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Abstract. We present results of a feasibility study that uses Artificial Neural Networks (ANN) for the 10 

retrieval of intensive microphysical parameters of atmospheric pollution from combinations of 

backscatter (β) and extinction coefficients (α) that can be measured with multiwavelength Raman and 

high-spectral resolution lidar at 355, 532, and 1064 nm. We investigated particle effective radius, and 

the real and imaginary part of the complex refractive index. ANN could be a useful alternative or 

supplementary method over the traditional approach of retrieving microphysical particle properties with 15 

classical inversion algorithms because data analysis with ANN is significantly faster and allows for 

investigating the information content of the optical input data. We investigated the data combinations 

3β+2α, 3β+1α (355 and or 532 nm), 2β (532, 1064 nm) +1α (532 nm), and 3β with Feedforward 

Backpropagation Multilayer Perceptron Neural Networks. The synthetic optical data were computed 

with a Mie-scattering algorithm for monomodal particle size distributions. Mean radii of the size 20 

distributions ranged between 0.01 and 0.5 µm, and mode widths ranged between 1.4 and 2.5 resulting in 

effective radii between 0.13 and 4.1 µm. We tested real parts between 1.2 and 2, and imaginary parts 

between 0.0i and 0.1i. The complexity of developing the networks did not allow us to test the influence 

of measurement errors of the optical data but the error produced by the ANN can be quantified. From 

the five basic data combinations, our current network design allows us to derive effective radius with an 25 

accuracy of approximately ±16 to ±35%, and ±17 to ±39% if the true mean radii is in the range from 
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110 - 250 nm, and 260 - 500 nm, respectively. The real part can be derived with an accuracy of 

approximately ±7 to ±10%. We find retrieval errors of approximately ± 31 to ±38% for the imaginary 

part. We show that ANN can potentially estimate some particle parameters with various levels of 

uncertainty not only from what we denote as 3β+2α information but also from data combinations of 30 

3β+1α (355 or 532), 2β (532, 1064) +1α (532), and 3β. We hypothesize that the ANN carries out first a 

pre-selections of various values of extinction-based Ångström exponents with regard to effective radius 

and then uses this information to create the strong correlation between particle effective radius and lidar 

ratios in all particle size distributions (PSDs) we investigated. 

 35 

1 Introduction 

Radiometers and light detection and ranging (LIDAR) instruments on satellites and at ground are 

fundamental methods for the investigation of the impact of atmospheric pollution and trace gases on 

global climate change. Reports regularly published by the Intergovernmental Panel on Climate Change, 

IPCC (IPCC and Press, 2013) point to the uncertainty of climate change forecast with regard to 40 

particulate pollution. Particulate pollution stems from natural and man-made sources, i.e., sea salt and 

mineral dust, smoke from forest fires, urban haze from traffic and industrial activities. These particles 

have different lifetimes that can span hours to weeks. They appear in various heights of the atmosphere 

from the ground to stratospheric heights. Their chemical and physical properties are variable and 

depend on generation mechanisms, transport time, and can be affected by various factors such as 45 

ambient humidity, the condensation of gases on existing particles, gas-to-particle transformations, and 

the mixing of particles in terms of internal and external mixtures. All these factors describe only a part 

of the complex aerosol system. Various experimental and theoretical methods are needed for the 

detection and characterization of these particles. 

In the past 20 years Raman lidar has evolved into a standard method for the observation of aerosols 50 

(Ansmann and Müller, 2005). Lidar is the only method that allows us to detect particle properties under 

ambient atmospheric conditions on a vertically highly-resolved scale. These days many lidars can 
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operate under 24/7 conditions. Though aircraft missions can also provide profiles of aerosol profiles, 

these activities are limited to episodes during field campaigns. The time spans of data acquisition are by 

far less than what can be achieved by, e.g., lidar which can measure for days or weeks unless hardware 55 

failure, maintenance, or adverse weather conditions force the shut-down of the instrument. 

Lidar networks such as the European Aerosol Research Lidar Network (EARLINET), 

www.earlinet.org (Pappalardo et al., 2014) and space-borne lidars, of which CALIOP (Winker et al., 

2004; Winker et al., 2007) aboard CALIPSO (Winker et al., 2009) is the first example of a successful 

long-term aerosol lidar mission, have started to create an enormous amount of data that needs to be 60 

analyzed. Upcoming missions involve ESA’s high-spectral resolution lidars aboard the ADM Aeolus 

(Stoffelen et al., 2005) and the EarthCARE (https://earth.esa.int/web/guest/missions/esa-future-

missions/earthcare) satellites. Even though satellite missions employing passive remote sensors also 

generate a large amount of data the addition of the vertical resolution adds another dimension in the data 

set. This spatial dimension leads to a significant increase of the amount and complexity of the data 65 

which should preferably be analyzed in real-time particularly with respect to space-borne lidar.  

Since the early 1990s Raman lidar (Ansmann et al., 1990) has become the workhorse for 

quantitative aerosol characterization, as this lidar method allows for measuring particle backscatter and 

extinction coefficients. EARLINET activities in the past 15 years focused on developing infrastructure 

in terms of reliable, quality assured instruments and software for data analysis. Automated-algorithms 70 

that allow for fast, unsupervised analysis of lidar signals acquired by the various lidar stations are in the 

test phase. This single-chain approach currently focusses on the retrieval of the optical aerosol 

parameters that can be measured with Raman lidar, notably backscatter and extinction coefficients. This 

approach follows the philosophy of coherent, fast analysis of signals acquired by the AERONET sun 

photometer network (Holben et al., 1998; Holben et al., 2001). 75 

The development of multiwavelength Raman lidar in the mid-1990s offered another dimension in 

exploiting Raman lidar data. Inversion algorithms (Kolgotin and Müller, 2008; Qing et al., 1989; 

Tikhonov, 1977; Twomey, 1977) have been developed with the purpose of extracting microphysical 
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information, such as particle size and the complex refractive index, from which optical properties such 

as single scattering albedo can be inferred (Böckmann et al., 2005; Müller et al., 1998; Veselovskii et 80 

al., 2002). Significant progress has been made with regard to inversion algorithm development. Case 

studies dealt with the proof of concept of the algorithms in the late 1990s to the mid 2000 (Böckmann et 

al., 2005; Müller et al., 1999a; b; Müller et al., 1998; Müller et al., 2003; Müller et al., 2000; 

Veselovskii et al., 2002; Veselovskii et al., 2004). The inversion methodologies were improved to the 

point that it became possible to derive profile-like microphysical data products (Kolgotin and Müller, 85 

2008;  Müller et al., 2011; Veselovskii et al., 2009) In recent years significant efforts have been made in 

automating the methodology developed by Müller et al. (1999a) to the point that unsupervised, real-

time data analysis has become possible (Müller et al., 2014).  

Despite this encouraging progress we started following another path of data analysis, i.e. the use of 

Artificial Neural Networks also known as Neural Networks (NN) in order to explore if NN or a 90 

combination of NN with the traditional mathematical algorithms could in future increase data 

processing speed and the quality (accuracy and precision) of the data products which in part are still not 

meeting the requirements requested by the climate modeling community. We also want to explore what 

types of combinations of backscatter and extinction coefficients (in terms of number of channels) could 

potentially deliver some of the data products we are interested in. 95 

In this contribution we present for the first time results of a large scale sensitivity analysis in which 

we tested various simple NN configurations and developed a successful NN design during a 5-years 

effort to explore if NN can be used for support in data inversion. NNs are inspired by biological neural 

networks (biological neurons) of our human brain consisting of 10
9
-10

10
 neurons (small information 

processing elements) which communicate through an interconnected network (approximately 10
4
 100 

connections per element). NN works as massively parallel distributed computing networks, and are 

similar to biological neural systems in their main characteristics. Generally NN models are similar to 

well-known statistical models, e.g. non-linear regression; however the nomenclature of NN is unlike 

compared to that in statistics. In order to cross-validate an NN model, selected datasets are divided into 
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training set and test set where the independent variables are termed as input and NN estimated values 105 

are called output. 

We had to start with literally no experience in this research area, in part in view of lack of 

appropriate literature with regard to aerosol lidar applications. We tested the most traditional NN which 

is the feed forward backward propagation method. We kept the input data comparably simple but still 

complex enough so that we could simulate atmospheric aerosol conditions to a reasonable degree. We 110 

tested various combinations of data that can be obtained from high-end multiwavelength lidar and less 

developed lidar in order to test if there is a threshold to the necessary number of data that could make 

NN useful for our purposes. It is clear that such a study is not only complex but time consuming as NNs 

exist in a variety of designs. There also is the question of how representative the input data have to be 

for the training, testing, and validation steps. For example we could not yet investigate the impact of 115 

measurement errors of the optical data on the performance of the NN that we used in our study. 

Nonetheless this study provides the first insight to the potential usefulness of neural networks for the 

analysis of lidar data and the study points toward directions of future research work in that area.  

Figure 1 shows a flow chart of the overall procedures of our ANN study for the analysis of 

multiwavelength Raman/HSRL lidar data. Section 2 will provide an overview on our NN design. We 120 

will describe the choice of our training data and the design of our simulation study. We tested more than 

fifty different network topologies, among them the most important twenty five network topologies are 

summarized in this study. The best NN topology which is feasible for our work was selected from those 

twenty five topologies. See the appendix section for details of network topologies. Section 3 will 

describe the results of our main target of our sensitivity study, i.e. retrieving effective radius and, as a 125 

byproduct the complex refractive index for various configurations of input data. We focus on some key 

data combinations which are important of stand-alone multiwavelength lidar and future space-borne 

lidar missions in which a down-scaled multiwavelength lidar might be coupled with passive remote 

sensing instruments. Section 4 will present a summary and outlook.  

 130 
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2 Methodology 

2.1 Feedforward Backpropagation Multilayer Perceptron Neural Network 

Figure 2 shows a schematic display of the general feedforward multilayer perceptron neural 

network (FFBP-MLP). In its most simple design a FFBP-MLP consists of three layers, i.e., the input 

layer, the hidden layer, and the output layer. In the FFBP-MLP architecture a functional link is 135 

interconnecting these layers (Hagan et al., 1996). The neurons are linear or nonlinear computing 

elements. Adjacent layers are connected to each other by neurons, but there are no lateral connections 

between neurons within one layer, however feedback connections are possible.  

The input variables which can be denoted as I = [i1, i2 … in], are functionally linked with the main 

processing elements, i.e., the neurons. Each single neuron is given a relative weight W = [w1, w2 … wn] 140 

which determines the impact of each input. These network weights are adaptive coefficients within the 

network. The weights determine the proper intensity of the input signal by applying a bias value bk, 

which is a random initial value i.e., real number multiplied with a weight value. The neuronal outputs 

are generated by the summation block which adds up all of the weighted input signals algebraically. The 

information in this network flows in one direction, from input layer to output layer, via the hidden layer. 145 

The forward propagation step starts with uploading an input pattern into the input layer. In our study 

this means that optical data sets are presented to the network. The network then processes the data in the 

hidden layer and converts the calculated signals of the hidden layer to the output layer. 

We trained our neural network model with an algorithm, i.e., perceptron named the generalized 

delta rule. This delta rule processes derivatives by a simple chain rule called backpropagation (Werbos, 150 

1994) in which the network errors i.e., the difference between true solutions and neural network 

generated solutions propagate backward and again check for new weight values. During this weight 

correction procedure, the configuration of the optimum values between output values (e.g., effective 

radius, real and imaginary parts of refractive index) and target values (their true solutions) are chosen by 

computing their differences. In this study, training means a set of input parameters is used in a 155 

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-7, 2016
Manuscript under review for journal Atmos. Meas. Tech.
Published: 29 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



7 

 

combined fashion to search for a specific targeted parameter by repeated adjustments of weights and a 

fixed random bias value, on the basis of a comparison between the target and network-generated output, 

until the output ends up in an optimal correlation with the target.  The hidden layers use a nonlinear 

activation function (Hagan et al., 1996) and the whole MLP model becomes truly nonlinear. The 

purpose of using a nonlinear activation function is that it introduces nonlinearity into the neural network 160 

to solve our linearly inseparable retrieval problem. The activation function for each neuron is the sum of 

all its input values multiplied by their corresponding connection weights. Once the activation neuron is 

computed, the output values Ok, as shown in figure 2 can be easily determined by applying a transfer 

function which transforms the output signals into NN estimated target values.  

 165 

2.2 Workflow of the FFBP- MLP Neural Networks Model 

Figure 3 shows a simple graphical outline of the FFBP-MLP neural network model that we used for 

the training phase. The Neural Network Toolbox in MATLAB software (version 2012b) has been used 

to design the NNs we used in our study. We limited our study to five basic combinations of backscatter 

and extinction data. Figure 3 shows the approach that we used when effective radius is chosen as target 170 

parameter (output neuron). 5 hidden neurons are used in a single hidden layer. The minimum and 

maximum values of the input and target parameters (input and output neurons) are shown in the red 

colored boxes. When we inserted the input values (input parameters/neurons) in the model, no values of 

output were used as input, which makes the model very robust to construct an input - output mapping 

relationship. The complex refractive indices (real and imaginary part), though not the main target of our 175 

study, were also trained by using the above mentioned model (not shown here). 

There exists a variety of network designs and types of neural networks, each of them can be suited 

to particular applications. We considered a number of network architectures and parameters in order to 

determine the optimum model configuration of our study. Among the configurations we tested the 

feedforward backpropagation multilayer perceptron performed the best training results on the basis of 180 

the coefficient of determination (R
2
) between the known (true) value and the value obtained from our 
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NN. The coefficient of determination statistic shows the normalized information of the goodness of fit 

of a model. It describes how strongly the regression straight-line estimates the true data points and 

provides mean squared errors of training, testing, and validation data. We find five hidden neurons in a 

single hidden layer to be the best choice for our research work. This decision was based on the fact that 185 

we obtained the minimum of the Mean Squared Error (MSE) in the training phases in which we used 

different numbers of hidden neurons. 

We used one FFBP-MLP model for all training and simulation cases. Figure 4 shows the workflow 

of how the optical data were used for training the NN. At the beginning we insert the input and output 

parameters in the neural network. Then the network activation function is used, followed by the 190 

allocation of transfer functions and number of hidden neurons. 

We randomly selected a subset of 70% of the input data for training our model. We used 20% of 

the data for testing the performance of the model. The remaining 10% of the data were used for the 

validation step. The validation step allows us to find the predictive error of the model. A maximum of 

1000 epochs was chosen for all training sessions. Epochs means iterations. In each iteration step the 195 

model creates a relation between input and output by using the hidden neurons, associated weight 

values, and hidden layer functions. In NN model the training procedure requires iteratively detecting the 

perfect weights and biases so that the network errors are minimized via a standard numerical 

optimization algorithm that optimizes the mean squared error performance function (Hagan et al., 

1996). The greater the amount of hidden neurons in the hidden layer, the more unmanageable it 200 

becomes to obtain the global optimum (Anctil and Lauzon, 2004). We find that 5 hidden neurons 

provide a reasonable compromise between complexity of the NN, the work effort to train the network, 

and to obtain useful insight into NN performance for future studies.  

The number of input parameters means the number of neurons in the input layer. We used 3-5 input 

parameters in this study. The output layer consisted of one neuron, as we were looking for solutions to 205 

effective radius, the real part, and the imaginary part of the complex refractive index, separately. We 

used the hidden layer network functions Tan-sigmoid and Pure-linear (Haykin, 2007). The network 
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learning algorithm (training function) was Trainlm, Levenberg-Marquardt algorithm (Hagan and 

Menhaj, 1994). The hidden layer activation function (tan-sigmoid) can be written as 

𝑓(𝑥) =  
1

1+ 𝑒−𝑥𝑖
                                                                                                                                                                                                                              (1) 

The parameter xi is the i-th input in the model. 210 

As we set the performance function to mean squared error - MSE, the network will calculate the 

squared errors based on the difference of the true and estimated values of each output parameter. In our 

study we take the lowest value of MSE as final results and thus were saved from the trained model. We 

use three network input-output functions in the neural network toolbox in Matlab as follows: remove 

constant rows (RCR), standard deviation function (mapstd), and mapminmax function (Hagan et al., 215 

1996). The use of the RCR function allows us to remove any possible rows with constant values in 

order to ensure the statistical robustness of this study, and to keep the maximum number of dissimilar 

data samples. We often need to use a variable scaling of input–output values to achieve the best results. 

The network uses the mapminmax function for pre-processing and post-processing of the data in a way 

such that the training phase data are scaled between -1 to +1. This means all variables fall between the 220 

values -1 and +1. After that step we normalize the mean and standard deviation of the training dataset 

with the mapstd function so that the network’s input values and target values transform to zero mean 

and unity standard deviation.  

 

2.3 Format of Retrieval Results and Errors 225 

In the results section we will show correlation plots along with some statistics, i.e., reduced chi-

square test values, Pearson’s correlation coefficient values (r), and adjusted R-square values (R
2
). Based 

on the correlation coefficient values of all investigated parameters in this study, a summary figure is 

shown at the end of results section. For estimating the errors in the simulations and the assessment of 

the models that we investigated, the reduced chi-square (Ӽ
2
) test was used. The rationale for using these 230 
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different methods is as follows. We have used linear fitting and reduced Ӽ
2
 test which are good choices 

to predict the goodness of fit of our retrievals against their true solutions. 

Pearson’s correlation coefficient values (r) are used to see the degree of linear association between 

the original  and simulated values of the investigated parameters. From the two key properties of 

Pearson’s r, which are magnitude and direction, we can easily understand the state of relationships that 235 

exists between two variables.   

Adjusted R
2
 also suggests the goodness of fit of the linear regression results. Here, we are using a 

linear model to fit our simulated data against the original values and the main use of Ӽ
2
 is to test the 

goodness of the regression lines, and identifying the slope and intercept with respect to our data. As we 

have two regression parameters (slope and intercept), the number of the degrees of freedom (DOF) 240 

minus two is used in the computations. We calculated the residuals as 

Ӽ2 = (
1

𝐷𝑂𝐹
) × ∑ 𝑅𝑖                                                                                                                                             (2)  

where Ri = Original values – Simulated values.  

The retrieval errors (squared relative error) for effective radius and complex refractive index are 

calculated as 

 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟, δ𝑥2 = √ 
1

𝑁
∑

(𝑥0−𝑥)2

𝑥2

𝑖𝑚𝑎𝑥
𝑖𝑚𝑖𝑛

× 100 (%)                                                                  (3) 245 

where N = number of data points used for simulation, x0 describes the NN estimated values and x 

describes the true values, errors are shown as percentage. 

 

2.4 Input Datasets for the FFBP- MLP  

In our study, the extinction and backscatter coefficients at the wavelengths 355, 532, and 1064 nm 250 

were generated from monomodal logarithmic-normal aerosol particle size distributions using a Mie 

scattering algorithm (Bohren and Huffman, 1998). Table 1 shows the values of particle mean radius, 
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geometric standard deviation (mode width), complex refractive index (real and imaginary part), and 

particle effective radius that we used for the computations of the optical input data. The numbers in 

table 1 cover a realistic range of atmospheric particle size distributions. Table 2 summarizes the 255 

combinations of optical data that we used for our ANNs. The goal was to find out how well the different 

optical data combinations allow us to derive effective radius, and the real and imaginary part of the 

complex refractive index. 

The common FFBP-MLP neural network was applied to five basic input combinations. We used 

three different size ranges of effective radii for which we tested our NN. We had to do this in order to 260 

keep the computation time to a reasonable limit given the computer resources we had at hand. 

Combining all data between 10 to 500 nm results in 817742 individual data for the training phase for 

which we need a computation time of more than 3 hours at least. Data downscaling is applied to reduce 

the computation time. It also allows us, as a by-product, to investigate in a first step the effectiveness of 

our NN to identify the properties of the particles in the ultrafine mode, fine mode (accumulation mode), 265 

and coarse mode. The coarse mode was not fully covered in this study and a more refined separation 

into the three particle modes will be done in a future study.  

For the retrieval of reff in the range from 10 – 100 nm we used 165240 individual data points for the 

training step and 165240 dissimilar data for the NN simulation, results and discussions will be shown in 

our future study. 250181 different data points were used for the training, and 250181 separate data 270 

points were used for the simulations in the 110 – 250 nm mean-radius range. 402321 different data 

points were used for the training and 402320 separate data points were used in the simulation in the 260 

– 500 nm mean-radius range. The values of the imaginary part were limited to 0 – 0.1. We used 453255 

individual data points for the training and 453100 different data points for the simulations in the 10 – 

500 nm mean-radius range. 275 

Figure 5 describes how we prepared the optical data for our tests. Before processing the input 

parameters with the model we applied a Fisher-Yates shuffle algorithm (Paul, 1948) to all data. We had 

to shuffle the database to avoid any possible bias of data selection during the training phase and the 
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blind-test phase. This algorithm randomly permutes N elements by exchanging each element with a 

random element from i to N. All data are inserted in a matrix format in Matlab (www.mathworks.com) 280 

and shuffling is done by the Matlab randperm (random permutation) function. This function randomly 

shuffles the whole dataset on a row-by-row basis, i.e., the sampling is done with replacement. The 

intrinsic structure of the data remains unchanged after the process of random shuffling. The individual 

values are randomly distributed and we can choose the model training and blind-test data portions 

without creating a bias of any particular data type or distribution. After shuffling, 50% of the data were 285 

selected for the training part and the remaining 50% of the data were chosen for carrying out the blind-

test. In our study, the blind-test means that the data that were not used in the training phase of the NN 

but were used to test the performance of our algorithm in retrieving the parameters of interest, i.e., the 

output. Here, the portion of the training data is further subdivided into ‘training’, ‘testing’, and 

‘validation’ in proportion of 70%, 20%, and 10%, respectively. Training and blind test datasets are 290 

prepared in such a way that they are statistically representative (i.e. mean, standard deviation, median, 

maximum-minimum values of both datasets are similar) for the whole set of data used in our study. This 

fifty-fifty data sharing is a good approach for simulating the investigated parameters against the trained 

data in our model.  

 295 

3 Results and Discussion 

The potential of the Artificial Neural Networks in retrieving atmospheric particle parameters 

(effective radius and the mean complex refractive index) have been implemented in extensive 

simulations and sensitivity analyses (Mamun, 2014). Sensitivity studies with a number of various input 

combinations of backscatter and extinction data were tested to answer the questions mentioned in the 300 

introduction section. Our results will be compared with the classical lidar inversion algorithm methods 

(minimum a priori information used) in our future works.  

In this contribution we analyze the main features of our ANN in retrieving particle effective radius. 

We did not train this ANN with regard to the real and imaginary part in the sense that we tried to 
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optimize the retrievals for these two parameters using our common FFBP-MLP model. We were mainly 305 

interested in the robustness of the chosen ANN (for effective radius retrieval) how well it can also 

retrieve the complex refractive index. We will in future work develop another ANN that will be 

specifically optimized with regard to retrieving the complex refractive index.  

The ANN method applied in this study did not take into account any a priori information. We 

calculated the extinction based Ångström exponent (å355/532nm) in the value ranges between -0.5 to < 0, 0 310 

to < 0.5, 0.5 to < 1, 1 to < 1.5, 1.5 to < 2, and 2 to 2.5 for effective radii ranging from 110 – 250 nm. 

Additionally å355/532nm was calculated in the ranges between -0.5 to < 0, 0 to < 0.5, 0.5 to < 1, and 1 to 

1.5 at 260 – 500 nm of the corresponding effective radius values. Lidar ratios at 532 nm were computed 

for several ranges, i.e. < 20 sr, 20 to < 40 sr, 40 to < 60 sr, 60 to < 80 sr, 80 to < 100 sr, and above 100 

sr. Again we stress the fact that we were mainly interested in the feasibility of using ANN for analyzing 315 

lidar data, and the chosen intervals reflect in a rough sense various size ranges of ultrafine, fine and 

coarse mode particles (in terms of their Ångström exponents) and the combination of Ångström 

exponents with lidar ratios reflect different aerosol types (Burton et al., 2012; Burton et al., 2014), e.g., 

values of 40 – 60 sr at 532 nm can be regarded as moderately absorbing urban haze (if the Ångström 

exponent is above 1), whereas values of 60 – 80 sr or above may be representative of highly-light 320 

absorbing pollution. The results of lidar ratios at 355 nm will be included in our future works.  

Figures 6 – 9 show the results of the simulated values of the investigated parameter versus their true 

values for various ranges of extinction Ångström exponents. Figures 10 – 13 show correlation plots of 

the true versus the simulated parameters based on the various lidar ratios (based at 532 nm). Tables 3 – 

6 show the statistical analysis of the various training and simulation sessions for the three ranges (110 – 325 

250 nm, 260 – 500 nm, and 10 – 500 nm) of  mean radius considered in our study.  

We tested different combinations of backscatter and extinction coefficients. As explained in the 

introduction, the combination of 3 backscatter and 2 extinction coefficients is important as this 

combination is used in the currently most evolved multiwavelength Raman lidars, e.g., 

(http://www.earlinet.org/) and high-spectral-resolution lidars (Müller et al., 2014). We tested lidar data 330 
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combinations that will be important in the context of the synergy of lidar with passive remote sensors 

with the latter providing optical data at other wavelengths than the ones tested for the lidar set-ups. Our 

study uses the combination of backscatter and extinction data, which can be seen from the four different 

combinations used in this work consisting of at least 1α+1β in all cases. In addition we use one case 

consisting of only backscatter data (3β case). 335 

 

3.1 Retrieval of Particle Effective Radius 

When retrieving atmospheric particle parameters, generally a combination of backscatter and 

extinction coefficients at various wavelengths is essential for the stability and consistency of the 

inversion algorithm methods, i.e., the combination of at least 3β (for aerosol lidar purposes the 340 

wavelengths are 355, 532, and 1064 nm) and 2α data (wavelengths are at 355 and 532 nm) is necessary 

to estimate with acceptable accuracy of the particle parameters investigated in our study (Müller et al., 

1999a; b; 2000; 2001). Moreover, adding more data channels provides better results if the chosen 

wavelengths are outside the interval 355 – 1064 nm, as in general the information content of optical  

data in those wavelength ranges below 355 and above 1064 nm may contribute significantly to the 345 

information content in the wavelength band between 355 and 1064 nm. We will investigate this effect in 

future studies as it will be also important in the context of combing lidar with passive remote sensing 

data. 

Our ANN analysis suggests that it is important to have at least a combination of 1α (355 or 532 nm) 

and 2β (532 nm and 1064 nm) for the retrieval of reff in the particle radius interval between 110 – 500 350 

nm. The results of the use of 3β + 2α datasets in our ANN model are in nice agreement with previous 

studies carried out with inversion algorithms. A combination of only 3β optical data can also retrieve 

the investigated parameters in all size ranges, however with reduced accuracy compared to the other 

four data combinations investigated in our study. This result shows the importance of using extinction 

data. The results we obtain from our ANN model indicate the loss of retrieval accuracy if extinction 355 

information is omitted and confirms previous studies that pointed out to the fact acceptable results for 
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microphysical parameters cannot be obtained if only backscatter data are used; we stress the fact that the 

retrieval situation likely will become worse as soon as measurement errors are considered.  

The importance of using backscatter coefficients was exemplified in one study (Böckmann et al., 

2005) where the degree of ill-posedness due to backscatter data was found to be less compared to 360 

extinction data, however the extinction profiles in combination with backscatter profiles are very 

important for the best retrieval accuracies, as we find  from our NN simulations. The simulation results 

for reff of aerosol mean radii between 110 – 250 nm and 260 nm - 500 nm, see tables 3 and 4, show 

moderately good Pearson’s r and adjusted R
2
 values for all ranges of extinction Ångström exponents 

when a combination of 3β+2α is provided as input in the model. Additionally the MSE values are very 365 

low for all size ranges. This result suggests that the network’s performance quality is very high. 

The multiple correlation plots are shown in figures 6 - 7. The best results are achieved for the 

3β+2α data combinations and both size ranges, as can be seen from simulation A. The simulations B, C, 

and, D show no significant differences in the retrieval quality of the parameters. Simulations with the 

combination of 1α (355 or 532) with 3β, and 2β (532, 1064) with 1α at 532 nm show similar retrieval 370 

quality regarding effective radius. 

In the radius range of 110 – 250 nm the correlation plots (Figure 10) based on various lidar ratio 

ranges suggest that values < 20 sr and values from 20 sr to < 40 sr have the highest correlations; values 

below 20 sr usually are not measured for aerosol particles, however we still tested this lidar ratio range 

below 20 sr in order to check the robustness of our ANN scheme. The correlation tends to slightly 375 

decrease with increasing lidar ratio. In the case of 3β (simulation E), significantly stronger correlation is 

found when the lidar ratio is below 20 sr. However for lidar ratios above 20 sr the association is found 

to be moderate to strong. Almost the same trend is seen in the particle radius range from 260 – 500 nm 

(figure 11) where the highest correlation is found for lidar ratios < 20 sr. In our model, 3β (the absence 

of α) clearly shows the importance of using extinction profiles in retrieving reff (over 100 nm mean 380 

radii) with acceptable accuracy. We speculate that one of the possible reasons for such strong 

correlations which have been revealed in our study for the first time is the pre-allocations of various 
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values of extinction based Ångström exponents before the allocation to lidar ratio is carried out by the 

ANN. Plausibly, ANNs as an intelligent data mining technique, is capable of finding out this intricate 

association among Ångström exponent, lidar ratio, and particle parameters, details of which has been 385 

shown for the first time in this study.  

 

3.2 Retrieval of Real and Imaginary Part of the Refractive index 

The simulation results of the refractive indices show similar trends for the real and imaginary parts. 

However, retrievals of the real parts are more accurate compared to the imaginary part. In both cases 390 

3β+2α data combinations show the best results followed by the other data combinations as follows: 

Imaginary part: 3β+2α > 3β > α at 532+3β > α at 355+3β > α at 532+2β (532, 1064). 

Real part: 3β+2α > α at 355+3β > α at 532+3β > α at 532+2β (532, 1064) > 3β.  

Here, for the imaginary part we can see better retrievals from  only 3β over 3β+1 α. The 

computation of Neural Networks relies upon numerical calculation of input and output parameters and 395 

associated weight vectors in the hidden layer, the accuracy of outputs depend on successful selection of 

bias values and weight vectors. These overall procedures are usually performed by trial and error 

methods to achieve the optimum results. In this study, for the retrievals of imaginary part (output) from 

only 3β coefficients (inputs) can outperform 3β+1α suggesting a more refined selection of bias and 

concomitant weight vectors to achieve optimum imaginary refractive index values. 400 

The simulated imaginary part that is related to the extinction-based Ångström exponent values from 

-0.5 to < 0 has the best correlation (figure 8). The next best correlation is followed by å355/532nm-values 

between 0 to < 1. Weak to no correlation is found for α355/532nm-values ≥1.  

The simulations for the real part (figure 9) show a trend that is similar to the one we find for the 

imaginary part, though there is a slightly better accuracy. Very strong correlation is found for the 3β 405 

case with respect to the retrieval of the imaginary part and strong to moderate correlation is found for 

the real part.  
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The figures (12 – 13) that show the simulations in dependence on the lidar ratio show different 

trends for the imaginary and real parts. In general, the lidar ratio range from 40 sr to < 60 sr has the best 

correlation with the imaginary part. The imaginary parts that are related to lidar ratios < 20 sr and to 410 

lidar ratios in the interval 20 < 40 sr have a moderate relation, except for the case of 1α+2β. Lidar ratios 

above 60 sr show moderate to strong correlations. Only the 3β data combination has moderate to strong 

correlation for all lidar ratios which is unlike the real-part retrievals where we find weak association for 

lidar ratios <60 sr. The correlation increases with increasing lidar ratios. Other combinations related to 

the real part show moderate to strong correlations for lidar ratios < 100 sr. Lidar ratios ≥ 100 sr show 415 

very strong correlations.  

If we compare the results of the Ångström-based and lidar ratio-based results (see figures 8 - 13) 

we see a better accuracy for the real part compared to the imaginary part. Simulations for the refractive 

index also suggest that we can achieve acceptable accuracy even if we use a reduced number of input 

neurons (input data combinations). The results of the 3β + 2α data combination show good agreement 420 

with inversion algorithm methods with increased retrieval accuracy as shown in tables 5 and 6.  

The retrieval errors for the real part of refractive index are between ±6.71 to ±10.41% whereas the 

imaginary parts show retrieval errors between ±31.3% and ±38.3%. This results suggests that the 

prediction of the real part is more accurate compared to the imaginary part. The situation may be 

different if we start training our ANN with specific focus on the real and imaginary part rather than 425 

effective radius.  

Table 7 and 8 show the statistical information, but split into fine mode (effective radius ≤ 500 nm) 

and coarse mode (effective radius > 500 nm) particles. We show the results for radii ranges of 110 – 

250 nm and 260 – 500 nm. With regard to the mean-radii range of 110 – 250 nm (see table 7) the 3β + 

2α combination shows the best output both for fine and for coarse mode particles. The weakest 430 

correlation is found for the 3β data set. All other data combinations reveal comparable strong 

correlation in the case of the coarse mode.  
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With regard to the mean-radius range of 260 – 500 nm (table 8) the simulation show weak to 

moderate correlations for fine mode particles. The exception is the 3β + 1α (355) data combination. The 

poorest correlation again is found for the 3β data combination. In contrast, all data combinations show 435 

strong correlation in the case of the coarse mode except for the 3β data combination. Overall, the results 

of the coarse mode simulations show better performance than the simulation with fine mode particles. 

We conclude that our ANN can estimate particle effective radii larger than 500 nm (i.e. coarse mode, 

effective radius from 500 to 4000 nm) with higher accuracies than particle effective radii below 500 nm. 

In general reduced retrieval errors in all the simulations reveals the robustness of our common neural 440 

network model with regard to finding the microphysical properties of atmospheric particle pollution 

parameters. The application of neural networks confirms the importance of combining backscatter and 

extinction coefficients which corroborates findings of previous studies with inversion methods of 

Müller et al. (Müller et al., 2000; Müller et al., 1998; Müller et al., 1999a, b) and Veselovskii et al. 

(2002), and eigenvalue analysis carried out by Veselovskii (Veselovskii et al., 2005). From our analysis, 445 

we find satisfactory results for reff, and the real and imaginary parts of the refractive index in terms of 

MSE and the correlation of the simulated parameter to their true values. All Pearson’s correlation 

coefficient, r values are shown in figure 14 as a summary of the retrieved performances of all 

investigated parameters in this study.  

In some cases, the ANN-calculated values of the aforementioned parameters seem to be more 450 

accurate than the conventional mathematical inversion procedures. However, we must keep in mind the 

simplifications of our study: no errors of the input data were assumed, the test data set was strongly 

restricted (Ansmann & Müller, 2005) to monomodal size distributions, and the test space may be too 

constrained in terms of tested PSDs (size parameters). When the complex nature of the relationships 

between input and output parameters is totally unknown, FFBPMLP model with one hidden layer works 455 

as universal approximator which learns any input-output relationships from a given amount of data 

(Anastassiou, 2013; White, 1992; Yang et al., 2013; Zainuddin and Pauline, 2008). 
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4 Summary and Outlook 

To the best of our knowledge we tested for the first time ANN models for the analysis of multi-460 

wavelength Raman lidar data with regard to retrieving particle effective radius, and the real and 

imaginary parts of the complex refractive index. For the first time to our knowledge, retrievals of 

particle parameters of atmospheric pollution (reff, complex refractive index) from multiwavelength 

Raman or HSRL lidar data has been achieved under simplified conditions (no measurement errors, 

monomodal particle size distributions) by means of a feedforward backpropagation neural network. We 465 

optimized the ANN with regard to retrieving the effective radius, i.e., the retrieval of the complex 

refractive index was done with the same model. The results of our ANN model have shown that this 

method is capable of modelling the complex relationship between optical and microphysical parameters 

of atmospheric particles for size distributions that range between 0.01µm to 0.50µm. We also show that 

our ANN model can retrieve reasonable results from less input information (i.e. 3β, 1α+2β, and 1α+3β), 470 

whereas it is still not clear what the minimum input information for traditional inversion algorithm 

methods needs to be. Some results on that topic can be found in (Chemyakin et al., 2014). Most 

importantly our retrievals show good agreement with previously tested methods when the combination 

of 2α +3β is provided as input in the model for the simulation of all parameters we tested (Böckmann et 

al., 2005; Chemyakin et al., 2014; Veselovskii et al., 2002; Müller et al., 2001). We hypothesize that the 475 

pre-selections of various values of extinction-based Ångström exponents with regard to effective radius 

before the allocation to lidar ratio is carried out by the ANN and then uses this information to create the 

strong correlation between particle effective radius and lidar ratios in all PSDs we investigated. 

In the next phase of our work we want to expand the ANN model from 0.51 to 10 µm particle 

radius with regard to the aerosol mean radii. We want to introduce more realistic atmospheric situations 480 

with regard to the particle size distributions, i.e., multi-modal size distribution, and in a later stage of 

our work we want to apply the ANN to data from field experiments. Furthermore, we will investigate in 

more detail how optical properties, i.e. particle Ångström exponents, particle lidar ratios (extinction-to-

backscatter ratios) can be used to estimate not only microphysical properties but also the single 
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scattering albedo. The separation of aerosol types will be tested. Findings from this research will also 485 

contribute to our existing knowledge of various research areas as for example ocean color correction 

schemes. We hope that ANN will allow us to excavate the intricate relationships among various 

observed parameters of large multi-dimensional datasets and will refine and extract new insight into the 

aerosol impact on climate change.
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 610 

 

 

 

 

Table 1: Mean radius, mode width, complex refractive index, and particle effective radius used for the 615 

computations of the optical input data.  

 

Parameter Value 

mean radius 10 nm – 500 nm , in step size of 10 nm 

mode width 1.4 - 2.5, in step size  of 0.1 

real part 1.2 – 2, in step size of 0.025 

imaginary part 0i - 0.1i, in step size of 9.99×10
-6 

reff 

(m) 

 range <0.1 0.1 – <0.5 0.5 – <1 1 – < 2 2 – <3 3 – <4  ≥4   

  N = 107406 492967 483837 362883 135182 50761 2447 

Real 

part  

range 1.2 – <1.3 1.3 – <1.4 1.4 – <1.5 1.5 – <1.6 1.6 – <1.7 1.7 – <1.8 1.8 – <1.9 1.9 – 2.0 

N = 106688 133361 106688 106688 106688 106630 106495 133117 

Imag. 

part  

range 0 – 

<0.001 

0.001 – 

<0.005 

0.005 – 

<0.01 

0.01 –

<0.025 

0.025 –

<0.05 

0.05 – 

<0.075 

0.075 – 

0.1 

 

N =  80871 40508 40508 120966 201043 201316 221143 
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Table 2: Data combinations of backscatter and extinction coefficients that were used in our simulations. EC 

denotes extinction coefficient. BC denotes backscatter coefficient. 620 

 

Simulation Input Combinations 

A 2α (EC355+EC532) + 3β ( BC355+BC532+ BC1064) 

B 1α (EC355) + 3β ( BC355+BC532+ BC1064) 

C 1α (EC532) + 3β ( BC355+BC532+ BC1064) 

D 1α (EC532) + 2β (BC532+ BC1064) 

E 3β ( BC355+BC532+ BC1064) 

 

Table 3: Summary of effective radius (reff) simulation results (best results) for various input combinations 

of optical coefficients in the mean radii range between 110 nm to 250 nm. From Table 3 to table 6 network 

performances are depicted as mean squared error (MSE).  625 

 

Input combination Training statistics Simulation statistics 

MSE R
2
 value 

Training 

R
2
 value 

Testing 

 

R
2
 value 

Validation 

 

Red Chi 

Sq  

(χ
2
) 

Adjusted 

R
2
 

Pearson’s 

r  

Retrieval 

Error  

(in %) 

A.  3β (BC355, BC532, BC1064) +  

2α (EC355, EC532) 

0.0162 0.95376 0.95353 0.95486 0.01478 0.90979 0.95383 16.1 

B.  3β (BC355, BC532, BC1064) + 

1α (EC355) 

0.0250 0.92777 0.9281 0.92734 0.02156 0.86073 0.92776 20 

C.  3β (BC355, BC532, BC1064) +  

1α (EC532) 

0.0256 0.92611 0.9281 0.92569 0.02192 0.85806 0.92631 20.2 

D.  2β  (BC532, BC1064) +  

1α (EC532) 

0.0272 0.92123 0.92137 0.92148 0.02299 0.84923 0.92154 21 

E.  3β (BC355, BC532, BC1064) 0.0749 0.76303 0.7624 0.7619 0.04384 0.58258 0.76327 35.1 
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Table 4: Summary of effective radius (reff) simulations results (best results) for various input combinations 

of optical coefficients in the mean radii range between 260 nm to 500 nm. 

 630 

Input combination Training statistics Simulation statistics 

MSE R
2
 value 

Training 

R
2
 value 

Testing 

 

R
2
 value 

Validation 

 

Red Chi 

Sq  

(χ
2
) 

Adjusted 

R
2
 

Pearson’s 

r  

Retrieval 

Error  

(in %) 

A.  3β (BC355, BC532, BC1064) +  

2α (EC355, EC532) 

0.0801 0.94492 0.94529 0.94532 0.07197 0.89238 0.94466 17.23 

B.  3β (BC355, BC532, BC1064) +  

1α (EC355) 

0.0941 0.93483 0.93539 0.93578 0.08265 0.87378 0.93476 19.1 

C.  3β (BC355, BC532, BC1064) + 

1α (EC532) 

0.0939 0.93521 0.93453 0.93579 0.08258 0.87405 0.9349 19.3 

D.  2β  (BC532, BC1064) +  

1α (EC532) 

0.0978 0.93246 0.93272 0.93224 0.0849 0.86889 0.93214 19.02 

E.  3β (BC355, BC532, BC1064) 0.421 0.66091 0.6613 0.66408 0.184 0.43968 0.66309 39.2 

 

Table 5: Summary of imaginary part of refractive index simulations results for various input combinations 

of optical coefficients in the mean radii range between 10 nm to 500 nm. 

 

Input combination Training statistics Simulation statistics 

MSE R
2
 value 

Training 

R
2
 value 

Testing 

 

R
2
 value 

Validation 

 

Red Chi 

Sq  

(χ
2
) 

Adjusted 

R
2
 

Pearson’s 

r  

Retrieval 

Error  

(in %) 

A.  3β (BC355, BC532, BC1064) +  

2α (EC355, EC532) 

3.03 

E-04 

0.83435 0.83382 0.83461 2.04541

E-04 

0.69925 0.83621 31.3 

B.  3β (BC355, BC532, BC1064) +  3.95 0.77703 0.77975 0.77685 2.35567 0.60334 0.77804 35.81 
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1α (EC355) E-04 
E-04 

C.  3β (BC355, BC532, BC1064) + 

1α (EC532) 

3.83 

E-04 

0.78396 0.7847 0.78544 2.31733

E-04 

0.6159 0.78479 35.33 

D.  2β  (BC532, BC1064) +  

1α (EC532) 

4.54 

E-04 

0.73885 0.74149 0.7395 2.41063

E-04 

0.54927 0.74113 38.27 

E.  3β (BC355, BC532, BC1064) 3.94 

E-04 

0.77835 0.77715 0.77797 2.34645

E-04 

0.60718 0.77922 35.73 

 635 

Table 6: Summary of real part of refractive index simulations results for various input combinations of 

optical coefficients in the mean radii range between 10 nm to 500 nm. 

 

Input combination Training statistics Simulation statistics 

MSE R
2
 value 

Training 

R
2
 value 

Testing 

 

R
2
 value 

Validation 

 

Red Chi 

Sq  

(χ
2
) 

Adjusted 

R
2
 

Pearson’s 

r  

Retrieval 

Error  

(in %) 

A.  3β (BC355, BC532, BC1064) +  

2α (EC355, EC532) 

1.18 

E-02 

0.89072 0.89246 0.8912 0.00914 0.79549 0.8919 6.71 

B.  3β (BC355, BC532, BC1064) +  

1α (EC355) 

1.53 

E-02 

0.85547 0.8554 0.85505 0.01081 0.73518 0.85743 7.64 

C.  3β (BC355, BC532, BC1064) + 

1α (EC532) 

1.59 

E-02 

0.84952 0.84712 0.84909 0.1111 0.72471 0.8513 7.80 

D.  2β  (BC532, BC1064) + 

1α (EC532) 

1.77 

E-02 

0.83043 0.83068 0.8298 0.01191 0.6909 0.8312 8.25 

E.  3β (BC355, BC532, BC1064) 2.82 

E-02 

0.7121 0.71352 0.71182 0.01404 0.50875 0.71327 10.41 
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Table 7: Statistical results of fine and coarse mode particles in the range of 110 – 250 nm mean radii data 640 

set of particle effective radius. 

 

 

Data  

range 

Input combination Simulation statistics 

Red Chi Sq  

(χ
2
) 

Adjusted 

R
2
 

Pearson’s 

r  

Intercept Slope 

1
1

0
 –

 2
5

0
 n

m
 

F
in

e 
m

o
d

e 
 

(N
 =

 1
1

5
9

3
3

) 

A.  3β (BC355, BC532, BC1064) 

+  2α (EC355, EC532) 

0.00659 0.57812 0.76034 0.023 1.035 

B.  3β (BC355, BC532, BC1064) 

+  1α (EC355) 

0.00903 0.51293 0.71619 0.0404 1.062 

C.  3β (BC355, BC532, BC1064) 

+ 1α (EC532) 

0.00923 0.49962 0.70684 0.045 1.045 

D.  2β  (BC532, BC1064) + 1α 

(EC532) 

0.00881 0.51827 0.71991 0.044 1.061 

E.  3β (BC355, BC532, BC1064) 0.01321 0.32355 0.56882 0.168 0.866 

C
o

ar
se

 m
o

d
e 

(N
 =

 1
3

4
2

4
8

) 

A.  3β (BC355, BC532, BC1064) 

+  2α (EC355, EC532) 

0.02174 0.84128 0.91721 0.056 0.913 

B.  3β (BC355, BC532, BC1064) 

+  1α (EC355) 

0.03172 0.77715 0.88156 0.052 0.894 

C.  3β (BC355, BC532, BC1064) 

+ 1α (EC532) 

0.03234 0.77107 0.8781 0.0585 0.887 

D.  2β  (BC532, BC1064) + 1α 

(EC532) 

0.03462 0.75435 0.86854 0.0658 0.877 

E.  3β (BC355, BC532, BC1064) 0.06679 0.32716 0.57198 0.3924 0.485 
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Table 8: Statistical results of fine and coarse mode particles in the range of 260 – 500 nm mean radii data 

set of particle effective radius. 645 

 

 

Data  

range 

Input combination Simulation statistics 

Red Chi Sq  

(χ
2
) 

Adjusted 

R
2
 

Pearson’s 

 r  

Intercept Slope 

2
6

0
 –

 5
0

0
 n

m
 

F
in

e 
m

o
d

e 
 

(N
 =

 3
1

7
0

4
) 

A.  3β (BC355, BC532, BC1064) 

+  2α (EC355, EC532) 

0.00557 0.38139 0.61757 -0.1212 1.353 

B.  3β (BC355, BC532, BC1064) 

+  1α (EC355) 

0.00283 0.54052 0.7352 -0.1016 1.33 

C.  3β (BC355, BC532, BC1064) 

+ 1α (EC532) 

0.00716 0.34124 0.58416 -0.1452 1.405 

D.  2β  (BC532, BC1064) + 1α 

(EC532) 

0.00341 0.40393 0.63556 0.0176 1.111 

E.  3β (BC355, BC532, BC1064) 0.08956 0.01675 0.12944 0.44447 0.901 

C
o

ar
se

 m
o

d
e 

(N
 =

 3
7

0
6

1
6

) 

A.  3β (BC355, BC532, BC1064) 

+  2α (EC355, EC532) 

0.07707 0.88028 0.93823 0.1701 0.885 

B.  3β (BC355, BC532, BC1064) 

+  1α (EC355) 

0.08878 0.85924 0.92695 0.1974 0.866 

C.  3β (BC355, BC532, BC1064) 

+ 1α (EC532) 

0.08813 0.85993 0.92733 0.1997 0.864 

D.  2β  (BC532, BC1064) + 1α 

(EC532) 

0.0914 0.85406 0.92415 0.2071 0.859 

E.  3β (BC355, BC532, BC1064) 0.18466 0.40738 0.63827 0.8307 0.419 
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Figure 1: A flow chart on the overall steps of the feasibility study with ANN for the analysis of 

multiwavelength Raman/HSRL lidar data. 650 
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Figure 2: Schematic representation of the basic feedforward backpropagation multilayer perceptron neural 

network that we used in this study. 

 655 
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Figure 3: Schematic of our common ANN model for the retrieval of particle effective radius. Results and 

discussions shown in this study are limited to input neurons of optical coefficients only. Results of complex 

refractive indices, mode width, and mean radii input neurons are not shown in this study. Numeric values in 665 

the red colored boxes show the minimum maximum value of input neurons and output neuron.
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Figure 4: Work flow of the ANN for the analysis of the optical data. We investigated the cases of SSA with 

the basic model optimized for particle effective radius, the results and discussions are not shown in this 670 

study and will be provided in future research. 
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Figure 5: Flow chart depicts the preparation process of our datasets for the neural networks. Results and 

discussions of SSA are excluded in this study and will be shown in a future contribution. 

 675 
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Figure 6: Correlation plots of true vs simulated reff for particle radius range from 110 – 250 nm and for 680 

different extinction-related Ångström exponents. 
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Figure 7: Correlation plots of true vs simulated reff for particle radius range from 260 – 500 nm and for 

different extinction-related Ångström exponents. 685 
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Figure 8: Correlation plots of true vs simulated imaginary part for particle radius range from 10 – 500 nm 

and for different extinction-related Ångström exponents. 
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Figure 9: Correlation plots of true vs simulated real part for particle radius range from 10 – 500 nm and for 690 

different extinction-related Ångström exponents. 

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-7, 2016
Manuscript under review for journal Atmos. Meas. Tech.
Published: 29 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



39 

 

 

Figure 10: Correlation plots of true vs simulated effective radius for particle radius range from 110 – 250 

nm for various ranges of lidar ratios at 532 nm. 

 695 
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Figure 11: Correlation plots of true vs simulated effective radius for particle radius range from 260 – 500 

nm for various ranges of lidar ratios at 532 nm. 700 
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Figure 12: Correlation plots of true vs simulated imaginary part of refractive index for particle radius from 

10 – 500 nm (imaginary values between 0 – 0.1) and for various ranges of lidar ratios at 532 nm. 

 

 705 
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Figure 13: Correlation plots of true vs simulated real part of refractive index for particle radius from 10 – 710 

500 nm (imaginary values between 0 – 0.1) and for various ranges of lidar ratios at 532 nm. 
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Figure 14: Pearson’s correlation coefficient, r value of all investigated parameters shown in this study.  
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Appendix 

Selection of the common FFBP- MLP neural network topology  715 

In the first step of our work we focus on the most common artificial neural network, i.e. FFBPMLP. 

We use the Levenberg Marquardt training algorithm (trainlm) which is widely accepted to solving complex 

input-output problems of large datasets. However, other neural networks were also tested in the process of 

selecting the best network topology. 

The greater the number of hidden neurons the more training time it takes for a successful model run. 720 

As we only use one output neuron in our network architecture, we avoided training with a higher number of 

hidden neurons as this would only increase the training time without achieving any overall better 

performance. In addition, too many neurons often cause the network to get over-trained or over-fitted. A 

low number of hidden neurons (i.e. 5, in our model) maintains good generalization abilities of the trained 

neural network and prevents overfitting of the output values once the network has been trained 725 

(Wilamowski, 2011). A small number of hidden neurons often does not provide the best mean squared 

error (MSE). However using a low number of neurons allows us to achieve better results when new data 

patterns are presented to a trained model. A high number of hidden neurons provides better training results 

but fails to simulate the same results when new data which were not used in the training phase, are 

presented to the neural network (Wilamowski, 2003, 2011). In general, trial and error methods are very 730 

helpful for deciding how many hidden neurons should be used for a successful multi-layer perceptron 

(MLP) neural network model (Wilamowski, 2003).  

A training-validation-testing data division of 60 -20 -20 (in %) was used for testing ANN #1 – #5 in 

table 9. We found the best results for ANN#3 which uses five hidden neurons. The MSE values tend to 

decrease as the number of hidden neurons increases. The simulation statistics suggest that there is no 735 

overall better performance if we use six or seven neurons.  

With regard to ANN #6 – #10 we used the data division 70% - 20% - 10%. We found the same 

patterns with regard to MSE and the hidden neurons. Five hidden neurons were found to be the best choice 

in both cases of data division, i.e., 60% - 20% - 20% and 70% - 20% - 10%. As we found satisfactory 

performance in the case of using five hidden neurons we only used 5 hidden neurons in the network 740 

topological runs ANN #11 – #15. We used other types of data division, but no better simulation output was 

achieved. We achieved the best results in ANN #8 and hence the properties of ANN #8 were selected as a 

common neural network model for our study. 
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Table 10 shows the results of a single data division (70-20-10) in 110 – 250 nm mean radii range data. 

In this table, we additionally tested the performance of three other network architectures and training 745 

algorithms. In the 110 – 250 nm data set in table 9, at first we started with the best network design, i.e. 

ANN #8 (see table 9).  With regard to ANN #2 – #4 three other neural networks (cascade forward pattern 

recognition and layer recurrent) were applied in which five hidden neurons were used. None of these 

attempts showed better performance than what we obtained on the basis of ANN #1.   

Afterwards with regard to ANN #1, we checked the effect of other hidden neurons (i.e. 3, 4, and 6) in 750 

ANN# 5-7. We found that a layer of five hidden neurons performs better. Three other training algorithms, 

i.e., the scaled conjugate gradient (trainscg), the resilient backpropagation (trainrp), and the variable 

learning rate (traingdx) were tested in ANN #8 - #10. We did this test in order to check if these learning 

algorithms can provide an optimum output for a moderately large data set, i.e. mean radii data between 110 

nm and 250 nm. Among all tested combinations we found that ANN #1 provides the best output. Therefore, 755 

this topology was finally selected for our basic ANN model for all data sets and investigated output 

parameters. 

 

Table 9: Summary of different networks evaluated to select the best network topology for our common 

ANN model in the range of 10 – 100 nm mean radii data set of particle effective radius. 760 

 

Tested 

topologies 

Network 

architecture 

Training 

algorithm 

Hidden 

Neurons 

Data 

Division 

(%) 

Training statistics Simulation statistics 

MSE Training 

(R2) 

Validation 

(R2) 

Test  

(R2) 

Adjusted 

R2 

Pearson’s 

r 

Reduced  

Chi2 (χ2) 

ANN # 1 Feedforward 

backpropagation 

trainlm 3 Train 60 

val 20  

  test 20 

0.00343 0.93864 0.93831 0.93728 0.61932 0.78697 0.01743 

ANN # 2 Feedforward 

backpropagation 

trainlm 4 Train 60 
val 20  

  test 20 

0.00299 0.94646 0.9461 0.94582 0.59349 0.77038 0.06264 

ANN # 3 Feedforward 

backpropagation 

trainlm 5 Train 60 
val 20  

  test 20 

0.00228 0.96046 0.96006 0.96034 0.64919 0.80572 0.06516 

ANN # 4 Feedforward 

backpropagation 

trainlm 6 Train 60 
val 20  

  test 20 

0.00185 0.96724 0.96764 0.96649 0.54476 0.73808 0.06394 

ANN # 5 Feedforward 

backpropagation 

trainlm 7 Train 60 

val 20  
  test 20 

0.00177 0.96852 0.96925 0.96848 0.50794 0.7127 0.00922 

ANN # 6 Feedforward 

backpropagation 

trainlm 3 Train 70 

val 20  
  test 10 

0.00344 0.93829 0.93865 0.93831 0.55859 0.74739 0.01789 

ANN # 7 Feedforward 

backpropagation 

trainlm 4 Train 70 

val 20  

  test 10 

0.00266 0.95249 0.95264 0.95207 0.49873 0.70621 0.03157 

ANN # 8 Feedforward trainlm 5 Train 70 

val 20  

0.00226 0.96089 0.9609 0.9602 0.70687 0.84076 0.04002 
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backpropagation   test 10 

ANN # 9 Feedforward 

backpropagation 

trainlm 6 Train 70 

val 20  

  test 10 

0.00181 0.96784 0.9675 0.96847 0.55323 0.7438 0.02781 

ANN # 10 Feedforward 

backpropagation 

trainlm 7 Train 70 

val 20  

  test 10 

0.00164 0.97103 0.97029 0.97087 0.37145 0.60946 0.17046 

ANN # 11 Feedforward 

backpropagation 

trainlm 5 Train 70 
val 15  

  test 15 

0.00206 0.96341 0.96212 0.96257 0.62452 0.79026 0.02765 

ANN # 12 Feedforward 

backpropagation 

trainlm 5 Train 80 

val 10  
  test 10 

0.00208 0.96314 0.96206 0.96368 0.61825 0.78629 0.02801 

ANN # 13 Feedforward 

backpropagation 

trainlm 5 Train 90 

val 10  
  test 0 

0.00226 0.95984 0.96093 0.95963 0.67626 0.82235 0.05122 

ANN # 14 Feedforward 

backpropagation 

trainlm 5 Train 50 

val 30  

  test 20 

0.00204 0.96392 0.96359 0.96424 0.52052 0.72147 0.07078 

ANN # 15 Feedforward 

backpropagation 

trainlm 5 Train 60 

val 30  

  test 10 

0.00210 0.96286 0.96306 0.96438 0.61816 0.78623 0.02657 

 

Table 10: Summary of different networks evaluated to select the best network topology for our common 

ANN model in the range of 110 – 250 nm mean radii data set of particle effective radius. 

 765 

Tested 

topologies 

Network 

architecture 

Training 

algorithm 

Hidden 

Neurons 

Data 

Division 

(%) 

Training statistics Simulation statistics 

MSE Training 

(R2) 

Validation 

(R2) 

Test  

(R2) 

Adjusted 

R2 

Pearson’s 

r 

Reduced  

Chi2 (χ2) 

ANN # 1 Feedforward 

backpropagation 

trainlm 5 Train 70 

val 20  

  test 10 

0.0155 0.95603 0.95676 0.95508 0.91429 0.95618 0.01413 

ANN # 2 Cascade forward 

Network 

trainlm 5 Train 70 

val 20  
  test 10 

0.0194 0.94438 0.94526 0.94589 0.8926 0.94477 0.01725 

ANN # 3 Pattern recognition 

network 

trainlm 5 Train 70 

val 20  

  test 10 

0.0157 0.95513 0.95583 0.95506 0.66831 0.8175 1.92725 

ANN # 4 Layer recurrent 

network 

trainlm 5 Train 70 

val 20  

  test 10 

0.0196 0.94394 0.94284 0.94409 0.35289 0.59405 0.12202 

ANN # 5 Feedforward 

backpropagation 

trainlm 3 Train 70 
val 20  

  test 10 

0.0213 0.93849 0.93934 0.93961 0.88162 0.93895 0.01881 

ANN # 6 Feedforward 

backpropagation 

trainlm 4 Train 70 
val 20  

  test 10 

0.0199 0.94288 0.9428 0.94336 0.61398 0.94296 0.01772 

ANN # 7 Feedforward 

backpropagation 

trainlm 6 Train 70 
val 20  

  test 10 

0.0194 0.9444 0.94498 0.94551 0.89227 0.9446 0.0173 

ANN # 8 Feedforward 

backpropagation 

trainscg 5 Train 70 

val 20  
  test 10 

0.0272 0.92104 0.92048 0.92133 0.49699 0.70498 0.1435 

ANN # 9 Feedforward 

backpropagation 

trainrp 5 Train 70 

val 20  
  test 10 

0.0265 0.92319 0.92407 0.92265 0.75014 0.86611 0.03687 

ANN # 10 Feedforward 

backpropagation 

trainlm 5 Train 70 

val 20  

  test 10 

0.0194 0.94438 0.94526 0.94589 0.8926 0.94477 0.01725 
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