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Abstract. This study presents an empirical method for optimizing polarimetric variables in order to improve the accuracy of 5 

dual-polarization radar rainfall estimation using data derived from radars operated by different agencies. The empirical 

method was developed using the Yong-In Testbed (YIT) radar operated by the Korea Meteorological Administration (KMA). 

The method is based on the determination of relations between polarimetric variables. Relations for Z − ZDR and Z − KDP are 

derived from the measurements of a two-dimensional video disdrometer installed about 30 km away from the YIT radar. 

These relations were used to adjust the polarimetric variables of the dual-polarization constant altitude plan position 10 

indicator (CAPPI) at a height of 1.5 km. The CAPPI data with the adjusted polarimetric variables were used to estimate 

rainfalls using three different radar rainfall estimation algorithms. The first algorithm is based on Z, the second on Z and ZDR, 

and the third on Z, ZDR, and KDP. The accuracy of the radar-estimated rainfall was then assessed using raingauge observations. 

Three rainfall events with more than 40 mm of maximum hourly rainfall were shown to have the best estimation when the 

method using Z, ZDR, and KDP was used. However, stratiform precipitation events were better estimated by the algorithm 15 

using Z and ZDR. The method was also applied to the data of three radars that belong to KMA and the Ministry of Land, 

Infrastructure, and Transport. The evaluation was done for six months (May–October) in 2015. The results show an 

improvement in radar rainfall estimation accuracy for stratiform, frontal, and convective precipitation from approximately 

50 % to 70 %.  

1 Introduction 20 

Quantitative precipitation estimation (QPE) using radar data is sensitive to data quality and precipitation variability such as, 

rainfall types and their temporal and spatial changes. In South Korea, the agencies of three different ministries operate 

radars: the Korea Meteorological Administration (KMA) in the Ministry of Environment, the Han River Flood Control 

Office in the Ministry of Land, Infrastructure, and Transport (MOLIT), and the Korean Air Force Weather Group in the 

Ministry of National Defense. Each agency operates their own radars for different purposes such as observing weather, 25 

hydrology, and military operational weather. In addition, the radars are operated using different observation strategies, and 

the data undergoes different processing algorithms and other relevant techniques. Because of these differences, there is a 

wide range of accuracy in the observed radar data as well as the composite images, which consist of cross-governmental 

radar measurements. These factors have greatly impacted radar-based quantitative rainfall estimation based on cross-

governmental radar measurements. Obtaining radar data with a fairly high level of accuracy is a common concern of the 30 

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-409, 2017
Manuscript under review for journal Atmos. Meas. Tech.
Published: 12 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



2 

 

three ministries. Thus, an agreement to harmonize weather and hydrological radar products was made by the three ministries 

in 2010, called "Development and application of Cross governmental dual-pol radar harmonization." The aim of the 

agreement is to produce uniformly good quality radar data and radar-based rainfall estimations, as high quality data is one of 

the most important advantages of dual-polarization radars. KMA has played a leading role in achieving these aims, which are 

the motivation for this study.  5 

It is believed that dual-polarization radar can better estimate rainfall, and many researchers have developed better radar 

rainfall estimation algorithms using polarimetric variables. Seliga and Bringi (1976) derived drop size distribution from ZDR 

and also demonstrated that rainfall can be estimated by ZDR. Others have proved that rainfall estimations using ZDR are better 

than those using the conventional Z–R relation (Seliga et al., 1986; Aydin et al., 1987). In addition, Humphrise (1974) 

showed that specific differential phase (KDP) was linearly related to the rain rate, and rainfall estimation algorithms using 10 

KDP were suggested by other researchers (Jameson, 1985; Sachidananda and Zrnić, 1986; Chandra et al, 1990). Later, 

Jameson (1991) suggested a rainfall estimation algorithm using both ZDR and KDP. Ryzhkov and Zrnić (1995a) found that 

algorithms using ZDR and KDP were better than other algorithms. The Colorado State University (CSU) ICE algorithm and 

Joint POLarization Experiment (JPOLE) algorithm are synthesized methods that selectively use Z, ZDR, and KDP with respect 

to the range of polarimetric variables or rain rate (Ryzhkov et al., 2003; Cifelli et al., 2011).  15 

Of the polarimetric variables, Z, which is a backscattered variable, can be affected by attenuation or partial beam blockage. 

Because of this feature, rainfall estimated using Z is generally lower than raingauge rainfall measurements (Austin, 1987; 

Ryzhkov and Zrnić, 1995b). Variable ZDR, which is the ratio between horizontal and vertical reflectivity, is related to the axis 

ratio of hydrometeors (Zrnić and Ryzhkov, 1999; Straka et al., 2000; Frech and Steinert, 2015). When the radar antenna 

points vertically upward, because the shape of a hydrometeor is curved in the direction of the radar beam, ZDR has to be 0 dB. 20 

Gorgucci et al. (1999) suggested a ZDR calibration method using this concept. Variable KDP, defined by the range derivative 

of differential phase shift ΦDP, is a propagation variable and not affected by attenuation or partial beam blockage (Ryzhkov 

and Zrnić, 1995a; Zrnić and Ryzhkov, 1999). Hence, KDP can offer more accurate high rain rate estimations (Sachidananda 

and Zrnić, 1986; Chandarsekar et al., 1990). 

It is widely accepted that the three polarimetric variables Z, ZDR, and KDP are related to each other (Leitao and Watson, 25 

1984; Aydin et al., 1986; Ryzhkov and Zrnić, 1996; Straka et al., 2000). Straka et al. (2000) classified hydrometeors with 

respect to the domains of polarimetric variables on Z – ZDR space and Z – KDP space. Scarchilli et al. (1996) suggested Z 

calibration using the self-consistency of Z, ZDR, and KDP. The KMA Weather Radar Center (WRC) has also suggested 

relations between polarimetric variables, such as the Z – ZDR and Z – KDP relations, using observation measurements in order 

to calibrate the Z and ZDR of its testbed radar (WRC, 2014). 30 

This study presents an empirical method to optimize polarimetric variables and produce more accurate dual-polarization 

radar rainfall estimation using radar constant altitude plan position indicator (CAPPI) data produced by different agencies. 

The polarimetric variables were adjusted using the WRC’s relations and the accuracy of the estimated rainfall using the 

adjusted variables was assessed. Three radar rainfall estimation algorithms were employed to estimate rainfall using dual-
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polarization radar. The method was evaluated by a comparison with raingauge observations.  

This paper is composed of five sections including the introduction and conclusions. Section 2 explains the empirical 

method used to improve dual-polarization radar rainfall estimation. Section 3 presents the whole process of the empirical 

method using Yong-In Testbed (YIT) radar as well as an evaluation. Section 4 applies the empirical method to data from the 

Bangryung Island (BRI), Bislsan (BSL), and Sobaksan (SBS) radars, which are operated by different agencies. Section 5 5 

concludes the paper. 

2 Empirical Method 

The empirical method is designed to improve dual-polarization radar rainfall estimation by adjusting the observed 

polarimetric variables (Fig. 1). For each adjustment process, the rainfalls are estimated by three algorithms using the adjusted 

polarimetric variables. The accuracy of each radar-estimated rainfall is then assessed. When all the adjustment processes are 10 

complete, the polarimetric variables that obtain the most accurate rainfall estimations are used as the optimized polarimetric 

variables.  

The details of Steps 1 to 6 in the flowchart in Fig. 1(b) are as follows.  

Step 1: 

This step derives the relations between polarimetric variables from ground measurements. The WRC installed a two-15 

dimensional video disdrometer (2DVD) at a ground observation station in Jincheon (hereafter Jincheon station). The 2DVD 

was installed to verify the polarimetric variables obtained by the YIT radar. The relations between polarimetric variables 

used in this study were derived using the 2DVD. In order to derive these relations, the WRC (2014) conducted experiments 

for 22 storm events that occurred during the summer of 2014. Two relations, the Z – ZDR relation (Eq. (1)) and Z – KDP 

relation (Eq. (2)), were suggested by the WRC (2014) (Fig. 2).  20 

0.2050.153DRZ Z 
                                                                                                                                                                    

(1) 

4 0.7811.853 10DPK Z  
                                                                                                                                                          

(2) 

Here, the units of Z, ZDR, and KDP are mm
6 

m
-3

, dB, and ° km
-1

, respectively. 

The crosses in Fig. 2 indicate the polarimetric variables observed by the 2DVD. The two polarimetric variable relations 

mentioned in Fig. 1(a) are represented by black solid lines in Fig. 2. These relations are reasonable, as they are within the 25 

range of values suggested by other researchers (Vivekanandan et al., 1999; Straka et al., 2000). Thus, these relations are used 

as reference relations for this study.  

Steps 2 and 3: 

Step 2, which determines the observed bivariate distribution, and Step 3, which adjusts the polarimetric variables using the 

reference relations, are explained together as they are closely linked. The bivariate distributions of Z – ZDR and Z – KDP 30 

observed by the YIT radar are shown as a hatched area in Fig. 1(a). The modes of the observed bivariate distributions are 
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adjusted so that they occur in the dashed region instead. It is, however, uncertain where the adjusted modes would occur on 

the line of the relations along the adjustment processes. If Z has no bias, the modes will vertically shift along the Y-axis. In 

other words, ZDR and KDP either increase or decrease without any adjustment to Z until the observation modes fall on the 

reference relation.  

In other cases where Z has bias, this bias can vary because of environmental factors such as temperature or humidity that 5 

impact radar performance and measurements. Therefore, a degree of adjustment must be considered. Eleven levels of 

adjustment magnitude from 0 to 10 are used. For each level, Z is increased from 0 dBZ to 10 dBZ in intervals of 1 dBZ. At 

level 0, there is no bias in Z. In this case, ZDR and KDP are increased or decreased in order that the mode of the observed 

bivariate distribution falls on the reference relation. 

Steps 4 and 5: 10 

These steps estimate the rainfall using the adjusted variables and assess its accuracy. In order to validate the empirical 

method based on the WRC’s relations, three radar rainfall estimation algorithms are employed in this study, as summarized 

in the Table 1. Algorithm R1 is considered to be the method most commonly used by hydrologists and KMA in Korea (Yoo 

et al., 2016). It is a conventional estimation algorithm (Marshall and Palmer, 1948). As this algorithm was derived from 

stratiform precipitation data, it has been shown to underestimate high rainfalls (Battan, 1973; Ryzhkov and Zrnić, 1996). 15 

Algorithm R2 was developed over 22 summer storm events by WRC (2014) as mentioned in Step 1. Algorithm R3 is the 

CSU-ICE algorithm (Cifelli et al, 2011). Algorithm R3 itself consists of four different algorithms, R(Z), R(Z, ZDR), R(KDP, 

ZDR), and R(KDP) for the given ranges of the three polarimetric variables. The rainfalls estimated by these three algorithms 

are also estimated for each magnitude determined in Step 3. 

The accuracy of the rainfalls estimated by the three algorithms was assessed using the Eq. (3) for each magnitude. Values 20 

approaching 100 % indicate a better rainfall estimation. The normalized error (NE) quantifies the absolute error, and 

maximum 1 − NE indicates minimized errors for both bias and random error. 

1 NE 1 100(%)
i i

i

R G

G

 
     

 




                                                                                                                                          

(3) 

Here, Ri is the radar-estimated rainfall (mm) for the i-th data pair and Gi is the raingauge rainfall (mm) for the i-th data pair. 

Step 6: 25 

In Step 6, the magnitude that obtains the best accuracy is selected and the polarimetric variables in this magnitude are 

considered to be optimized polarimetric variables. 

3. Evaluation of the empirical method using the YIT radar 

3.1 Input data 

The YIT radar is an S-band dual-polarization radar manufactured by Enterprise Electronics Corporation (EEC). Its 30 

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-409, 2017
Manuscript under review for journal Atmos. Meas. Tech.
Published: 12 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



5 

 

specifications are summarized in Fig. 3(a). Its location is shown in Fig. 3(b), and its radar range of 240 km covers most 

inland South Korean territory. This section presents the overall empirical method process using the YIT radar.  

In the empirical method, the primary input data for rainfall estimation was the CAPPI data of the YIT radar at 1.5 km in 

height. The CAPPI data was used as the main input data, because the impact of the bright band (or melting layer), which is 

often formed about 4–5 km in height for the cases considered in this study, can be avoided. In addition, it is assumed that 5 

hydrometeors at this height are purely rain because they are under the melting layer. The resolution of the CAPPI is 5 min in 

time and 1 km in space. Hourly accumulated rainfalls observed by 239 raingauges within 100 km of the radar range were 

used to assess the accuracy of the radar-estimated rainfall (Fig. 3(b)). Statistically, each raingauge covers about 131 km
2
, and 

the distance between two raingauges is approximately 11.4 km. 

The three storm events used to validate the method are summarized in Table 2. Event 1 (12 July 2015) was a largely 10 

developed stratiform precipitation influenced by the typhoon Chanhom, which had mainly travelled over the Yellow Sea and 

hit mainland China, as shown on the left of Fig. 4(a). The maximum recorded hourly gauge rainfall was just 18.0 mm during 

Event 1 (Fig. 4(a), middle). The bright band was also clearly detected at about 5 km in height by the YIT radar, as shown on 

the right of Fig. 4(a).  

Event 2 (23–26 July 2016) was a frontal convective precipitation with the leading convective cells in a line from the 15 

south-west to the north-east (Fig. 4(b), left). The maximum hourly rainfall of 57.5 mm was recorded at 0200 KST 25 July 

2015, as shown in the middle in Fig. 4(b). The cause was a southern cold front faced with a warm front from the north in the 

middle of the Korean Peninsula that stayed over 72 h, as shown in the surface weather chart on the right of Fig. 4(b).  

Event 3 was a multicell superstorm accompanied by strong lightning, as shown in the left and right panels of Fig. 4(c). 

The convective cells developed from 1200 to 1900 KST 8 August 2015. During this time, persistent thunderstorms and 20 

contiguous precipitation areas were produced. The strongest reflectivity appeared to be 55 dBZ and was surrounded by 45–

50 dBZ. The maximum hourly rainfall was 77 mm at 1500 KST 8 August 2015. 

3.2 Evaluation and results 

Figure 5(a) shows the observed bivariate distribution of Z – ZDR during Event 3. The solid line in the figure is the Z – ZDR 

relation of Eq. (1). As shown in Fig. 5(a), a part of the distribution at high frequency (20 < Z < 30, 0.0 < ZDR < 1.0) does not 25 

fit the relation exactly. Figure 5(b) shows the bivariate distribution of Z – KDP in Event 3. The solid line in the figure is the Z 

– KDP relation of Eq. (2). As shown in Fig. 5(b), a part of the distribution at high frequency (40 < Z < 50, 0.5 < KDP < 1.5) 

also does not quite fit the relation.  

The polarimetric variables were adjusted using the eleven adjustment magnitudes for the Z – ZDR and Z – KDP relations for 

the three events. Table 3 summarizes the adjusted results of Event 3 as an example to show how the adjustment magnitudes 30 

are set for the event. The modes of the observed Z – ZDR and Z – KDP distributions are 25.750–0.350 and 44.750–1.050, 

respectively. At magnitude 5, the polarimetric variables Z, ZDR, and KDP are increased to 5 dBZ, 0.303 dB, and 0.373 ° km
-1

, 

respectively, in order to adjust the modes so that they fit the relations. Figure 6 shows the bivariate distribution according to 

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-409, 2017
Manuscript under review for journal Atmos. Meas. Tech.
Published: 12 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



6 

 

Table 3. 

Figure 7 shows the radar-estimated rainfall derived with Algorithm R3 using the data of Table 3. As shown in the figure, 

the estimated rainfalls approach a one-to-one line as the polarimetric variables are adjusted, indicating that the bias has 

decreased. The variability is also reduced, which indicates that the random error has decreased. The best accuracy for rainfall 

estimation is obtained between magnitudes 6 and 8. 5 

The accuracy of the rainfall estimations according to the eleven magnitudes is illustrated in Fig. 8. The accuracy of rainfall 

estimations using the observed polarimetric variables without adjustment are plotted along the Y-axis (labelled "No Adj."). 

Generally, the plots show increasing accuracies as the level of adjustment increases from magnitude 0 to the magnitude level 

that gives the best accuracy. Once each event reaches the best accuracy at a certain magnitude, then the accuracy tends to 

decrease as the level of adjustment further increases.  10 

Event 1 almost symmetrically changes before and after the best accuracy at magnitude 5. Event 2 forms a plateau with a 

longer, gradually increasing upwards slope, as shown in Fig. 8(b), as there are no big changes after magnitude 7, which 

obtains the best accuracy. Event 3 is quite similar to Event 1, although it has a wider range of decreasing accuracy rates for 

magnitudes 6–10. Nevertheless, the three algorithms for all events show that a certain magnitude of adjustment produces the 

best rainfall estimation accuracy.  15 

Table 4 summarizes the accuracy obtained by the three algorithms using the observed ("Before") and optimized ("After") 

polarimetric variables. The accuracy of the rainfall estimation using optimized polarimetric variables is more than 70 % 

accurate for most cases. For Event 2, an accuracy of a more than 75 % was obtained by all algorithms using the optimized 

polarimetric variables.  

For stratiform precipitation (Event 1), accuracies from 66.9 % to 71.9 % for the estimated rainfalls were obtained by all 20 

algorithms. Algorithm R3 does not rely much on the KDP variable for Event 1; therefore, its performance is similar to the 

performance achieved by the algorithm using Z and ZDR (Algorithm R2). Algorithm R3 was able to obtain a better accuracy 

for convective precipitation (Event 3).  

Algorithm R2, which was suggested by WRC, performed fairly well on all three events. The best accuracy for each event 

was gained using polarimetric variables adjusted using magnitudes 5 (Event 1) and 8 (Events 2 and 3). Algorithm R2 has a 25 

performance that is very similar to those of Algorithms R1 and R3, although each algorithm obtains the best accuracy using 

polarimetric variables adjusted by different magnitudes. Thus, the relations of the polarimetric variables for Algorithm R2 

can be regarded as suitable for estimating rainfall using the YIT radar.  

Hourly rainfalls estimated by Algorithm R3 using optimized polarimetric variables are compared to hourly gauge rainfalls 

for the three events in Fig. 9. As shown in the figure, the radar-estimated rainfalls have nearly the best accuracy. Furthermore, 30 

their relationships with the observed rainfalls formed nearly a one-to-one line for all events. However, rainfalls 

underestimated by the radar still exist, as there are circle points along the X-axis. This could be caused by the attenuation of 

Z caused by partial beam blockage.  
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4 Application of the method to radars operated by different ministries 

4.1 Input data 

In this section, rainfall was estimated using radar data and its accuracy was assessed for the BRI radar of KMA and the BSL 

and SBS radars of MOLIT using the empirical method developed using the YIT radar. The Z – ZDR and Z – KDP relations and 

Algorithm R2 complemented by WRC (2015) were used (Eqs. (4)–(6)). The specifications of the three radars are 5 

summarized in Fig. 10(a) and their locations are shown in Fig. 10(b). While the observational range of the weather radar is 

240 km, the observational range of the rain radar is 150 km so that the rain can be monitored at a low altitude and 

contamination by the bright band can be avoided. This study used automatic weather stations (AWSs) within 150 km of the 

radar range to assess the accuracy of the three radars under the same conditions (Fig. 10(b)). In addition, all events from May 

to October 2015 (17 events for the BRI radar, 27 events for the BSL radar, and 28 events for the SBS radar) were used for 10 

the accuracy assessment (Table 5).  

20.1015 0.00511 0.00049DRZ Z Z   
                                                                                                                                   

(4) 

13 7.52.575 10DPK Z  
                                                                                                                                                          

(5) 

0.91 4.24672 : ( , ) 0.0081DR DRR R Z Z Z Z   
                                                                                                                                    

(6) 

4.2 Results 15 

Figure 11 shows scatter plots for the hourly gauge rainfall and hourly rainfall estimated using the observed polarimetric 

variables. As shown in the figure, the rainfalls estimated by the three radars show different accuracies. The BRI and BSL 

radars underestimate the rainfalls using the three algorithms. Although using ZDR and KDP reduced the bias for the BSL radar, 

the correlation between the gauge rainfall and radar-estimated rainfall was lower. With regard to the SBS radar, Algorithm 

R1 underestimated the rainfall. Algorithm R2 was more accurate, but the correlation between gauge rainfall and the rainfall 20 

estimated by Algorithm R3 was lower. 

In fact, the accuracy of the rainfall estimated by Algorithm R2 was high, because the ZDR observed by the SBS radar was 

generally low. Figure 12 shows the observed bivariate probability distribution of Z – ZDR for the three radars for stratiform 

precipitation events. The bold line is the Z – ZDR relation suggested by WRC (2015) (Eq. (4)). As shown in the figure, the 

ZDR of the BRI and BSL radars was mostly higher than the Z – ZDR relation (Figs. 12(a) and (b)). However, the ZDR of the 25 

SBS radar was mostly lower than the Z – ZDR relation, even when the variables were negative (Fig. 12(c)). In Algorithm R2, 

because the exponential factor of ZDR is negative, the negative ZDR increased the rainfall underestimated by Z. Furthermore, 

the accuracy was also increased. However, the negative ZDR of the SBS radar is an abnormal observation, as it indicates hail, 

which is not often observed in Korea during the summer. Another evidence of abnormal observation is the rainfall estimation 

obtained by Algorithm R3. The correlation between the gauge rainfall and rainfall estimated by Algorithm R3 was 30 
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deteriorated, because this algorithm filtered out the negative ZDR. This indicates that the polarimetric variables of the rain 

radars also need to be adjusted.  

Figure 13 shows the accuracy of the radar-estimated rainfall according to the magnitude of adjustment of the radars for the 

events shown in Fig. 12. As shown in the figure, for all three algorithms and radars, there is a certain magnitude of 

adjustment that produces the best rainfall estimation accuracy. The most accurate estimation used reflectivity alone, although 5 

it was adjusted by a greater magnitude than the dual-polarization variables. 

Figure 14 shows scatter plots for hourly gauge rainfall and hourly radar-estimated rainfall using the optimized polarimetric 

variables. As shown in the figure, the relationships between the gauge rainfalls and radar-estimated rainfalls are better than 

those in Fig. 11, and a nearly one-to-one line was formed for all three algorithms and radars. The accuracies before and after 

adjustment are summarized in Table 6. The accuracy before adjustment of the polarimetric variables is from 33.3 % to 10 

57.8 %. However, the accuracy after the adjustment ranges from 65.7 % to 70.5 % and shows similar performance for all 

events and radar sites. These results show that the empirical method can provide more reliable rainfall estimates not only for 

individual radar sites but also for composite CAPPI data from multiple radar sites.  

5 Conclusions 

In this paper, an empirical method was introduced and demonstrated for different types of precipitation at four radar sites 15 

operated by different agencies in Korea. The polarimetric variables were adjusted by the WRC’s polarimetric variable 

relations (Z – ZDR and Z – KDP). This method yields better accuracy rainfalls estimated by three algorithms using dual-

polarized radar data. Further details of the results are as follows. 

First, for all three algorithms for all events, a certain magnitude of adjustment produced the best rainfall estimation 

accuracy. This means that the radars used for this study have similar ranges of polarimetric variables, even though they are 20 

made by different manufacturers and are operated and maintained using different strategies.  

Second, the observed bivariate distributions between the polarimetric variables did not correspond with the reference 

relations. The polarimetric variables of all radars did not fit the relation, and even those of the SBS radar took on negative 

values, even though hydrometeors with negative ZDR do not often develop or occur in Korea in the summer. Therefore, the 

distributions between polarimetric variables could be moved onto the reference relation line after they have been adjusted 25 

using the best-performing magnitudes of adjustment for the observed polarimetric variables. 

Third, the accuracy of the rainfall estimation using the optimized polarimetric variables showed about a 70 % accuracy for 

the YIT radar. Event 2 obtained an accuracy of more than 75 %. The accuracy of the rainfall estimated by Algorithm R2 

(suggested by WRC) was similar to the accuracy of the other algorithms (Algorithms R1 and R3). Therefore, the relations of 

the polarimetric variables used in Algorithm R2 can be regarded as suitable for estimating rainfall using the YIT radar. 30 

Fourth, the accuracy of the radars operated by different agencies ranged from 33.3 % to 57.8 % before the adjustments. 

The difference between the maximum and minimum accuracy was more than 20 %. However, the accuracy ranged from 

65.7 % to 70.5 % after the adjustments and the difference decreased to less than 5 %. In addition, the accuracy increased to 
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approximately 70 % after the adjustment.  

This study shows that the empirical method to adjust polarimetric variables using the referential relations suggested by 

WRC is a reliable method for overcoming measurement biases in dual-polarization radars for rainfall estimation. It will be 

useful for quantitatively improving the rainfall estimation of newly install radars, as establishing optimal or reliable quality 

control algorithms on new radars such as the YIT radar takes long time. In addition, the empirical method could be useful for 5 

improving the accuracy of radars operated by different agencies. Nevertheless, there is still much room for improvement in 

the method, particularly for radar measurements with partial beam blockage and severe systematic biases. Thus, this method 

will continue to be developed through applications to more varied precipitation types and real-time adjustment of the 

polarimetric variables in the near future. 
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Table 1. Three applied radar rainfall estimation algorithms 

Name Algorithm 

R1 0.625( ) 0.0365R Z Z   

R2 0.91 4.2467( , ) 0.0081DR DRR Z Z Z Z     

R3 If (
10.3DPK km   and 38dBZZ  ) and 0.5dBDRZ   

0.93 1.69( , ) 90.8DP DR DP DRR K Z K Z      

If (
10.3DPK km 
 
and 38dBZZ  ) and 0.5dBDRZ   

0.85( ) 40.5DP DPR K K    

If (
10.3DPK km   or 38dBZZ  ) and 0.5dBDRZ   

0.93 3.43( , ) 0.0067DR DRR Z Z Z Z      

If (
10.3DPK km   or 38dBZZ  ) and 0.5dBDRZ   

0.7143( ) 0.0170R Z Z    
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Table 2. Storm events analyzed in this study 

Event Date 
Duration 

(h) 

Maximum rainfall 

(mm h
-1

) 
Type 

1 0000 KST 12 July 2015–2300 KST 12 July 2015 24 18.0 Typhoon 

2 0000 KST 23 July 2015–2300 KST 26 July 2015 96 57.5 Frontal 

3 0000 KST 08 August 2015–2300 KST 08 August 2015 24 77.0 Convective 
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Table 3. Adjustment magnitude (M) for relations between the polarimetric variables 

M 

 Z - ZDR
 

 Z - KDP
 

 Relation  Adjustment  Relation  Adjustment 

 Z 

(dBZ) 

ZDR
 

(dB) 

 Z 

(dBZ) 

ZDR
 

(dB) 

 Z 

(dBZ) 

KDP
 

(° km
-1

) 

 Z 

(dBZ) 

KDP
 

(° km
-1

) 

0  25.750 0.516  0.000 0.166  44.750 0.579  0.000 −0.471 

1  26.750 0.541  1.000 0.191  45.750 0.693  1.000 −0.357 

2  27.750 0.567  2.000 0.217  46.750 0.830  2.000 −0.220 

3  28.750 0.594  2.000 0.244  47.750 0.993  2.000 −0.057 

4  29.750 0.623  4.000 0.273  48.750 1.189  4.000 0.139 

5  30.750 0.653  5.000 0.303  49.750 1.423  5.000 0.373 

6  31.750 0.658  6.000 0.335  50.750 1.704  6.000 0.654 

7  32.750 0.718  7.000 0.368  51.750 2.040  7.000 0.990 

8  33.750 0.753  8.000 0.403  52.750 2.441  8.000 1.391 

9  34.750 0.789  9.000 0.439  53.750 2.922  9.000 1.872 

10  35.750 0.827  10.000 0.477  54.750 3.498  10.000 2.448 
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Table 4. Best accuracy of radar rainfall estimations with used magnitude (M) for four events 

Algorithm 

 Event 1  Event 2  Event 3 

 
M 

1-NE (%)  
M 

1-NE (%)  
M 

1-NE (%) 

 Before After  Before After  Before After 

R1  4 57.5 66.9  9 31.7 76.1  9 40.6 72.8 

R2  5 47.4 71.4  8 28.0 75.2  8 34.0 68.5 

R3  5 49.8 70.6  7 33.6 75.7  7 46.6 73.6 
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Table 5. Events applied to the assessment of accuracy for BRI, BSL and SBS Radar 

Radar  No.  Date 

BRI 
 

17 
 05/03, 05/11, 05/12, 06/11, 06/25, 06/26, 07/12, 07/25, 08/05, 08/08, 09/05, 09/11, 

09/12, 09/23, 10/01, 10/10, 10/11 

BSL 

 

27 

 05/03, 05/11, 05/12, 05/18, 05/30, 06/25, 06/26, 07/08, 07/09, 07/12, 07/23, 08/11, 

08/12, 08/13, 08/21, 08/25, 09/01, 09/05, 09/06, 09/11, 09/12, 09/16, 09/17, 09/23, 

10/01, 10/10, 10/11 

SBS 

 

28 

 05/03, 05/11, 05/12, 05/18, 05/30, 06/25, 06/26, 07/08, 07/12, 07/22, 07/23, 07/24, 

07/29, 08/02, 08,08, 08/25, 08/28, 09/01, 09/05, 09/06, 09/11, 09/12, 09/16, 09/17, 

09/23, 10/01, 10/10, 10/11 
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Table 6. Accuracy of the radar rainfall before and after the adjustment (from May to Oct 2015) 

Algorithms 

 1−NE(%) 

 BRI  BSL  SBS 

 Before  After  Before  After  Before  After 

R1  40.8  65.7  47.9  68.1  38.6  69.4 

R2  33.3  66.0  37.3  70.5  57.8  68.9 

R3  37.9  67.6  41.4  67.8  38.5  70.0 
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(a) (b) 
Figure 1. Empirical method: (a) schematic diagram and (b) flowchart  
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(a) (b) 

Figure 2. Relations between polarimetric variables derived from 2DVD measurements: (a) Z – ZDR relation and (b) Z – KDP 

relation  
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YIT 

Manufacturer 
EEC 

(US) 

Antenna 

diameter(m) 
8.5 

Beam width(°) 1.0° 

Transmitting tube Klystron 

Band S 

Transmitting 

frequency(MHz) 
2,879.0 

Peak power(kW) 850 

Observational 

range(km) 
240 

 

100 km

240 km

YIT Radar

AWS

Jincheon station

 

(a) (b) 

Figure 3. (a) Specifications of the YIT radar and (b) locations of the YIT radar, AWSs within 100 km of the radar range, and 

Jincheon station 
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(a) 

   
(b) 

 
 

 
(c) 

Figure 4. Radar images (left), 60-min accumulated gauge rainfalls (middle), and reference images (right) for (a) Event 1, (b) 

Event 2, and (c) Event 3 
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(a) (b) 

Figure 5. Observed bivariate distributions of (a) Z – ZDR and (b) Z – KDP 
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(a) 

   

 
 

 

(b) 

Figure 6. Bivariate distributions of (a) Z – ZD and (b) Z – KDP with respect to the magnitude of adjustment in Event 3 
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Figure 7. Comparison of the hourly gauge rainfall with respect to hourly radar-estimated rainfall in Event 3 according to the 

magnitude of adjustment (using  Algorithm R3) 
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(a) (b) 

 
(c) 

Figure 8. Accuracy of rainfall estimations at eleven magnitudes of adjustment for polarimetric 

variables: (a) Event 1, (b) Event 2, and (c) Event 3 
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(a) (b) (c) 

Figure 9. Comparison of the hourly gauge rainfall with the hourly radar-estimated rainfall obtained by Algorithm R3 with 

the best accuracy: (a) Event 1, (b) Event 2, and (c) Event 3 
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Transmitting 

frequency(MHz) 
2,879.0 2,795.0 2,862.5 

Peak power(kW) 850 750 750 

Observational 

range(km) 
240 150 150 

 

 

(a) (b) 

Figure 10. (a) Specifications of the BSL and SBS radars and (b) locations of the BSL and SBS radars and AWSs within 150 

km of the radar ranges 
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(a) BRI Rad`ar 
   

(a) BSL Radar 
   

(b) SBS Radar 

Figure 11. Comparison of hourly gauge rainfall and hourly radar-estimated rainfall before adjustment from May to October 

2015 (using Algorithms R1, R2, and R3 from left to right) 
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(a) BRI Radar(12 July 2015) 

 
(b) BSL Radar(21 August 2015) 

 
(c) SBS Radar(02 August 2015) 

 

Figure 12. Observed bivariate probability distribution of Z – ZDR 
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(a) BRI Radar (12 July 2015) 

 

(b) BSL Radar (21August 2015) 

 

(b) SBS Radar (02 August 2015) 

Figure 13. Accuracy of the radar rainfall with respect to the magnitude of adjustment 
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(a) BRI Radar 
   

(b) BSL Radar 
   

(c) SBS Radar 

Figure 14. Comparison of hourly gauge rainfall and hourly radar-estimated rainfall after the adjustment from May to 

October 2015 (using Algorithms R1, R2, and R3 from left to right)  
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