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Abstract. In this paper we propose two approaches to estimating the turbulent kinetic energy dissipation rate, based on the

zero-crossing method by Sreenivasan et al. [J. Fluid Mech., 137, 1983]. The original formulation requires a fine resolution of

the measured signal, down to the smallest dissipative scales. However, due to finite sampling frequency, as well as measure-

ment errors, velocity time series obtained from airborne experiments are characterized by the presence of effective spectral

cut-offs. In contrast to the original formulation the new approaches are suitable for use with signals originating from airborne5

experiments. The suitability of the new approaches is tested using measurement data obtained during the Physics of Stratocu-

mulus Top (POST) airborne research campaign as well as synthetic turbulence data. They appear useful and complementary

to existing methods. We show the number-of-crossings based approaches respond differently to errors due to finite sampling

and finite averaging than the classical power spectral method. Hence, their application for the case of short signals and small

sampling frequencies is particularly interesting, as it can increase the robustness of turbulent kinetic energy dissipation rate10

retrieval.

1 Introduction

Despite the fact that turbulence is one of the key physical mechanisms responsible for many atmospheric phenomena, informa-

tion on Turbulent Kinetic Energy (TKE) dissipation rate ε based on in situ airborne measurements is scarce. Research aircraft

are often not equipped to measure wind fluctuations with spatial resolution better than few tens of meters (Wendisch and15

Brenguier, 2013). Due to various problems related to e.g. inhomogeneity of turbulence along the aircraft track and/or artifacts

related to inevitable aerodynamic problems (Khelif et al., 1999; Kalgorios and Wang, 2002; Mallaun et al., 2015), estimates of

ε at such low resolutions using power spectral density or structure functions are complex and far from being standardised (e.g.

compare procedures in Strauss et al. (2015), Jen-La Plante et al. (2016)). The question arises: can we do any better? Or at least

can we introduce alternative methods to increase robustness of ε retrievals?20

In the literature, there exist several different methods to estimate ε using the measured velocity signal as a starting point. One

of them is the zero- or threshold-crossing method (Sreenivasan et al., 1983) which, instead of calculating the energy spectrum or

velocity structure functions, requires counting of the signal zero- or threshold crossing events, see Fig. 1a. Their mean number
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per unit length is related to the turbulent kinetic energy dissipation rate. The zero-crossing method is based on a direct relation

between ε and the root mean square of the velocity derivative (Pope, 2000), hence, the measured signal should be resolved

down to the smallest scales. However, this is not achievable in the case of flight measurements with moderate time-resolutions.

Using the Taylor’s hypothesis, the measured time series can be converted into a spatial signal and the sampling frequency will

correspond to scales which are typically 2− 3 orders of magnitude larger than the Kolmogorov scales. As a result, the number5

of zero-crossings per unit length for such signal is much smaller than the one corresponding to a high resolution velocity signal

where turbulence intensity is the same.

Interestingly, Kopeć et al. (2016) have shown, that the dissipation rates estimated from such NL using very low resolution

signals, although underestimated, were proportional to ε calculated using structure functions scaling in the inertial range. In

the follow up analyses we found that this is also the case for moderate-resolution airborne data from different sources. This led10

us to a question whether it would be possible to modify the zero-crossing method such that it can also be applied to moderate-

or low-resolution measurements whilst mitigating the observed underestimation at the same time. In this work we propose

two possible modifications of the zero-crossing method. The first one is based on a successive filtering of a velocity signal

and inertial range arguments. In the second approach we use an analytical model for the unresolved part of the spectrum and

calculate a correcting factor to NL, such that the standard relation between ε and NL can be used.15

The new approaches are tested on velocity signals obtained during the Physics of Stratocumulus Top (POST) research cam-

paign, which was designed to investigate the marine stratocumulus clouds and the details of vertical structure of stratocumlus-

topped boundary layer (STBL) (Gerber et al., 2013; Malinowski et al., 2013). The observed winds were measured using the

CIRPAS Twin-Otter research aircraft with sampling frequency fs = 40Hz, which corresponds to the resolution 2.75m for the

speed of the aircraft 55m/s. Additional tests of the method with synthetic velocity signals as suggested by Frehlich et al.20

(2001) are also performed.

The present paper is structured as follows. In section 2 we review existing methods to estimate dissipation rate of the

turbulent kinetic energy. Next, in Section 3 we propose the two modifications of the zero-crossing method. They are applied to

a single signal from flight 13 and synthetic turbulence data and discussed in detail in Section 4. Next, in Section 5 we apply the

procedures to several data sets from flights 10 and 13 to show that the results of new approaches compare favourably with those25

obtained from standard power-spectrum and structure function methods. This is followed by Conclusions where the advantages

of the new proposals and perspectives for further study are discussed.

2 Previous methods to retrieve the energy dissipation rate from measured velocity time series

The need to estimate the turbulent kinetic energy dissipation rate ε as well as variety of available data resulted in formulating a

number of estimation methods. Two of the most commonly used approaches are the power spectral density and the structure-30

function approach. Both are based on the inertial range arguments, which follow from the Kolmogorov’s second similarity

hypothesis (Kolmogorov, 1941), hence, they are also called "indirect methods" (Albertson et al., 1997). With the assumption

of local isotropy the one-dimensional longitudinal and transverse wavenumber spectra in the inertial range are given by (Monin
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and Yaglom, 1975; Pope, 2000):

E11(k1) = C1ε
2/3k

−5/3
1 , E22(k1) = C ′1ε

2/3k
−5/3
1 . (1)

Here k1 is the longitudinal component of the wavenumber vector k = (k1,k2,k3), C1 ≈ 0.49 and C ′1 ≈ 0.65 if k1 units are

rad/m (cf. Pope (2000), Eqs. [6.242,6.243]). E11 is related to the energy-spectrum function E(k)

E11(k1) =

∞∫
k1

E(k)

k

(
1− k21

k2

)
dk, (2)5

here k = |k|. As discussed in Pope (2000) experimental data confirm Eqs. (1) within 20% of the predicted values of C1 and

C ′1 over two decades of wavenumbers. Within the validity of the local isotropy assumption of Kolmogorov (1941), the energy-

spectrum function can be approximated by the formula (Pope, 2000):

E(k) = Cε2/3k−5/3fL(kL)fη(kη), (3)

here C ≈ 1.5 as supported by experimental data, fL and fη are non-dimensional functions, which specify the shape of energy-10

spectrum in, respectively, the energy-containing and the dissipation range. L= k3/2/ε denotes the length scale of large eddies

and η = (ν3/ε)1/4 is the Kolmogorov length scale connected with the dissipative scales (Pope, 2000), where ν is the kinematic

viscosity. The function fL tends to unity for large kL whereas fη tends to unity for small kη, such that in the inertial range the

formula E(k) = Cε2/3k−5/3 is recovered.

Within the validity of the Taylor’s hypothesis Eq. (1) can be converted to the frequency spectra, where k1 = (2πf)/U and15

U is the magnitude of the vector difference between the aircraft velocity and the wind velocity, i.e. the true air speed. The

vector difference is averaged along the displacement which defines k1. The frequency f is measured in 1/s, U in m/s and k1

in rad/m. In order to estimate the dissipation rate from the atmospheric turbulence measurements, several assumptions should

be taken. Most importantly, one assumes that the turbulence is homogeneous and isotropic and that the inertial range scaling

Eqs. (1) holds. Then, frequency spectrum of the longitudinal velocity component in the inertial range is (e.g., Oncley et al.,20

1996; Siebert et al., 2006):

S(f) = C1

(
U

2π

)2/3

ε2/3f−5/3. (4)

The value of a constant C1 ≈ 0.49 used in this work is related to the one-sided spectra. Hence, by E11, E22 or S(f) we denote

the one-sided spectra, which, integrated over argument from 0 to∞ yield the variance of the signal. With Eq. (4), the turbulent

kinetic energy dissipation rate can be estimated from the power spectral density (PSD) of the measured signal.25

Alternatively, one can consider the n-th order longitudinal structure functions Dn = 〈(uL(x+r, t)−uL(x,t))n〉, here uL is

the longitudinal component of velocity and r is a displacement along the direction defined by uL. In the inertial subrange, the

second and third-order structure functions are related to the dissipation rate ε by the formulas (Pope, 2000):

D2(r) = C2ε
2/3r2/3, D3(r) =−4

5
εr. (5)
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Experimental results of Saddoughi and Veeravalli (1994) indicate that C2 ≈ 2. with an accuracy of ±15%.

Another method, also based on the formula (3) is the velocity variance method (Fairall et al., 1980; Bouniol et al., 2004;

O’Connor et al., 2010). Let us consider a homogeneous velocity field, converted to time series u(t) with the use of Taylor’s

hypothesis. The mean-square value of this signal 〈u2(t)〉= u
′2 is equal to the integral form 0 to ∞ of the one-sided power

spectral density S(f) over the frequency space.5

The signal u(t) is next filtered with a band-pass filter with cut-off numbers [flow,fup] in the frequency space. Assuming that

the filter is perfect, i.e. it is a rectangle in the frequency space, after the filtering a signal uf (t) with the variance

u
′2
f =

fup∫
flow

S(f)df (6)

is obtained. The above formula represents the portion of kinetic energy of u(t) contained in the frequencies between flow and

fup. Fairall et al. (1980); Bouniol et al. (2004); O’Connor et al. (2010) substitute Eq. (3) for S(f) into (6) and integrate to10

obtain the following formula for the dissipation rate:

ε=

[
2(2π)2/3u

′2
f

3C1U2/3(f
−2/3
low − f−2/3up )

]3/2
. (7)

Yet another method, also used in the atmospheric turbulence analysis (Sreenivasan et al., 1983; Poggi and Katul, 2009, 2010;

Wilson, 1995; Yee et al., 1995), is based on the number of zero- or level-crossings of the measured velocity signal. It dates

back to the early work of Rice (1945) who considered a stochastic processes q and its derivative with respect to time ∂q/∂t.15

He then assumed that these two processes have Gaussian statistics and are independent. The formulation of this method results

from investigating how frequently the signal crosses the level zero q(t) = 0, see Fig. 1a. Working under those assumptions

Rice (1945) showed that the number of up-crossings of the zero level per unit time is:

N2 =
〈(∂q/∂t)2〉

4π2〈q2〉
. (8)

As 〈(∂q/∂t)2〉 is proportional to the dissipation rate of the kinetic energy, the zero-crossing method can be used to estimate this20

quantity. As it was argued by Sreenivasan et al. (1983), Eq. (8) holds also with less restricted assumptions, with only q having

Gaussian statistics and, moreover, even for strongly non-Gaussian velocity signals the number of zero-crossings was close to

the theoretical value from Eq. (8). For a spatially varying signal, Eq. (8) can be expressed as follows, using the characteristic

wavenumber kc and the one-sided wavenumber spectra (He and Yuan, 2001):

kc =

√∫∞
0
k21E11dk1∫∞

0
E11dk1

. (9)25

The characteristic wavelength is equal to λc = 2π/kc. Hence, the mean number of crossings (up- and downcrossings) per unit

length NL, with, on average, two crossing per λc is

NL =
2

λc
=

1

π
kc. (10)
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We will now introduce the two-point longitudinal correlation of velocity Rij(r1e1) = 〈ui(x, t)uj(x + r1e1, t)〉, where e1 is the

standard basis vector and assume that the flow is statistically stationary and homogeneous and statistics do not depend either

on time t or point x.

Using the inverse Fourier transform, the 11 component of the two-point correlation tensor R11 and its derivatives can be

written in terms of E11 as follows (Pope, 2000):5

R11(r1e1) =

∞∫
0

E11(k1)cos(k1r1)dk1, R′′11(r1e1) =−
∞∫
0

E11(k1)k21 cos(k1r1)dk1, (11)

whereR′′11 denotes the second-order derivative ofR11. With those relationships we can rewrite Eq. (9) in the following manner:

kc =

√∫∞
0
k21E11(k1)dk1∫∞

0
E11(k1)dk1

=

√
−R′′11(0)

R11(0)
. (12)

We further define the Taylor longitudinal microscale λf with the use of R′′11(0) and R11(0)10

λf =

(
−1

2

R′′11(0)

R11(0)

)−1/2
. (13)

Hence, Eq. (10) implies that the number of crossings per unit length is related to the longitudinal Taylor’s microscale λf

through

λf =

√
2

π

1

NL
=⇒ 1

λ2f
=

1

2
π2N2

L. (14)

Relations (11–14) are valid for any statistically homogeneous vector fields, regardless of whether or not they are isotropic15

(Monin and Yaglom, 1975), provided that kc is the characteristic wavenumber along the longitudinal direction. However,

homogeneity alone is not a sufficient assumption to estimate the TKE dissipation rate ε of a 3D turbulent field from velocity

signals measured along the 1D aircraft flight path (Chamecki and Dias, 2004). We further use the local isotropy assumption to

write a relation between dissipation and the Taylor microscales (Pope, 2000)

ε=
30νu

′2

λ2f
=

15νu′2

λ2g
, (15)20

where λg = λf/
√

2 is the Taylor transverse microscale. Hence, finally, substituting Eq. (14) into Eq. (15) we obtain (Poggi and

Katul, 2010)

ε= 15π2νu
′2N2

L. (16)

For the transverse velocity time series Eq. (16) has a factor 7.5 instead of 15.
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Figure 1. a) A signal q(t) crossing the level q = 0. b) Dissipation spectra: the range of k-numbers covered by the POST measurements is

denoted by the colour shading.

3 New proposals to estimate dissipation rate from a velocity signal with a truncated high-frequency part of the

energy spectrum

Based on Eqs. (9) and (10) it is clear that the number of zero-crossings is related to the 11 component of the dissipation tensor

D11(k) = 2νk2E11(k):

π2u′2N2
L =

∞∫
0

k2E11dk. (17)5

Figure 1b presents the profile ofD(k) = 2νk2E(k) where E(k) is described by the model spectrum (3) with fη = exp(−βkη)

(Pope, 2000), here β = 2.1 and η = 2mm. It is seen that the large wavenumber (small scale) part of the spectrum has the most

significant impact on the resulting value of NL.

At the same time the data available from the POST measurements can only account for a small part of the total dissipation

spectrum, shown qualitatively as a shaded region in Fig. 1b. The lower bound of this region follows from a finite size of the10

averaging window while the upper is related to the finite Nyquist frequency which equals 20Hz for the POST measurements.

If one was to use the zero-crossing method (Eq. 16) in order to estimate ε it is clear that the measured number of signal zero-

crossings would lead to significant underestimation of the spectrum integral as compared to the full spectrum measurements

down to the very small scales. We would like to propose reformulation of the original zero-crossing method in order to estimate

the dissipation rate from the number of signal zero-crossings based on a restricted range of k-values available from the airborne15

measurements. Two proposals for such procedures are given further in the article.
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3.1 Method based on successive filtering of a signal

Let us consider a signal u1(t) resolved in a certain range of frequencies f0 < f < f1. Converting the wavenumber spectrum to

the frequency spectrum we obtain from Eq. (17) the following relation for the number of signal-crossings per unit time

u′21 N
2
1 = 4

f1∫
f0

f2S(f)df. (18)

Similarly as in the velocity variance method described in Section 2, let us now filter the signal using a band-pass filter char-5

acterized by a different cut-off frequency f2 < f1. In such a case we obtain a different signal u2(t) with a reduced number of

zero-crossings N2 <N1:

u
′2
2 N

2
2 = 4

f2∫
f0

f2S(f)df. (19)

If we subtract Eq. (19) from Eq. (4.2) we obtain

u
′2
1 N

2
1 −u

′2
2 N

2
2 = 4

f1∫
f2

f2S(f)df. (20)10

In the inertial range S(f) is described by Eq. (4), hence, if both f1 and f2 belong to the inertial range

u
′2
1 N

2
1 −u

′2
2 N

2
2 = 4C1

(
U

2π

)2/3

ε2/3
f1∫
f2

f1/3df = 3C1

(
U

2π

)2/3

ε2/3
(
f
4/3
1 − f4/32

)
. (21)

If we proceed further and filter the signal using a series of cut-off frequencies fi < f2, we can estimate ε from Eq. (21) using a

linear least squares fitting method.

In the above derivation we assumed a perfect filter, rectangular in the frequency space is used. The issue of frequency15

response characteristics of a filter will be discussed further in Section 4.1.

3.2 Method based on recovering the missing part of the spectrum

In this method we attempt to account for the impact of the missing part of the dissipation spectrum by introducing a correcting

factor to the number of zero-crossings per unit length NL. The number of crossings per unit length is calculated from the

measured signal where the fine-scale fluctuations having the highest wavenumber kcut will be denoted byNcut and the variance20

of this signal will be denoted by u
′2
cut. From Eq. (17) it follows that Ncut is related to NL by the formula

u
′2N2

L = u
′2
cutN

2
cut

∫∞
0
k21E11dk1∫ kcut

0
k21E11dk1

= u
′2
cutN

2
cut

(
1 +

∫∞
kcut

k21E11dk1∫ kcut
0

k21E11dk1

)
. (22)

We then assume a certain form of the energy spectrum, Eq. (3). For simplicity we take fL = 1, i.e. we neglect the contribution

of largest scales to the value of the dissipation rate based on zero-crossings and we will consider two different forms of fη , as
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proposed in Pope (2000). First being a simple exponential form

fη = e−βkη, (23)

with β = 2.1 and a second, more complex formula

fη = e
{
−[(βkη)4+(βcη)

4]
1/4

+βcη
}
, (24)

here β = 5.2 and cη = 0.4. With this, the energy spectrum reads5

E(k) = Cε2/3k−5/3fη(βkη), (25)

here C = 1.5. The integral from 0 to∞ of the dissipation spectrum 2νk2E(k) should be equal to ε, which results in β = 2.1

in Eq. (23) and provides a relation between β and cη in Eq. (24). The latter case, due to the additional degree of freedom in fη

fits the experimental data better in the dissipative range (Pope, 2000).

The corresponding one-dimensional spectrum E11 can be calculated from Eq. (2)10

E11(k1) = Cε2/3
∞∫
k1

k−8/3fη(βkη)

(
1− k21

k2

)
dk. (26)

Next we change the variables in the integral Eq. (26) to ξ = βkη, introduce Eq. (26) into Eq. (22) and once again change the

variables to ξ1 = βk1η. As a result we obtain

u
′2N2

L ≈ u
′2
cutN

2
cut

1 +

∫∞
kcutβη

ξ21
∫∞
ξ1
ξ−8/3fη(ξ)

(
1− ξ21

ξ2

)
dξdξ1∫ kcutβη

0
ξ21
∫∞
ξ1
ξ−8/3fη(ξ)

(
1− ξ21

ξ2

)
dξdξ1


︸ ︷︷ ︸

CF

= u
′2
cutN

2
cutCF , (27)

here CF is the correcting factor. The value of ε can be calculated numerically using an iterative procedure.15

As a starting point for this procedure, a first guess for the Kolmogorov length η = (ν3/ε)1/4 should be given. With this, we

calculate the correcting factor CF from Eq. (27) taking either the form Eq. (23) or (24) for fη . Next, from Eq. (16) the value of

dissipation can be estimated as

ε= 15π2νu
′2
cutN

2
cutCF . (28)

We start the next iteration by calculating again the Kolmogorov length η = (ν3/ε)1/4, the corrected value of CF from Eq. (27)20

and the new value of ε from Eq. (28). After several iterations the procedure converges to the final values of the dissipation

rate and Kolmogorov’s length η with an error defined by a prescribed norm ∆η = |ηn+1− ηn| ≤ dη . The successive steps are

summarized in a form of Algorithm 1.

It should be noted that in this approach we do not have the empirical inertial range constant C, and we calculate the dissipa-

tion rate directly from the formula with viscosity, Eq. (28), as in the original zero-crossing method see Eq. (16) and Poggi and25

Katul (2010).
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Algorithm 1 Procedure of iterative ε determination based on missing spectrum part recovery

ε← 15π2νu
′2N2

cut

η← (ν3/ε)1/4

∆η← 100dη

while ∆η > dη do

Use Eq. (27) to calculate CF
ε← 15π2νu

′2N2
cutCF

∆η← |η− (ν3/ε)1/4|

η← (ν3/ε)1/4

end while

4 In depth analysis of the proposed methods’ behaviour

4.1 Method based on the number of zero-crossings of successively filtered signal

In order to present the more detailed properties of the procedure we used velocity signal from one of the horizontal flight

segments that took place within the turbulent atmospheric boundary layer. This segment was a part of flight 13 of the POST

airborne research campaign (Gerber et al., 2013; Malinowski et al., 2013). The data were provided in the East, North, Up (ENU)5

coordinate system. For further study we have calculated time series of the longitudinal velocity component along the track.

The signals sampling frequency was fs = 40Hz and the duration was T = 438.75s. The magnitude of the vector difference

between the aircraft velocity and the wind velocity U , averaged over track vector was about 55ms−1 and the standard deviation

u′ = 0.28ms−1.

We have estimated the dissipation rate based on the number of zero-crossings, according to the methods outlined in section10

3.1. The average dissipation rate calculated from the frequency spectrum and the structure function for the whole flight fragment

Eqs. (4) and (5) was close to equal, respectively, εPSD = 2.48×10−4 m2s−3 and εSF = 2.52×10−4 m2s−3. These values were

obtained from the linear least-squared fit procedure in the range f = 0.3−5Hz for the frequency spectrum and r = 11−183m

for the structure function, see Fig. 2.

Before applying the threshold crossing procedures the signal had to be filtered in order to eliminate errors due to large scale15

tendencies as well as small scale measurements noise. For this purpose we used the sixth order low-pass Butterworth filter

(Butterworth, 1930) implemented in Matlab ®. Figure 3 presents the velocity signal over t= 50s before filtering (top graph)

and the same signal after filtering with fcut = 5Hz and fcut = 1Hz.

The original formula of Rice (1945) was derived for the case when both the signal and its derivative have Gaussian probability

density functions (PDF’s) and are statistically independent. In general, such assumptions does not hold for turbulent signals.20

However, as discussed by Sreenivasan et al. (1983), experimental observations and further theoretical studies indicate that the

formula of Rice (1945) has a more general applicability than it was mathematically proven for and is satisfied with a fair

accuracy even for the case of strongly non-Gaussian signals. Figure 4a presents PDF’s of the normalised original signal and the
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Figure 2. a) Frequency spectrum of the measured signal (POST), b) second order structure function. Polynomial fit is presented as a coloured

dashed line.
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Figure 3. Measured velocity fluctuations: top graph - unfiltered signal, middle graph - signal filtered with fcut = 5Hz, bottom graph - signal

filtered with fcut = 1Hz.
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Figure 4. a) PDF’s of the normalised unfiltered and filtered measured signals compared with the normalised Gaussian curve. b) Spectra

f2S(f) of the unfiltered signal (black line with symbols), signal filtered with fcut = 5Hz (green, solid line), signal filtered with fcut = 2Hz

(red dotted line), signal filtered with fcut = 1Hz (blue, dashed line).

filtered signals compared with the normalised Gaussian distribution. As it is seen, filtering does not lead to significant changes

in the investigated PDF’s.

It is worth noting that the spectra (f2S(f), Fig. 4b) display a peak at f = 10Hz. This phenomenon has been indicated in the

previous analyses of POST (Jen-La Plante et al., 2016) and appears due to measurement errors. However, as the highest cut-off

frequencies used in the present study are 5 Hz, it should not affect our results.5

In order to use the method based on successive signal filtering we filtered the signal with different values of fcut in the

range fcut = 0.1− 19Hz. For each fcut = fi we calculated the number of zero-crossings Ni based on the filtered signal. The

zero-crossing event was detected when the product of two consecutive values of velocity fluctuation v(t)v(t+ ∆t)< 0, here

∆t= 1/fs = 0.025s. In order to estimate the value of dissipation rate we used Eq. (21). The values u
′2
i were calculated from

filtered time series. Results for f1 = 0.3Hz and fi in the range (0.3Hz,5Hz) are presented in Fig. 5. Using Eq. (21) we have10

used linear fitting of the differences u
′2
i N

2
i −u

′2
1 N

2
1 against f4/3i − f4/31 . The resulting value for the analysed flight section

was εNCF = 2.54×10−4 m2s−3. This value is comparable with the estimations performed using classic methods based on the

power spectra and structure functions.

11



0 2 4 6 8

f
i

4/3 -f
1

4/3 [Hz]

0

0.1

0.2

N
i2
 u

i2
-N

12
 u

12
 [
m

2
/s

4
]

Figure 5. Scaling of N2
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2
i with filter cut-off fcut calculated for the measured signal (POST). The linear fit from formula (21) is given by

the magenta dashed line.

4.2 Simulation analysis and error estimates

Even if the local isotropy assumption of Kolmogorov (1941) is satisfied with a good accuracy, the TKE dissipation rate esti-

mates are subject to errors that can result from a finite sampling frequency of a signal, a finite time window, sensor bias and

noise. The last of those three causes was investigated in Sreenivasan et al. (1983), where it was shown that both the variance

of the noise 〈n2〉 as well as variance of its derivative 〈ṅ2〉 influence the measured number of crossings. A possible remedy5

was proposed by Poggi and Katul (2010) who suggested to use the threshold-crossings, i.e. counting the number of times a

signal crosses a given threshold T 6= 0, instead of the zero-crossings in case of signals with low signal-to-noise ratios. As for

the signal considered in the previous section the signal-to-noise ratio becomes significant at higher frequencies (above 5Hz),

see Fig. 2, which are removed by the low-pass filter used in the proposed number of crossings method. We also applied the

method of Poggi and Katul (2010), however, as it did not lead to any systematic change of our estimates we further present10

results for the zero-crossings only.

In order to quantify the errors resulting from the finite sampling frequency and finite time window and test the performance

of the proposed method we performed the simulation analysis (Frehlich et al., 2001; Sharman et al., 2014). Results will be

compared with the standard spectral retrieval estimates, without any additional corrections. However, we note in passing that

spectral methods can be improved to account for the bias errors. The example is the maximum likelihood approach (Sharman15

et al., 2014) where, instead of the von Kármán model, a model power-spectral density Smodelf is used, which takes into account

12



the procedure for generating the empirical spectrum from discrete time series of finite length. Analogous approaches could

also be formulated for the methods based on the number of crossing, which is a perspective for a further study.

To test the performance of new proposals we generated a number of artificial velocity signals with frequency spectra and

two point correlation functions prescribed by the von Kármán (1948) model. The equations resulting from applying this model

to the one-sided spectra considered in this paper are written below.5

R11(r1e1)≈ 0.592548 u′2
(
r

L0

)1/3

K1/3

(
r

L0

)
, S(f)≈ 0.475448

2π

U

u′2L0[
1 +L2

0

(
2πf
U

)2]5/6 , (29)

here K1/3 is the modified Bessel function of order 1/3. Coefficients of the Fourier series expansion of velocity signal were

calculated as

wj =
√
Wj(a+ ib) (30)

here i=
√
−1, a and b are random numbers from the standard Gaussian distribution with zero mean and unit variance and10

Wj = S(fj)∆f , j = 1, . . . ,N . Alternatively, the coefficients Wj can be calculated as the discrete Fourier transform of R11, as

described in Frehlich et al. (2001). The artificial velocity signal is finally constructed as the discrete inverse Fourier transform

of wj , see Frehlich et al. (2001).

We used artificial signals with U = 55ms−1 and the standard deviation u′ = 0.28ms−1. Those characteristics correspond

to the ones of the signal considered in the previous Section 4.1. We set L0 = 83.9 in Eq. (29) to obtain also a comparable15

dissipation rate estimate ε= 2.5 · 10−4m2s−3. Our first aim was to test how a finite sampling rate influences the number of

crossings. For this purpose in each run we created an artificial signal of lengthN = 217 points and with the sampling frequency

200Hz (five times larger as the sampling of the signal considered in Section 4.1), which resulted in signal duration t≈ 650s.

We treated this velocity series as a “reference”. Next, we took every fifth sample of this signal to create a 40Hz velocity time

series. We then calculated the number of crossings, as described in Section 4.1 and the power spectral density. We repeated20

the procedure 500 times and calculated average of the obtained profiles, see Fig. 6. Due to the finite sampling frequency we

observe the effect of aliasing - spectral densities for f higher than the Nyquist frequency are added to the spectral densities at

f < 20Hz. Distortions are visible for higher frequencies both in the power spectrum, Fig. 6a, as well as N2
i u

2
i profiles, Fig.

6b. We estimated the TKE dissipation rate from the averaged profiles, using the method described in Section 4.1, Eq. (21),

keeping the lower bound of the fitting range f1 = 0.3Hz constant and changing the upper bound f2 from 1 to 19Hz. Results25

are presented in Fig. 7 and compared with the corresponding εPSD values, using the von Kármán model as a reference model

spectrum.

We observe an increase of εPSD estimates with increasing f2 and a moderate increase of εNCF over the input ε= 2.5 ·
10−4m2s−3, which shows that the number of crossings respond to finite sampling effects differently than the power spectrum.

We note here that εNCF calculated from the averaged profiles of 200Hz “reference” signal (black line in Fig. 7) seem to be30

slightly overpredicted in comparison to the input ε , especially for smaller f2. A possible reason is the response of a filter

used in the number of crossings method. We attempted to estimate this error using relation () between the number of crossings

13
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Figure 6. a) Mean S(f) profiles calculated from the simulation analysis: blue dashed lines - synthetic signal sampled with 200Hz, blue line

with symbols - synthetic signal sampled with 40Hz, black lines - profiles from a single signal with u′2 = 0.0885ms−1, b) corresponding

averaged N2
i u

2
i profiles: solid line - 200Hz signal, line with symbols - 40Hz signal, thin black line - profile from a single signal with

u′2 = 0.28ms−1.

and the dissipation spectrum. We first integrated f2Sf of an unfiltered signal from f0 to fi. Next, we calculated a spectrum

Sfilteredf of a band-pass filtered signal taking f1 and fi as the lower and upper bounds of a filter. We integrated f2Sfilteredf

over the whole available range of f . The difference between the two integrals should represent a “correction” due to filter

response. The ε values estimated from the corrected N2
i u
′2
i are presented in Fig. 7 as a black dot-dashed line. As it is seen the

estimations for the lower f2 are improved, however, as f2 increases, εNCF seem to be underpredicted. A possible reason for5

this might be that the filter influence the number of crossings statistics somewhat differently than the spectrum alone.

Next, we tested the influence of the finite temporal window on the calculated statistics. We generated 1000 artificial signals,

each time changing slightly the u′ value in Eq. (29) which led to a change of input ε, see Sharman et al. (2014), the value

of L0 remained unchanged. For each signal we estimated εPSD from the standard power spectral density using the Welch’s

overlapped segment averaging estimator implemented in Matlab ®with a 28 window and εNCF from the number of crossings,10

Eq. (21). We did this tests for the 40Hz signals and the fitting range 0.3− 5Hz. We first decreased the time window, taking

each time only 1/8 of the created artificial signal for the analysis, which, in terms of L0 from Eq. (29) resulted in the signal

length equal approximately L≈ 50L0. Results of εPSD and εNCF estimates as functions of corresponding input ε from the

theoretical profile Eq. (29) are presented in Fig. 8 (upper plots). It can be seen that the bias error is larger for εPSD, however,
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Eq. (21), solid line - 200Hz synthetic signal, line with . symbols - 40Hz synthetic signal; N2
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2
i for 200Hz signal with the filter response

correction - black dot-dashed line. The input ε= 2.5 · 10−4m2s−3.

the scatter of εNCF is larger. The linear fits and the correlation coefficients are

εPSD = 0.9104 ε− 2.32 · 10−5, r = 0.9898,

εNCF = 0.9878 ε+ 6.80 · 10−5, r = 0.9343. (31)

We repeated the simulation analysis for signals with 217 points, i.e. with L≈ 400L0 obtaining

εPSD = 1.0377 ε+ 4.56 · 10−6, r = 0.9898,5

εNCF = 1.0379 ε+ 2.25 · 10−5, r = 0.9989. (32)

Hence, for the signal length comparable to the lengths from the POST campaign we can expect a small underprediction of

εPSD estimates due to bias error and some overprediction due to aliasing, see Fig. 7. Both result in a small overprediction of

εPSD (Fig. 8, left column, lower plot). As far as εNCF is concerned, the simulation analysis shows that it is less sensitive to the

bias error (Fig. 8, right column), however it has a larger scatter than εPSD, at least for the generated artificial velocity fields.10

Results for the 40Hz signal are slightly overpredicted (Fig. 8, right column, lower plot) due to aliasing and the fact that the

number of crossing method gives somewhat larger ε estimates in this fitting range, see Fig. 7.
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Figure 8. Estimated values of εPSD and εNCF for synthetic 40Hz signals and fitting range 0.3− 5Hz as functions of corresponding input ε

resulting from the theoretical profile, Eq. (29) for upper plots: signals with L≈ 50L0, lower plots: signals with L≈ 400L0.
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Finally, we would like to address the issue of larger scatter observed for εNCF . It follows from our study that the scatter

in εNCF depends on the value of filter cut-offs in the fitting range. In the final test, we set u′ = 0.28ms−1 and input epsilon

ε= 2.5 · 10−4m2s−3 and in constant and repeated the simulation 500 times for consecutively, 1/512, 1/265, 1/128, 1/65 of

the original signal of 217 points, which, in terms of L0 in Eq. (29) corresponds to approximately 1L0,2L0,4L0,6L0. We band-

pass filtered the signal and consider small fitting range of 16− 18Hz. We normalised the obtained results by the input ε and5

calculated their standard deviations. Results presented in Fig. 9 show that at least for this case the standard deviations of ε+NCF
is comparable with the standard deviation of ε+PSD

4.3 Method based on missing spectrum recovery

The measurement signal used in Section 4.1 was also analysed using the second method proposed in Section 3.2, Eqs. (27,28).

We will consider both formulas for the function fη , Eqs. (23) and (24). The advantage of the simpler, exponential formula10

(23) is that the one-dimensional spectrum function E11(k1), Eq. (26) can be written in terms of the incomplete Γ function as

follows

E11(k1) = Cε2/3 (βη)
5/3
[
Γ(−5/3,k1βη)− (βη)

2
k21Γ(−11/3,k1βη)

]
, (33)
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here

Γ(a,x) =

∞∫
x

e−tta−1dt. (34)

The correcting factor (27) in terms of the Γ functions reads

CF = 1 +

∫∞
kcutβη

ξ21
[
Γ(−5/3, ξ1)− ξ21Γ(−11/3, ξ1)

]
dξ1∫ kcutβη

0
ξ21 [Γ(−5/3, ξ1)− ξ21Γ(−11/3, ξ1)]dξ1

. (35)

If Eq. (24) is used as a model for fη , both integrals in Eq. (27) must be calculated numerically. On the other hand, as discussed5

in Pope (2000), (24) provides a better fit of experimental data in the dissipative range.

With such preparation we applied the iterative procedure, as described in Section 3.2. In POST experiment the effective

cut off frequency was estimated at fcut = 5Hz which corresponds to kcut = (2πf)/U = 0.57m−1. Using the sixth order

Butterworth filter this resulted in u
′2N2

cut = 0.0000719 · 1/s2 for this signal. Accordingly we used the Algorithm 1 with ν =

1.5·10−5m2s−1 and dη = 10−6m. We approximated the integrals in Eq. (35) using the trapezoid rule. The results of successive10

approximations of CF and ε converge fast to a fixed value, independently of the initial guess of ε= ε0 (Fig. 10a). The increment

dk1 in Eq. (35) was approximated by ∆k1 = 5 · 10−6 m−1. For such choice we obtained εNCR = 2.61 · 10−4 m2s−3. We used

this as a reference value. In order to estimate the numerical accuracy of the proposed algorithm we calculated the error ∆ε=

|ε− εNCR| for different values of ∆k1, see Fig. 10b. We obtain ∆ε∼∆k1.31 .

Next we considered Eq. (24) as a model for fη and calculated the double integral in equation (27) using the trapezoid rule. We15

obtained the corresponding value εNCR = 2.58 · 10−4 m2s−3, which is very close to the estimate from the simple exponential

form Eq. (23) and Eq. (35).

It is worth noting that the proposed method is accounting for a dominant (and not directly measured) part of the spectrum

based on the theoretical knowledge about its shape. This knowledge is simply reduced to the form of the correcting factor CF ,

Eq. (27), which contains integral of k21E11(k1). Fig. 11 illustrates the relation between the measured and the estimated part20

of the spectrum for the analysed case with both forms of the function fη , Eqs. (23) and (24). The spectral cut-off of the data

considered here (5Hz) is in the inertial range, where k21E11(k1) with both forms of fη functions are almost indistinguishable,

see Fig. 11. At the same time integrals of the remaining (recovered) parts of k21E11(k1) are almost equal, as independently

of the choice of fη , both dissipative spectra 2νk2E(k) must integrate to ε. As a result, for the given spectral cut-off, εNCR

estimates with the simple exponential Eq. (23) and Eq. (24) forms of fη are very close. This might change for larger cut-off25

frequencies. We expect that in case the cut-off frequency is placed in a region influenced by the form of fη function, the

spectrum with Eq. (24) will provide better estimates of the TKE dissipation rate.

The result of application of this method εNCR = 2.58·10−4 m2s−3 with fη described by Eq. (24) εNCR = 2.61·10−4 m2s−3

with fη from Eq. (23) is comparable with the dissipation rates obtained using other methods, as discussed in Section 3.1,

εPSD = 2.48 · 10−4 m2s−3, εSF = 2.52 · 10−4 m2s−3 and εNCF = 2.54 · 10−4 m2s−3. The relative differences between those30

estimations are less than 5%.
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We finally checked estimates of the second method using synthetic signals as described in Section 4.2. For the cut-off

5Hz 500 artificial signals or length L≈ 400L0 and with input ε= 2.5 · 10−4m2s−3, resulting in the mean 〈εNCR〉= 2.55 ·
10−4m2s−3 and a standard deviation equal 9% of the input ε value.

5 Broader overview of the methods’ performance

Following the findings presented in the previous section both proposed methods were tested on much larger collection of5

data. For this purpose we used velocity signals also obtained during the POST research campaign. We have chosen horizontal

segments at various levels within the boundary layer from flights TO10 and TO13. These flights were investigated in detail

by Malinowski et al. (2013), due to the fact that they represent two thermodynamically and microphysically different types of

stratocumulus topped bondary layer.

The dissipation rates of turbulent kinetic energy estimated from the standard structure function method εSF and dissipation10

rates estimated from the modified zero-crossing methods εNCF and εNCR introduced in Sections 3.1 and 3.2, respectively, are

compared with the results obtained from the spectral method εPSD in Fig. 12. The use of simple exponential form of fη , Eq.

(23), or Eq. (24) did not lead to any visible change of results in Fig. 12. For flight 10 we obtained the following linear fits and

the correlation coefficients r

εSF = 0.74 εPSD + 9.1 · 10−5, r = 0.997,15

εNCF = 0.88 εPSD + 1.2 · 10−5, r = 0.995,

εNCR = 0.89 εPSD + 2.9 · 10−5, r = 0.999,

while for flight 13 we have

εSF = 0.76 εPSD + 1.4 · 10−4, r = 0.956,

εNCF = 0.75 εPSD + 1.2 · 10−4, r = 0.881,20

εNCR = 0.79 εPSD + 1.0 · 10−4, r = 0.987.

The methods based on the signal zero-crossings give comparable results to those resulting from standard methods, in spite of

the fact that the second method is based on different physical arguments (assumes form of the whole spectrum, including the

dissipative range of frequencies). We believe that the there is a fair consistency in those results because one should take into

account that the standard frequency spectra and structure function methods calculate approximate values of ε. Moreover, we25

have indicated in Section 2 that the constants C1 and C2 in Eqs. (4) and (5) are estimated with an accuracy of ±15%.
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Figure 12. Dissipation rate of the kinetic energy estimated from the structure function method εSF , zero-crossings of successively filtered

signals εNCF and zero-crossings of signals with recovered part of the spectrum εNCR as a function of εPSD (from power spectra method).

Each point represents an estimate from a single horizontal segment of flight in the atmospheric boundary layer, a) flight 10, b) flight 13.

6 Conclusions

In the present work we proposed two novel modifications of the zero-crossing method, such that it can be applied to moderate-

resolution measurements. Turbulent kinetic energy dissipation rates obtained using the proposed methods shows fair agreement

with results of the standard power-spectrum and structure function approaches.

We note that the standard structure function and power spectra methods are often used simultaneously, for better ε estimates5

(Chamecki and Dias, 2004), in spite of the same underlying physical arguments (second similarity hypothesis of Kolmogorov

(1941)). Here, the proposed approach offers yet another option. Additionally, the second method with the spectrum recovery is

based on different physical arguments, as it additionally makes use of the Kolmogorov’s first similarity hypothesis and a model

for the dissipation range of the spectrum. Still, it can be used for signals with spectral cut-offs, hence it offers an alternative to

the spectral retrieval methods.10

From the perspective of practical applications we can think of several possible advantages of the zero-crossing methods. First,

the number of signal zero-crossings can be calculated without difficulty and the proposed procedures are easy to implement.

Other advantages follow from the results of the simulation analysis performed in Section 4.2. For the created artificial velocity

signals, the εNCF estimates responded differently to errors due to finite sampling or finite time windows than εPSD. These

differences in errors of the number of crossing and the power spectral method can make the former an additional tool to improve15

estimates from the atmospheric measurements. Here, a further, detailed study of bias assessment and removal is needed.
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Moreover, we argue that the number of crossings method applied to the fully-resolved signals has become a fairly standard

tool for ε estimates, used also in the atmospheric measurements, see e.g. Poggi and Katul (2010). Therein, the discussed

advantages of the method are that no measurements of the signal gradients (to calculate the Taylor microscale) are required, no

assumptions about scaling laws in structure functions (and power spectra) are needed and no simplifications in the TKE budget

are adopted (for which ε is computed as a residual). The method proposed in the current manuscript, in particular, the second5

approach based on the recovered part of the spectrum, generalises number of crossing method and makes it applicable also for

signals with spectral cut-off. Of course, on an additional cost, as certain form of the energy spectrum must be assumed in order

to calculate the correcting factor CF . Still, the proposed method can be interesting in particular for data with cut-offs reaching

the dissipation range, but still with part of this range missing (or contaminated with noise). In such case, using only the inertial

range estimates may lead to a significant loss of information, as the data from the dissipation range are not taken into account.10

Finally, we can deal with a situation when the recorded amplitude of certain frequencies is deteriorated due to measurement

errors still, the counted number of signal zero-crossings could remain unaffected. In such cases the zero-crossing method could

be advantageous over the power-spectrum and structure-function methods.

There are several perspectives for further work. First, the proposed methods could be tested for a wider range of signals (e.g.

from Eulerian measurements within the boundary layer adopting Taylor hypothesis), characterized by different resolutions and15

obtained under varying atmospheric conditions, to assess the scope of their applicability. Second, as far as the model spectrum

is concerned, comparison with fully-resolved experimental signals or Direct Numerical Simulations data would be valuable to

test different forms of the model spectra from Pope (2000) or Bershadskii (2016).

7 Code availability

The MATLAB code written for the purpose of this study is available from the authors upon request.20

8 Data availability

POST data are available in the open database: https://www.eol.ucar.edu/projects/post/
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