value, independently of the initial guess of ε= ε0

(Figs
:::
Fig. 11aand 11b). The increment dk1 in Eq. (38) was approximated by ∆k1 = 5 ·10−6 m−1. For such choice we obtained15
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εNCR = 2.61 · 10−4 m2s−3. We used this as a reference value. In order to estimate the numerical accuracy of the proposed

algorithm we calculated the error ∆ε= |ε− εNCR| for different values of ∆k1, see Fig. 12a
:::
11b. We obtain ∆ε∼∆k1.31 .

a) Correcting factor (black line), successive values of CF obtained during the iteration procedure: with the initial guess of

ε, ε0 = 25m2s−3 (stars), ε0 = 2.5 · 10−8 m2s−3 (circles). b) Values of ε calculated during the iterative procedure for different

initial guesses of ε0.5

a) a) Error of ε as a function of ∆k. The reference value is ε calculated with ∆k = 5 · 10−6 m−1. b) One-dimensional

energy spectrum: black solid line: measured part, dashed magenda line: recovered part.
::::
Next

:::
we

:::::::::
considered

::::
Eq.

::::
(24)

::
as

::
a

:::::
model

:::
for

::
fη::::

and
::::::::
calculated

:::
the

::::::
double

:::::::
integral

::
in

:::::::
equation

:
(27)

:::::
using

:::
the

::::::::
trapezoid

::::
rule.

:::
We

:::::::
obtained

:::
the

::::::::::::
corresponding

:::::
value

::::::::::::::::::::::
εNCR = 2.58 · 10−4 m2s−3,

::::::
which

::
is

::::
very

::::
close

::
to

:::
the

:::::::
estimate

:::::
from

:::
the

::::::
simple

:::::::::
exponential

:::::
form

:::
Eq.

::::
(23)

:::
and

:::
Eq.

::::
(38).

It is worth noting that the proposed method is accounting for a dominant (and not directly measured) part of the spectrum10

based on the theoretical knowledge about its shape. This knowledge is simply reduced to the form of the correcting factor CF:
,

:::
Eq.

::::
(27),

::::::
which

:::::::
contains

::::::
integral

:::
of

:::::::::
k21E11(k1). Fig. 12 b illustrates the relation between the measured and the estimated part

of the spectrum for the analysed case .
::::
with

::::
both

:::::
forms

::
of
:::

the
::::::::

function
:::
fη ,

::::
Eqs.

::::
(23)

:::
and

::::
(24).

::::
The

:::::::
spectral

::::::
cut-off

::
of

:::
the

::::
data

:::::::::
considered

::::
here

:::::
(5Hz)

::
is

::
in

:::
the

::::::
inertial

::::::
range,

:::::
where

:::::::::
k21E11(k1)

::::
with

::::
both

::::::
forms

::
of

::
fη::::::::

functions
:::
are

::::::
almost

:::::::::::::::
indistinguishable,

:::
see

:::
Fig.

:::
12.

::
At

:::
the

:::::
same

::::
time

::::::::
integrals

::
of

:::
the

:::::::::
remaining

::::::::::
(recovered)

::::
parts

:::
of

:::::::::
k21E11(k1)

:::
are

::::::
almost

:::::
equal,

:::
as

::::::::::::
independently15

::
of

:::
the

::::::
choice

::
of

:::
fη ,

::::
both

:::::::::
dissipative

:::::::
spectra

:::::::::
2νk2E(k)

::::
must

::::::::
integrate

::
to

::
ε.

:::
As

:
a
::::::
result,

:::
for

:::
the

:::::
given

:::::::
spectral

::::::
cut-off,

::::::
εNCR

:::::::
estimates

:::::
with

:::
the

::::::
simple

:::::::::
exponential

::::
Eq.

::::
(23)

:::
and

::::
Eq.

:::
(24)

::::::
forms

::
of

:::
fη :::

are
::::
very

:::::
close.

::::
This

:::::
might

:::::::
change

:::
for

:::::
larger

::::::
cut-off

::::::::::
frequencies.

:::
We

::::::
expect

::::
that

::
in

::::
case

:::
the

:::::::
cut-off

::::::::
frequency

::
is
::::::

placed
:::
in

:
a
::::::
region

:::::::::
influenced

:::
by

:::
the

:::::
form

::
of

:::
fη ::::::::

function,
:::
the

:::::::
spectrum

::::
with

::::
Eq.

:::
(24)

::::
will

:::::::
provide

:::::
better

::::::::
estimates

::
of

:::
the

::::
TKE

:::::::::
dissipation

::::
rate.

:

The result of application of this method
::::::::::::::::::::::
εNCR = 2.58 · 10−4 m2s−3

::::
with

:::
fη ::::::::

described
::
by

:::
Eq.

:::
(24) εNCR = 2.61·10−4 m2s−3

::::
with

::
fη:::::

from
:::
Eq.

:::
(23)

:
is comparable with the dissipation rates obtained using other methods, as discussed in Section 3.1,

εPSD = 2.48 · 10−4 m2s−3, εSF = 2.52 · 10−4 m2s−3 and εNCF = 2.54 · 10−4 m2s−3. The relative differences between those5

estimations are less than 5%.

:::
We

:::::
finally

:::::::
checked

::::::::
estimates

:::
of

:::
the

::::::
second

::::::
method

:::::
using

::::::::
synthetic

::::::
signals

::
as

::::::::
described

::
in
:::::::

Section
::::
4.2.

:::
For

:::
the

::::::
cut-off

::::
5Hz

:::
500

:::::::
artificial

::::::
signals

::
or

:::::
length

::::::::::
L≈ 400L0:::

and
::::
with

:::::
input

:::::::::::::::::
ε= 2.5 · 10−4m2s−3,

:::::::
resulting

::
in
:::
the

:::::
mean

::::::::::::::::::::::::
〈εNCR〉= 2.55 · 10−4m2s−3

:::
and

:
a
::::::::
standard

:::::::
deviation

:::::
equal

:::
9%

:::
of

:::
the

::::
input

:
ε
::::::
value.

5 Broader overview of the methods’ performance10

Following the findings presented in the previous section both proposed methods were tested on much larger collection of

data. For this purpose we used velocity signals also obtained during the POST research campaign. We have chosen horizontal

segments at various levels within the boundary layer from flights TO10 and TO13. These flights were investigated in detail

by Malinowski et al. (2013), due to the fact that they represent two thermodynamically and microphysically different types of

stratocumulus topped bondary layer.
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Figure 11.
::
a)

:::::
Values

::
of
::
ε
:::::::
calculated

::::::
during

::
the

:::::::
iterative

:::::::
procedure

:::
for

:::::::
different

::::
initial

::::::
guesses

::
of

:::
ε0.

::
b)

::::
Error

::
of

:
ε
::
as

:
a
:::::::

function
::
of

:::
∆k.

::::
The

:::::::
reference

::::
value

::
is

:
ε
::::::::
calculated

:::
with

::::::::::::::::
∆k = 5 · 10−6 m−1.
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Figure 12.
:::::::::::::
One-dimensional

::::::
spectra:

::::
black

::::
solid

:::
line

::
-
:::::::
measured

::::
part,

:::::
dashed

:::::::
magenta

:::
line

:
-
::::::::
recovered

:::
part

::::
with

::
fη:::::::

described
:::

by
:::
Eq.

::::
(23),

::::::::
dot-dashed

:::
blue

::::
line

:
-
:::::::
recovered

:::
part

::::
with

::
fη::::::::

described
::
by

:::
Eq.

::::
(24),

::
a)

:::::
energy

:::::::
spectrum

:::::::
E11(k1),

::
b)

:::::::::
k21E11(k1).
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The dissipation rates of turbulent kinetic energy estimated from the standard structure function method εSF and dissipation

rates estimated from the modified zero-crossing methods εNCF and εNCR introduced in Sections 3.1 and 3.2, respectively, are

compared with the results obtained from the power spectra
:::::::
spectral method εPSD in Fig. 13.

:::
The

::::
use

::
of

::::::
simple

::::::::::
exponential

::::
form

::
of

:::
fη ,

:::
Eq.

:::
(23),

:::
or

:::
Eq.

::::
(24)

:::
did

:::
not

:::
lead

::
to
::::
any

::::::
visible

::::::
change

::
of

:::::
results

::
in
::::
Fig.

::
13.

:
For flight 10 we obtained the following5

linear fits and the correlation coefficients r

εSF = 0.74 εPSD + 9.1 · 10−5, r = 0.997,

εNCF = 0.88 εPSD + 1.2 · 10−5, r = 0.995,

εNCR = 0.66 εPSD + 7.9 · 10−5, r = 0.997,

while for flight 13 we have10

εSF = 0.76 εPSD + 1.4 · 10−4, r = 0.956,

εNCF = 0.75 εPSD + 1.2 · 10−4, r = 0.881,

εNCR = 0.62 εPSD + 1.4 · 10−4, r = 0.989.

The methods based on the signal zero-crossings give comparable results to those resulting from standard methods. It seems

that εNCR is slightly underestimated as compared to the results of the other methods, however it should be noted that while all

other methods are based on the inertial-range arguments , in order to obtain εNCR one needs to use viscosity and full spectrum

assumptions (resulting from the use of Eq. (28)). Hence, due to different physical arguments we can expect the results to be

somewhat different than in case of the previous methods. ,
::
in

:::::
spite

::
of

:::
the

::::
fact

:::
that

:::
the

:::::::
second

::::::
method

::
is
::::::

based
::
on

::::::::
different5

:::::::
physical

::::::::
arguments

::::::::
(assumes

:::::
form

::
of

:::
the

:::::
whole

:::::::::
spectrum,

::::::::
including

:::
the

:::::::::
dissipative

:::::
range

::
of

:::::::::::
frequencies). We believe that the

there is a fair consistency in those results because one should take into account that the standard frequency spectra and structure

function methods calculate approximate values of ε. Moreover, we have indicated in Section 2 that the constants α
::
C1:

and C2

in Eqs. (4) and (5) are estimated with an accuracy of ±15%.

6 Conclusions10

In the present work we proposed two novel modifications of the zero-crossing method, such that it can be applied to moderate-

resolution measurements. Turbulent kinetic energy dissipation rates obtained using the proposed methods were compared to the

estimates resulting from the use of the standard power-spectrum and structure function approaches. It is a remarkable testimony

to the statistical turbulence theory consistency that those results are in quite good agreement despite using such fundamentally

different approaches.15

:::
We

::::
note

:::
that

:::
the

:::::::
standard

::::::::
structure

:::::::
function

:::
and

::::::
power

::::::
spectra

:::::::
methods

:::
are

:::::
often

::::
used

:::::::::::::
simultaneously,

::
for

::::::
better

:
ε
::::::::
estimates

:::::::::::::::::::::::
(Chamecki and Dias, 2004) ,

::
in

::::
spite

::
of

:::
the

::::
same

:::::::::
underlying

::::::::
physical

::::::::
arguments

:::::::
(second

::::::::
similarity

:::::::::
hypothesis

::
of

::::::::::::::::::
Kolmogorov (1941) ).

::::
Here,

:::
the

::::::::
proposed

::::::::
approach

:::::
offers

:::
yet

:::::::
another

::::::
option.

:::::::::::
Additionally,

:::
the

::::::
second

:::::::
method

::::
with

:::
the

::::::::
spectrum

::::::::
recovery

::
is

:::::
based
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Figure 13. Dissipation rate of the kinetic energy estimated from the structure function method εSF , zero-crossings of successively filtered

signals εNCF and zero-crossings of signals with recovered part of the spectrum εNCR as a function of εPSD (from power spectra method).

Each point represents an estimate from a single horizontal segment of flight in the atmospheric boundary layer, a) flight 10, b) flight 13.

::
on

:::::::
different

::::::::
physical

:::::::::
arguments,

::
as

::
it
::::::::::
additionally

::::::
makes

:::
use

::
of

:::
the

::::::::::::
Kolmogorov’s

::::
first

::::::::
similarity

:::::::::
hypothesis

::::
and

:
a
::::::
model

:::
for

::
the

::::::::::
dissipation

:::::
range

::
of

:::
the

::::::::
spectrum.

::::
Still,

::
it
:::
can

:::
be

::::
used

:::
for

::::::
signals

::::
with

::::::
spectral

::::::::
cut-offs,

:::::
hence

:
it
:::::
offers

:::
an

:::::::::
alternative

::
to

:::
the20

::::::
spectral

:::::::
retrieval

::::::::
methods.

:

From the perspective of practical applications we can think of several possible advantages of the zero-crossing methods. First,

the number of signal zero-crossings can be calculated without difficulty and the proposed procedures are easy to implement.

Second, it is not necessary to choose any averaging windows , as it is the case for
::::
Other

::::::::::
advantages

:::::
follow

:::::
from

:::
the

::::::
results

::
of

::
the

:::::::::
simulation

:::::::
analysis

:::::::::
performed

:::
in

::::::
Section

::::
4.2.

:::
For

:::
the

::::::
created

::::::::
artificial

:::::::
velocity

::::::
signals,

:
the power-spectrum and structure25

function methods. Hence, the obtained results will not depend on the width of this window
:
ε
::::::::
estimates

:::::
based

:::
on

:::
the

:::::::
number

::
of

::::::::
crossings

::::
were

::::
less

:::::::
sensitive

::
to

:::
the

:::::::
aliasing

:::::
error

::::
than

:::::
results

:::
of

:::
the

:::::::
standard

:::::::
spectral

:::::::
retrieval

:::::::
method.

:::::::::
Moreover,

:::
the

::::
bias

:::
due

::
to

:::
the

:::::
finite

:::::::
temporal

::::::::
windows

::::
was

::::::
smaller

:::
for

:::
the

:::::::
number

::
of

:::::::
crossing

:::::::
method,

::::::::
however,

::
at

:::
the

::::
cost

::
of

:::::
larger

::::::::::
uncertainty

:::::
(larger

::::::::
standard

:::::::::
deviations)

::
of

:::
the

::::::::
measured

::::::::::
dissipation

:::
rate

::::::
values.

:::::
These

::::::::::
differences

::
in

:::::
errors

::
of

:::
the

:::::::
number

::
of

:::::::
crossing

::::
and

::
the

::::::
power

:::::::
spectral

::::::
method

::::
can

::::
make

:::
the

::::::
former

:::
an

::::::::
additional

::::
tool

::
to

:::::::
improve

::::::::
estimates

:::::
from

:::
the

::::::::::
atmospheric

:::::::::::::
measurements,30

::::::::
especially

:::
for

::::::::
relatively

::::
short

:::::::::
averaging

:::::::
windows

::::
and

:::
for

::::
small

::::::::
cut-offs.

::::::::
Moreover,

:::
we

:::::
argue

::::
that

:::
the

::::::
number

::
of

::::::::
crossings

:::::::
method

::::::
applied

::
to
:::
the

::::::::::::
fully-resolved

::::::
signals

:::
has

:::::::
become

::
a

::::
fairly

::::::::
standard

:::
tool

:::
for

::
ε
:::::::::
estimates,

::::
used

::::
also

::
in
::::

the
::::::::::
atmospheric

:::::::::::::
measurements,

:::
see

::::
e.g.

::::::::::::::::::::
Poggi and Katul (2010) .

:::::::
Therein,

:::
the

:::::::::
discussed

:::::::::
advantages

::
of

:::
the

::::::
method

:::
are

::::
that

::
no

::::::::::::
measurements

::
of

:::
the

:::::
signal

::::::::
gradients

:::
(to

:::::::
calculate

:::
the

::::::
Taylor

::::::::::
microscale)

:::
are

:::::::
required,

:::
no
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::::::::::
assumptions

:::::
about

::::::
scaling

::::
laws

::
in

:::::::
structure

::::::::
functions

::::
(and

::::::
power

:::::::
spectra)

::
are

:::::::
needed

:::
and

::
no

:::::::::::::
simplifications

::
in

:::
the

::::
TKE

::::::
budget

::
are

:::::::
adopted

::::
(for

:::::
which

::
ε
::
is

::::::::
computed

::
as

::
a

::::::::
residual).

:::
The

:::::::
method

::::::::
proposed

::
in

:::
the

::::::
current

::::::::::
manuscript,

::
in

:::::::::
particular,

:::
the

::::::
second

:::::::
approach

:::::
based

:::
on

:::
the

::::::::
recovered

::::
part

::
of

:::
the

::::::::
spectrum,

::::::::::
generalises

::::::
number

::
of

:::::::
crossing

:::::::
method

:::
and

::::::
makes

:
it
:::::::::
applicable

::::
also

:::
for

::::::
signals

::::
with

::::::
spectral

:::::::
cut-off.

::
Of

::::::
course,

:::
on

::
an

:::::::::
additional

::::
cost,

::
as

::::::
certain

::::
form

::
of

:::
the

::::::
energy

::::::::
spectrum

::::
must

:::
be

:::::::
assumed

::
in

:::::
order5

::
to

:::::::
calculate

:::
the

:::::::::
correcting

:::::
factor

:::
CF .

:::::
Still,

:::
the

:::::::
proposed

:::::::
method

:::
can

:::
be

:::::::::
interesting

::
in

::::::::
particular

:::
for

::::
data

::::
with

::::::
cut-offs

::::::::
reaching

::
the

::::::::::
dissipation

:::::
range,

:::
but

:::
still

::::
with

::::
part

::
of

::::
this

::::
range

:::::::
missing

:::
(or

:::::::::::
contaminated

::::
with

::::::
noise).

::
In

::::
such

:::::
case,

:::::
using

::::
only

:::
the

::::::
inertial

::::
range

::::::::
estimates

::::
may

::::
lead

::
to

::
a

::::::::
significant

::::
loss

::
of

:::::::::::
information,

::
as

:::
the

::::
data

::::
from

:::
the

:::::::::
dissipation

:::::
range

:::
are

:::
not

:::::
taken

::::
into

::::::
account.

Finally, we can deal with a situation when the recorded amplitude of certain frequencies is deteriorated due to measurement

errors (e.g.as it is seen in Fig.4b, we have a spurious peak at f = 10Hz), still, the counted number of signal zero-crossings10

could remain unaffected(see e.g.Fig.5a, where no distortion at f = 10Hz is observed). .
:
In such cases the zero-crossing method

could be advantageous over the power-spectrum and structure-function methods.

There are several perspectives for further work. First, the proposed methods could be tested for a wider range of signals (e.g.

from Eulerian measurements within the boundary layer adopting Taylor hypothesis), characterized by different resolutions and

obtained under varying atmospheric conditions, to assess the scope of their applicability. Second, as far as the model spectrum15

is concerned, instead of (25) different forms for the function fη in Eq.(3) could be tested (see e.g.Chap.6.5.3 in
::::::::::
comparison

::::
with

:::::::::::
fully-resolved

:::::::::::
experimental

::::::
signals

::
or

::::::
Direct

:::::::::
Numerical

::::::::::
Simulations

::::
data

:::::
would

:::
be

:::::::
valuable

::
to

:::
test

:::::::
different

::::::
forms

::
of

:::
the

:::::
model

::::::
spectra

:::::
from Pope (2000) or Bershadskii (2016)). In the present study we have chosen the simplest form of fη , Eq.(25),

in order to present the one-dimensional energy spectrum E11 in terms of Γ functions, see Eq.(36). However, other forms of

spectrum could have potentially significant impact on the results which should be analysed.

7 Code availability

The MATLAB code written for the purpose of this study is available from the authors upon request.5

8 Data availability

POST data are available in the open database: https://www.eol.ucar.edu/projects/post/
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