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Abstract. We present results of a feasibility study that uses Artificial Neural Networks (ANN) for the
retrieval of intensive microphysical parameters of atmospheric pollution from combinations of
backscatter (B) and extinction coefficients () that can be measured with multiwavelength Raman and
high-spectral resolution lidar at 355, 532, and 1064 nm. We investigated particle effective radius, and
the real and imaginary part of the complex refractive index. ANN could be a useful alternative or
supplementary method over the traditional approach of retrieving microphysical particle properties with
classical inversion algorithms because data analysis with ANN is significantly faster and allows for
investigating the information content of the optical input data. We investigated the data combinations
3p+2a, 3p+1la (355 and or 532 nm), 2B (532, 1064 nm) +1la (532 nm), and 3 with Feedforward
Backpropagation Multilayer Perceptron Neural Networks. The synthetic optical data were computed
with a Mie-scattering algorithm for monomodal particle size distributions. Mean radii of the size
distributions ranged between 0.01 and 0.5 pum, and mode widths ranged between 1.4 and 2.5 resulting in
effective radii between 0.13 and 4.1 pum. We tested real parts between 1.2 and 2, and imaginary parts
between 0.0i and 0.1i. The complexity of developing the networks did not allow us to test the influence
of measurement errors of the optical data but the error produced by the ANN can be quantified. From
the five basic data combinations, our current network design allows us to derive effective radius with an

accuracy of approximately +16 to £35%, and 17 to +39% if the true mean radii is in the range from
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110 - 250 nm, and 260 - 500 nm, respectively. The real part can be derived with an accuracy of
approximately +7 to £10%. We find retrieval errors of approximately = 31 to £38% for the imaginary
part. We show that ANN can potentially estimate some particle parameters with various levels of
uncertainty not only from what we denote as 33+2a information but also from data combinations of
3B+1a (355 or 532), 2B (532, 1064) +1a (532), and 3. We hypothesize that the ANN carries out first a
pre-selections of various values of extinction-based Angstrém exponents with regard to effective radius
and then uses this information to create the strong correlation between particle effective radius and lidar

ratios in all particle size distributions (PSDs) we investigated.

1 Introduction

Radiometers and light detection and ranging (LIDAR) instruments on satellites and at ground are
fundamental methods for the investigation of the impact of atmospheric pollution and trace gases on
global climate change. Reports regularly published by the Intergovernmental Panel on Climate Change,
IPCC (IPCC and Press, 2013) point to the uncertainty of climate change forecast with regard to
particulate pollution. Particulate pollution stems from natural and man-made sources, i.e., sea salt and
mineral dust, smoke from forest fires, urban haze from traffic and industrial activities. These particles
have different lifetimes that can span hours to weeks. They appear in various heights of the atmosphere
from the ground to stratospheric heights. Their chemical and physical properties are variable and
depend on generation mechanisms, transport time, and can be affected by various factors such as
ambient humidity, the condensation of gases on existing particles, gas-to-particle transformations, and
the mixing of particles in terms of internal and external mixtures. All these factors describe only a part
of the complex aerosol system. Various experimental and theoretical methods are needed for the

detection and characterization of these particles.

In the past 20 years Raman lidar has evolved into a standard method for the observation of aerosols
(Ansmann and Muller, 2005). Lidar is the only method that allows us to detect particle properties under
ambient atmospheric conditions on a vertically highly-resolved scale. These days many lidars can
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operate under 24/7 conditions. Though aircraft missions can also provide profiles of aerosol profiles,
these activities are limited to episodes during field campaigns. The time spans of data acquisition are by
far less than what can be achieved by, e.g., lidar which can measure for days or weeks unless hardware

failure, maintenance, or adverse weather conditions force the shut-down of the instrument.

Lidar networks such as the European Aerosol Research Lidar Network (EARLINET),
www.earlinet.org (Pappalardo et al., 2014) and space-borne lidars, of which CALIOP (Winker et al.,
2004; Winker et al., 2007) aboard CALIPSO (Winker et al., 2009) is the first example of a successful

long-term aerosol lidar mission, have started to create an enormous amount of data that needs to be

analyzed. Upcoming missions involve ESA’s high-spectral resolution lidars aboard the ADM Aeolus
(Stoffelen et al.,, 2005) and the EarthCARE (https://earth.esa.int/web/guest/missions/esa-future-

missions/earthcare) satellites. Even though satellite missions employing passive remote sensors also

generate a large amount of data the addition of the vertical resolution adds another dimension in the data
set. This spatial dimension leads to a significant increase of the amount and complexity of the data
which should preferably be analyzed in real-time particularly with respect to space-borne lidar.

Since the early 1990s Raman lidar (Ansmann et al., 1990) has become the workhorse for
quantitative aerosol characterization, as this lidar method allows for measuring particle backscatter and
extinction coefficients. EARLINET activities in the past 15 years focused on developing infrastructure
in terms of reliable, quality assured instruments and software for data analysis. Automated-algorithms
that allow for fast, unsupervised analysis of lidar signals acquired by the various lidar stations are in the
test phase. This single-chain approach currently focusses on the retrieval of the optical aerosol
parameters that can be measured with Raman lidar, notably backscatter and extinction coefficients. This
approach follows the philosophy of coherent, fast analysis of signals acquired by the AERONET sun
photometer network (Holben et al., 1998; Holben et al., 2001).

The development of multiwavelength Raman lidar in the mid-1990s offered another dimension in
exploiting Raman lidar data. Inversion algorithms (Kolgotin and Miller, 2008; Qing et al., 1989;
Tikhonov, 1977; Twomey, 1977) have been developed with the purpose of extracting microphysical
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information, such as particle size and the complex refractive index, from which optical properties such
as single scattering albedo can be inferred (Bockmann et al., 2005; Muller et al., 1998; Veselovskii et
al., 2002). Significant progress has been made with regard to inversion algorithm development. Case
studies dealt with the proof of concept of the algorithms in the late 1990s to the mid 2000 (Bdckmann et
al., 2005; Muller et al., 1999a; b; Muller et al., 1998; Miiller et al., 2003; Miiller et al., 2000;
Veselovskii et al., 2002; Veselovskii et al., 2004). The inversion methodologies were improved to the
point that it became possible to derive profile-like microphysical data products (Kolgotin and Mdller,
2008; Muiller et al., 2011; Veselovskii et al., 2009) In recent years significant efforts have been made in
automating the methodology developed by Mauller et al. (1999a) to the point that unsupervised, real-

time data analysis has become possible (Muller et al., 2014).

Despite this encouraging progress we started following another path of data analysis, i.e. the use of
Acrtificial Neural Networks also known as Neural Networks (NN) in order to explore if NN or a
combination of NN with the traditional mathematical algorithms could in future increase data
processing speed and the quality (accuracy and precision) of the data products which in part are still not
meeting the requirements requested by the climate modeling community. We also want to explore what
types of combinations of backscatter and extinction coefficients (in terms of number of channels) could

potentially deliver some of the data products we are interested in.

In this contribution we present for the first time results of a large scale sensitivity analysis in which
we tested various simple NN configurations and developed a successful NN design during a 5-years
effort to explore if NN can be used for support in data inversion. NNs are inspired by biological neural
networks (biological neurons) of our human brain consisting of 10°-10' neurons (small information
processing elements) which communicate through an interconnected network (approximately 10*
connections per element). NN works as massively parallel distributed computing networks, and are
similar to biological neural systems in their main characteristics. Generally NN models are similar to
well-known statistical models, e.g. non-linear regression; however the nomenclature of NN is unlike

compared to that in statistics. In order to cross-validate an NN model, selected datasets are divided into
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training set and test set where the independent variables are termed as input and NN estimated values

are called output.

We had to start with literally no experience in this research area, in part in view of lack of
appropriate literature with regard to aerosol lidar applications. We tested the most traditional NN which
is the feed forward backward propagation method. We kept the input data comparably simple but still
complex enough so that we could simulate atmospheric aerosol conditions to a reasonable degree. We
tested various combinations of data that can be obtained from high-end multiwavelength lidar and less
developed lidar in order to test if there is a threshold to the necessary number of data that could make
NN useful for our purposes. It is clear that such a study is not only complex but time consuming as NNs
exist in a variety of designs. There also is the question of how representative the input data have to be
for the training, testing, and validation steps. For example we could not yet investigate the impact of
measurement errors of the optical data on the performance of the NN that we used in our study.
Nonetheless this study provides the first insight to the potential usefulness of neural networks for the
analysis of lidar data and the study points toward directions of future research work in that area.

Figure 1 shows a flow chart of the overall procedures of our ANN study for the analysis of
multiwavelength Raman/HSRL lidar data. Section 2 will provide an overview on our NN design. We
will describe the choice of our training data and the design of our simulation study. We tested more than
fifty different network topologies, among them the most important twenty five network topologies are
summarized in this study. The best NN topology which is feasible for our work was selected from those
twenty five topologies. See the appendix section for details of network topologies. Section 3 will
describe the results of our main target of our sensitivity study, i.e. retrieving effective radius and, as a
byproduct the complex refractive index for various configurations of input data. We focus on some key
data combinations which are important of stand-alone multiwavelength lidar and future space-borne
lidar missions in which a down-scaled multiwavelength lidar might be coupled with passive remote

sensing instruments. Section 4 will present a summary and outlook.
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2 Methodology

2.1 Feedforward Backpropagation Multilayer Perceptron Neural Network

Figure 2 shows a schematic display of the general feedforward multilayer perceptron neural
network (FFBP-MLP). In its most simple design a FFBP-MLP consists of three layers, i.e., the input
layer, the hidden layer, and the output layer. In the FFBP-MLP architecture a functional link is
interconnecting these layers (Hagan et al., 1996). The neurons are linear or nonlinear computing
elements. Adjacent layers are connected to each other by neurons, but there are no lateral connections

between neurons within one layer, however feedback connections are possible.

The input variables which can be denoted as | = [iy, I, ... iy], are functionally linked with the main
processing elements, i.e., the neurons. Each single neuron is given a relative weight W = [wy, W ... wp]
which determines the impact of each input. These network weights are adaptive coefficients within the
network. The weights determine the proper intensity of the input signal by applying a bias value by,
which is a random initial value i.e., real number multiplied with a weight value. The neuronal outputs
are generated by the summation block which adds up all of the weighted input signals algebraically. The
information in this network flows in one direction, from input layer to output layer, via the hidden layer.
The forward propagation step starts with uploading an input pattern into the input layer. In our study
this means that optical data sets are presented to the network. The network then processes the data in the
hidden layer and converts the calculated signals of the hidden layer to the output layer.

We trained our neural network model with an algorithm, i.e., perceptron named the generalized
delta rule. This delta rule processes derivatives by a simple chain rule called backpropagation (Werbos,
1994) in which the network errors i.e., the difference between true solutions and neural network
generated solutions propagate backward and again check for new weight values. During this weight
correction procedure, the configuration of the optimum values between output values (e.g., effective
radius, real and imaginary parts of refractive index) and target values (their true solutions) are chosen by

computing their differences. In this study, training means a set of input parameters is used in a
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combined fashion to search for a specific targeted parameter by repeated adjustments of weights and a
fixed random bias value, on the basis of a comparison between the target and network-generated output,
until the output ends up in an optimal correlation with the target. The hidden layers use a nonlinear
activation function (Hagan et al., 1996) and the whole MLP model becomes truly nonlinear. The
purpose of using a nonlinear activation function is that it introduces nonlinearity into the neural network
to solve our linearly inseparable retrieval problem. The activation function for each neuron is the sum of
all its input values multiplied by their corresponding connection weights. Once the activation neuron is
computed, the output values Oy, as shown in figure 2 can be easily determined by applying a transfer
function which transforms the output signals into NN estimated target values.

2.2 Workflow of the FFBP- MLP Neural Networks Model

Figure 3 shows a simple graphical outline of the FFBP-MLP neural network model that we used for
the training phase. The Neural Network Toolbox in MATLAB software (version 2012b) has been used
to design the NNs we used in our study. We limited our study to five basic combinations of backscatter
and extinction data. Figure 3 shows the approach that we used when effective radius is chosen as target
parameter (output neuron). 5 hidden neurons are used in a single hidden layer. The minimum and
maximum values of the input and target parameters (input and output neurons) are shown in the red
colored boxes. When we inserted the input values (input parameters/neurons) in the model, no values of
output were used as input, which makes the model very robust to construct an input - output mapping
relationship. The complex refractive indices (real and imaginary part), though not the main target of our

study, were also trained by using the above mentioned model (not shown here).

There exists a variety of network designs and types of neural networks, each of them can be suited
to particular applications. We considered a number of network architectures and parameters in order to
determine the optimum model configuration of our study. Among the configurations we tested the
feedforward backpropagation multilayer perceptron performed the best training results on the basis of
the coefficient of determination (R?) between the known (true) value and the value obtained from our
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NN. The coefficient of determination statistic shows the normalized information of the goodness of fit
of a model. It describes how strongly the regression straight-line estimates the true data points and
provides mean squared errors of training, testing, and validation data. We find five hidden neurons in a
single hidden layer to be the best choice for our research work. This decision was based on the fact that
we obtained the minimum of the Mean Squared Error (MSE) in the training phases in which we used

different numbers of hidden neurons.

We used one FFBP-MLP model for all training and simulation cases. Figure 4 shows the workflow
of how the optical data were used for training the NN. At the beginning we insert the input and output
parameters in the neural network. Then the network activation function is used, followed by the

allocation of transfer functions and number of hidden neurons.

We randomly selected a subset of 70% of the input data for training our model. We used 20% of
the data for testing the performance of the model. The remaining 10% of the data were used for the
validation step. The validation step allows us to find the predictive error of the model. A maximum of
1000 epochs was chosen for all training sessions. Epochs means iterations. In each iteration step the
model creates a relation between input and output by using the hidden neurons, associated weight
values, and hidden layer functions. In NN model the training procedure requires iteratively detecting the
perfect weights and biases so that the network errors are minimized via a standard numerical
optimization algorithm that optimizes the mean squared error performance function (Hagan et al.,
1996). The greater the amount of hidden neurons in the hidden layer, the more unmanageable it
becomes to obtain the global optimum (Anctil and Lauzon, 2004). We find that 5 hidden neurons
provide a reasonable compromise between complexity of the NN, the work effort to train the network,
and to obtain useful insight into NN performance for future studies.

The number of input parameters means the number of neurons in the input layer. We used 3-5 input
parameters in this study. The output layer consisted of one neuron, as we were looking for solutions to
effective radius, the real part, and the imaginary part of the complex refractive index, separately. We
used the hidden layer network functions Tan-sigmoid and Pure-linear (Haykin, 2007). The network
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learning algorithm (training function) was Trainlm, Levenberg-Marquardt algorithm (Hagan and

Menhaj, 1994). The hidden layer activation function (tan-sigmoid) can be written as

flx) = —— @

1+ e™%i
The parameter x; is the i-th input in the model.

As we set the performance function to mean squared error - MSE, the network will calculate the
squared errors based on the difference of the true and estimated values of each output parameter. In our
study we take the lowest value of MSE as final results and thus were saved from the trained model. We
use three network input-output functions in the neural network toolbox in Matlab as follows: remove
constant rows (RCR), standard deviation function (mapstd), and mapminmax function (Hagan et al.,
1996). The use of the RCR function allows us to remove any possible rows with constant values in
order to ensure the statistical robustness of this study, and to keep the maximum number of dissimilar
data samples. We often need to use a variable scaling of input—output values to achieve the best results.
The network uses the mapminmax function for pre-processing and post-processing of the data in a way
such that the training phase data are scaled between -1 to +1. This means all variables fall between the
values -1 and +1. After that step we normalize the mean and standard deviation of the training dataset
with the mapstd function so that the network’s input values and target values transform to zero mean

and unity standard deviation.

2.3 Format of Retrieval Results and Errors

In the results section we will show correlation plots along with some statistics, i.e., reduced chi-
square test values, Pearson’s correlation coefficient values (r), and adjusted R-square values (R?). Based
on the correlation coefficient values of all investigated parameters in this study, a summary figure is
shown at the end of results section. For estimating the errors in the simulations and the assessment of

the models that we investigated, the reduced chi-square (X?) test was used. The rationale for using these
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different methods is as follows. We have used linear fitting and reduced X? test which are good choices

to predict the goodness of fit of our retrievals against their true solutions.

Pearson’s correlation coefficient values (r) are used to see the degree of linear association between
the original and simulated values of the investigated parameters. From the two key properties of
Pearson’s r, which are magnitude and direction, we can easily understand the state of relationships that

exists between two variables.

Adjusted R? also suggests the goodness of fit of the linear regression results. Here, we are using a
linear model to fit our simulated data against the original values and the main use of X? is to test the
goodness of the regression lines, and identifying the slope and intercept with respect to our data. As we
have two regression parameters (slope and intercept), the number of the degrees of freedom (DOF)

minus two is used in the computations. We calculated the residuals as

HCEDY

where R; = Original values — Simulated values.
The retrieval errors (squared relative error) for effective radius and complex refractive index are

calculated as

. )2
Squared relative error, 8x? = \/%Zlm‘“‘ (Xo—x)” o 100 (%) 3)

Imin x2
where N = number of data points used for simulation, X, describes the NN estimated values and x

describes the true values, errors are shown as percentage.

2.4 Input Datasets for the FFBP- MLP

In our study, the extinction and backscatter coefficients at the wavelengths 355, 532, and 1064 nm
were generated from monomodal logarithmic-normal aerosol particle size distributions using a Mie

scattering algorithm (Bohren and Huffman, 1998). Table 1 shows the values of particle mean radius,

10
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geometric standard deviation (mode width), complex refractive index (real and imaginary part), and
particle effective radius that we used for the computations of the optical input data. The numbers in
table 1 cover a realistic range of atmospheric particle size distributions. Table 2 summarizes the
combinations of optical data that we used for our ANNSs. The goal was to find out how well the different
optical data combinations allow us to derive effective radius, and the real and imaginary part of the

complex refractive index.

The common FFBP-MLP neural network was applied to five basic input combinations. We used
three different size ranges of effective radii for which we tested our NN. We had to do this in order to
keep the computation time to a reasonable limit given the computer resources we had at hand.
Combining all data between 10 to 500 nm results in 817742 individual data for the training phase for
which we need a computation time of more than 3 hours at least. Data downscaling is applied to reduce
the computation time. It also allows us, as a by-product, to investigate in a first step the effectiveness of
our NN to identify the properties of the particles in the ultrafine mode, fine mode (accumulation mode),
and coarse mode. The coarse mode was not fully covered in this study and a more refined separation

into the three particle modes will be done in a future study.

For the retrieval of re in the range from 10 — 100 nm we used 165240 individual data points for the
training step and 165240 dissimilar data for the NN simulation, results and discussions will be shown in
our future study. 250181 different data points were used for the training, and 250181 separate data
points were used for the simulations in the 110 — 250 nm mean-radius range. 402321 different data
points were used for the training and 402320 separate data points were used in the simulation in the 260
— 500 nm mean-radius range. The values of the imaginary part were limited to 0 — 0.1. We used 453255
individual data points for the training and 453100 different data points for the simulations in the 10 —

500 nm mean-radius range.

Figure 5 describes how we prepared the optical data for our tests. Before processing the input
parameters with the model we applied a Fisher-Yates shuffle algorithm (Paul, 1948) to all data. We had

to shuffle the database to avoid any possible bias of data selection during the training phase and the

11
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blind-test phase. This algorithm randomly permutes N elements by exchanging each element with a
random element from i to N. All data are inserted in a matrix format in Matlab (www.mathworks.com)
and shuffling is done by the Matlab randperm (random permutation) function. This function randomly
shuffles the whole dataset on a row-by-row basis, i.e., the sampling is done with replacement. The
intrinsic structure of the data remains unchanged after the process of random shuffling. The individual
values are randomly distributed and we can choose the model training and blind-test data portions
without creating a bias of any particular data type or distribution. After shuffling, 50% of the data were
selected for the training part and the remaining 50% of the data were chosen for carrying out the blind-
test. In our study, the blind-test means that the data that were not used in the training phase of the NN
but were used to test the performance of our algorithm in retrieving the parameters of interest, i.e., the
output. Here, the portion of the training data is further subdivided into ‘training’, ‘testing’, and
‘validation’ in proportion of 70%, 20%, and 10%, respectively. Training and blind test datasets are
prepared in such a way that they are statistically representative (i.e. mean, standard deviation, median,
maximum-minimum values of both datasets are similar) for the whole set of data used in our study. This
fifty-fifty data sharing is a good approach for simulating the investigated parameters against the trained

data in our model.

3 Results and Discussion

The potential of the Artificial Neural Networks in retrieving atmospheric particle parameters
(effective radius and the mean complex refractive index) have been implemented in extensive
simulations and sensitivity analyses (Mamun, 2014). Sensitivity studies with a number of various input
combinations of backscatter and extinction data were tested to answer the questions mentioned in the
introduction section. Our results will be compared with the classical lidar inversion algorithm methods

(minimum a priori information used) in our future works.

In this contribution we analyze the main features of our ANN in retrieving particle effective radius.

We did not train this ANN with regard to the real and imaginary part in the sense that we tried to

12
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optimize the retrievals for these two parameters using our common FFBP-MLP model. We were mainly
interested in the robustness of the chosen ANN (for effective radius retrieval) how well it can also
retrieve the complex refractive index. We will in future work develop another ANN that will be

specifically optimized with regard to retrieving the complex refractive index.

The ANN method applied in this study did not take into account any a priori information. We
calculated the extinction based Angstrom exponent (8zsss32nm) in the value ranges between -0.5to < 0, 0
t0<05,05t0<1,1to<1.5, 1.51t0<2, and 2 to 2.5 for effective radii ranging from 110 — 250 nm.
Additionally asss/s32nm Was calculated in the ranges between -0.5to < 0, 0 to < 0.5, 0.5t0 < 1, and 1 to
1.5 at 260 — 500 nm of the corresponding effective radius values. Lidar ratios at 532 nm were computed
for several ranges, i.e. < 20 sr, 20 to < 40 sr, 40 to < 60 sr, 60 to < 80 sr, 80 to < 100 sr, and above 100
sr. Again we stress the fact that we were mainly interested in the feasibility of using ANN for analyzing
lidar data, and the chosen intervals reflect in a rough sense various size ranges of ultrafine, fine and
coarse mode particles (in terms of their Angstrém exponents) and the combination of Angstrém
exponents with lidar ratios reflect different aerosol types (Burton et al., 2012; Burton et al., 2014), e.g.,
values of 40 — 60 sr at 532 nm can be regarded as moderately absorbing urban haze (if the Angstrém
exponent is above 1), whereas values of 60 — 80 sr or above may be representative of highly-light

absorbing pollution. The results of lidar ratios at 355 nm will be included in our future works.

Figures 6 — 9 show the results of the simulated values of the investigated parameter versus their true
values for various ranges of extinction Angstrém exponents. Figures 10 — 13 show correlation plots of
the true versus the simulated parameters based on the various lidar ratios (based at 532 nm). Tables 3 —
6 show the statistical analysis of the various training and simulation sessions for the three ranges (110 —
250 nm, 260 — 500 nm, and 10 — 500 nm) of mean radius considered in our study.

We tested different combinations of backscatter and extinction coefficients. As explained in the
introduction, the combination of 3 backscatter and 2 extinction coefficients is important as this
combination is used in the currently most evolved multiwavelength Raman lidars, e.g.,

(http://www.earlinet.org/) and high-spectral-resolution lidars (Muller et al., 2014). We tested lidar data
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combinations that will be important in the context of the synergy of lidar with passive remote sensors
with the latter providing optical data at other wavelengths than the ones tested for the lidar set-ups. Our
study uses the combination of backscatter and extinction data, which can be seen from the four different
combinations used in this work consisting of at least 1a+1p in all cases. In addition we use one case
consisting of only backscatter data (3 case).

3.1 Retrieval of Particle Effective Radius

When retrieving atmospheric particle parameters, generally a combination of backscatter and
extinction coefficients at various wavelengths is essential for the stability and consistency of the
inversion algorithm methods, i.e., the combination of at least 3 (for aerosol lidar purposes the
wavelengths are 355, 532, and 1064 nm) and 2a. data (wavelengths are at 355 and 532 nm) is necessary
to estimate with acceptable accuracy of the particle parameters investigated in our study (Mdaller et al.,
1999a; b; 2000; 2001). Moreover, adding more data channels provides better results if the chosen
wavelengths are outside the interval 355 — 1064 nm, as in general the information content of optical
data in those wavelength ranges below 355 and above 1064 nm may contribute significantly to the
information content in the wavelength band between 355 and 1064 nm. We will investigate this effect in
future studies as it will be also important in the context of combing lidar with passive remote sensing

data.

Our ANN analysis suggests that it is important to have at least a combination of 1a (355 or 532 nm)
and 2B (532 nm and 1064 nm) for the retrieval of re in the particle radius interval between 110 — 500
nm. The results of the use of 3p + 2a datasets in our ANN model are in nice agreement with previous
studies carried out with inversion algorithms. A combination of only 3 optical data can also retrieve
the investigated parameters in all size ranges, however with reduced accuracy compared to the other
four data combinations investigated in our study. This result shows the importance of using extinction
data. The results we obtain from our ANN model indicate the loss of retrieval accuracy if extinction
information is omitted and confirms previous studies that pointed out to the fact acceptable results for
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microphysical parameters cannot be obtained if only backscatter data are used; we stress the fact that the

retrieval situation likely will become worse as soon as measurement errors are considered.

The importance of using backscatter coefficients was exemplified in one study (Béckmann et al.,
2005) where the degree of ill-posedness due to backscatter data was found to be less compared to
extinction data, however the extinction profiles in combination with backscatter profiles are very
important for the best retrieval accuracies, as we find from our NN simulations. The simulation results
for res Of aerosol mean radii between 110 — 250 nm and 260 nm - 500 nm, see tables 3 and 4, show
moderately good Pearson’s r and adjusted R? values for all ranges of extinction Angstrém exponents
when a combination of 33+2a is provided as input in the model. Additionally the MSE values are very

low for all size ranges. This result suggests that the network’s performance quality is very high.

The multiple correlation plots are shown in figures 6 - 7. The best results are achieved for the
3B+2a data combinations and both size ranges, as can be seen from simulation A. The simulations B, C,
and, D show no significant differences in the retrieval quality of the parameters. Simulations with the
combination of 1a (355 or 532) with 3, and 2 (532, 1064) with 1a at 532 nm show similar retrieval

quality regarding effective radius.

In the radius range of 110 — 250 nm the correlation plots (Figure 10) based on various lidar ratio
ranges suggest that values < 20 sr and values from 20 sr to < 40 sr have the highest correlations; values
below 20 sr usually are not measured for aerosol particles, however we still tested this lidar ratio range
below 20 sr in order to check the robustness of our ANN scheme. The correlation tends to slightly
decrease with increasing lidar ratio. In the case of 3p (simulation E), significantly stronger correlation is
found when the lidar ratio is below 20 sr. However for lidar ratios above 20 sr the association is found
to be moderate to strong. Almost the same trend is seen in the particle radius range from 260 — 500 nm
(figure 11) where the highest correlation is found for lidar ratios < 20 sr. In our model, 3B (the absence
of o) clearly shows the importance of using extinction profiles in retrieving ress (over 100 nm mean
radii) with acceptable accuracy. We speculate that one of the possible reasons for such strong
correlations which have been revealed in our study for the first time is the pre-allocations of various
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values of extinction based Angstrém exponents before the allocation to lidar ratio is carried out by the
ANN. Plausibly, ANNs as an intelligent data mining technique, is capable of finding out this intricate
association among Angstrom exponent, lidar ratio, and particle parameters, details of which has been

shown for the first time in this study.

3.2 Retrieval of Real and Imaginary Part of the Refractive index

The simulation results of the refractive indices show similar trends for the real and imaginary parts.
However, retrievals of the real parts are more accurate compared to the imaginary part. In both cases
3p+2a data combinations show the best results followed by the other data combinations as follows:
Imaginary part: 3p+2a > 3 > a at 532+3p > o at 355+3p > o at 532+2f (532, 1064).

Real part: 38+20. > o at 355+3p > o at 532+3p > o at 532+2p (532, 1064) > 3p.

Here, for the imaginary part we can see better retrievals from only 3B over 3p+1 a. The
computation of Neural Networks relies upon numerical calculation of input and output parameters and
associated weight vectors in the hidden layer, the accuracy of outputs depend on successful selection of
bias values and weight vectors. These overall procedures are usually performed by trial and error
methods to achieve the optimum results. In this study, for the retrievals of imaginary part (output) from
only 3B coefficients (inputs) can outperform 3p+1a suggesting a more refined selection of bias and

concomitant weight vectors to achieve optimum imaginary refractive index values.

The simulated imaginary part that is related to the extinction-based Angstrém exponent values from
-0.5 to < 0 has the best correlation (figure 8). The next best correlation is followed by 83s5/53nm-values

between 0 to < 1. Weak to no correlation is found for oss5300m-values >1.

The simulations for the real part (figure 9) show a trend that is similar to the one we find for the
imaginary part, though there is a slightly better accuracy. Very strong correlation is found for the 3p
case with respect to the retrieval of the imaginary part and strong to moderate correlation is found for

the real part.
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The figures (12 — 13) that show the simulations in dependence on the lidar ratio show different
trends for the imaginary and real parts. In general, the lidar ratio range from 40 sr to < 60 sr has the best
correlation with the imaginary part. The imaginary parts that are related to lidar ratios < 20 sr and to
lidar ratios in the interval 20 < 40 sr have a moderate relation, except for the case of 1a+2f3. Lidar ratios
above 60 sr show moderate to strong correlations. Only the 33 data combination has moderate to strong
correlation for all lidar ratios which is unlike the real-part retrievals where we find weak association for
lidar ratios <60 sr. The correlation increases with increasing lidar ratios. Other combinations related to
the real part show moderate to strong correlations for lidar ratios < 100 sr. Lidar ratios > 100 sr show

very strong correlations.

If we compare the results of the Angstrom-based and lidar ratio-based results (see figures 8 - 13)
we see a better accuracy for the real part compared to the imaginary part. Simulations for the refractive
index also suggest that we can achieve acceptable accuracy even if we use a reduced number of input
neurons (input data combinations). The results of the 3 + 2o data combination show good agreement

with inversion algorithm methods with increased retrieval accuracy as shown in tables 5 and 6.

The retrieval errors for the real part of refractive index are between +6.71 to +10.41% whereas the
imaginary parts show retrieval errors between +31.3% and £38.3%. This results suggests that the
prediction of the real part is more accurate compared to the imaginary part. The situation may be
different if we start training our ANN with specific focus on the real and imaginary part rather than

effective radius.

Table 7 and 8 show the statistical information, but split into fine mode (effective radius < 500 nm)
and coarse mode (effective radius > 500 nm) particles. We show the results for radii ranges of 110 —
250 nm and 260 — 500 nm. With regard to the mean-radii range of 110 — 250 nm (see table 7) the 3p +
20, combination shows the best output both for fine and for coarse mode particles. The weakest
correlation is found for the 3B data set. All other data combinations reveal comparable strong

correlation in the case of the coarse mode.
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With regard to the mean-radius range of 260 — 500 nm (table 8) the simulation show weak to
moderate correlations for fine mode particles. The exception is the 3 + 1a (355) data combination. The
poorest correlation again is found for the 3 data combination. In contrast, all data combinations show
strong correlation in the case of the coarse mode except for the 33 data combination. Overall, the results
of the coarse mode simulations show better performance than the simulation with fine mode particles.
We conclude that our ANN can estimate particle effective radii larger than 500 nm (i.e. coarse mode,

effective radius from 500 to 4000 nm) with higher accuracies than particle effective radii below 500 nm.

In general reduced retrieval errors in all the simulations reveals the robustness of our common neural
network model with regard to finding the microphysical properties of atmospheric particle pollution
parameters. The application of neural networks confirms the importance of combining backscatter and
extinction coefficients which corroborates findings of previous studies with inversion methods of
Miller et al. (Muller et al., 2000; Muller et al., 1998; Muller et al., 1999a, b) and Veselovskii et al.
(2002), and eigenvalue analysis carried out by Veselovskii (Veselovskii et al., 2005). From our analysis,
we find satisfactory results for re, and the real and imaginary parts of the refractive index in terms of
MSE and the correlation of the simulated parameter to their true values. All Pearson’s correlation
coefficient, r values are shown in figure 14 as a summary of the retrieved performances of all

investigated parameters in this study.

In some cases, the ANN-calculated values of the aforementioned parameters seem to be more
accurate than the conventional mathematical inversion procedures. However, we must keep in mind the
simplifications of our study: no errors of the input data were assumed, the test data set was strongly
restricted (Ansmann & Miller, 2005) to monomodal size distributions, and the test space may be too
constrained in terms of tested PSDs (size parameters). When the complex nature of the relationships
between input and output parameters is totally unknown, FFBPMLP model with one hidden layer works
as universal approximator which learns any input-output relationships from a given amount of data
(Anastassiou, 2013; White, 1992; Yang et al., 2013; Zainuddin and Pauline, 2008).
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4 Summary and Outlook

To the best of our knowledge we tested for the first time ANN models for the analysis of multi-
wavelength Raman lidar data with regard to retrieving particle effective radius, and the real and
imaginary parts of the complex refractive index. For the first time to our knowledge, retrievals of
particle parameters of atmospheric pollution (rer, complex refractive index) from multiwavelength
Raman or HSRL lidar data has been achieved under simplified conditions (no measurement errors,
monomodal particle size distributions) by means of a feedforward backpropagation neural network. We
optimized the ANN with regard to retrieving the effective radius, i.e., the retrieval of the complex
refractive index was done with the same model. The results of our ANN model have shown that this
method is capable of modelling the complex relationship between optical and microphysical parameters
of atmospheric particles for size distributions that range between 0.01um to 0.50um. We also show that
our ANN model can retrieve reasonable results from less input information (i.e. 3p, lo+2f, and 1a+3p),
whereas it is still not clear what the minimum input information for traditional inversion algorithm
methods needs to be. Some results on that topic can be found in (Chemyakin et al., 2014). Most
importantly our retrievals show good agreement with previously tested methods when the combination
of 20 +3p is provided as input in the model for the simulation of all parameters we tested (Bckmann et
al., 2005; Chemyakin et al., 2014; Veselovskii et al., 2002; Mdller et al., 2001). We hypothesize that the
pre-selections of various values of extinction-based Angstrém exponents with regard to effective radius
before the allocation to lidar ratio is carried out by the ANN and then uses this information to create the

strong correlation between particle effective radius and lidar ratios in all PSDs we investigated.

In the next phase of our work we want to expand the ANN model from 0.51 to 10 pum particle
radius with regard to the aerosol mean radii. We want to introduce more realistic atmospheric situations
with regard to the particle size distributions, i.e., multi-modal size distribution, and in a later stage of
our work we want to apply the ANN to data from field experiments. Furthermore, we will investigate in
more detail how optical properties, i.e. particle Angstrém exponents, particle lidar ratios (extinction-to-

backscatter ratios) can be used to estimate not only microphysical properties but also the single
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scattering albedo. The separation of aerosol types will be tested. Findings from this research will also
contribute to our existing knowledge of various research areas as for example ocean color correction
schemes. We hope that ANN will allow us to excavate the intricate relationships among various
observed parameters of large multi-dimensional datasets and will refine and extract new insight into the

aerosol impact on climate change.
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610

615 Table 1. Mean radius, mode width, complex refractive index, and particle effective radius used for the

computations of the optical input data.

Parameter Value
mean radius 10 nm — 500 nm, in step size of 10 nm
mode width 1.4 - 2.5, in step size of 0.1
real part 1.2 — 2, in step size of 0.025
imaginary part 0i - 0.1i, in step size of 9.99x10°®

rer |range] <0.1 10.1-<05/05-<1| 1-<2 | 2-<3 | 3-<4 >4

(um) N = | 107406 | 492967 | 483837 | 362883 | 135182 | 50761 2447

Real |range|1.2 -<1.3|1.3-<1.4{1.4-<15[1.5-<1.6(1.6 -<1.7|]1.7-<1.8/1.8-<1.9/1.9-2.0

part IN= | 106688 | 133361 | 106688 | 106688 | 106688 | 106630 | 106495 | 133117

Imag.range| O- 0.001- | 0.005-| 0.01- | 0.025— | 0.05- | 0.075—

part <0.001 | <0.005 | <0.01 | <0.025 | <0.05 | <0.075 0.1

N = 80871 | 40508 | 40508 | 120966 | 201043 | 201316 | 221143
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Table 2: Data combinations of backscatter and extinction coefficients that were used in our simulations. EC

620 denotes extinction coefficient. BC denotes backscatter coefficient.

Simulation Input Combinations
A 20 (ECas5+ECss32) + 3B ( BCas5+BCsa2+ BCaos4)
B lo. (ECsss) + 3B ( BCas5+BCss2+ BCiogs4)
C lo (ECs32) + 3B ( BC3s5+BCss2+ BCiog4)
D la (ECsz2) + 2B (BCsz2t BCao64)
E 3P ( BC355+BCss2+ BCigga)

Table 3: Summary of effective radius (res) simulation results (best results) for various input combinations
of optical coefficients in the mean radii range between 110 nm to 250 nm. From Table 3 to table 6 network

625  performances are depicted as mean squared error (MSE).

Input combination Training statistics Simulation statistics

MSE |R?value|R? value| R?value |Red Chi|Adjusted|Pearson’s [Retrieval

2
Training| Testing |Validation Sq R r Error

() (in %)

A. 3B (BCsss, BCs32, BCigs4) + 0.0162 [0.95376|0.95353| 0.95486 [0.01478| 0.90979 | 0.95383 | 16.1
20 (ECsss, ECs32)

B. 3B (BCjsss, BCs3,, BCiggq) + 0.0250 {0.92777| 0.9281 | 0.92734 |0.02156/| 0.86073 | 0.92776 20
Lo (EC3ss)

C. 3B (BCass, BCssz, BCios4) + 0.0256 [0.92611| 0.9281 | 0.92569 [0.02192| 0.85806 | 0.92631 | 20.2
1(!(EC532)

D. 2B (BCssz, BCigss) + 0.0272 10.92123]0.92137| 0.92148 (0.02299 0.84923 | 0.92154 21

la (EC532)

E. 3B (BCsss, BCss2, BCyoss) | 0.0749 |0.76303| 0.7624 | 0.7619 |0.04384|0.58258 | 0.76327 | 35.1
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Table 4: Summary of effective radius (resr) simulations results (best results) for various input combinations

of optical coefficients in the mean radii range between 260 nm to 500 nm.

630

Input combination Training statistics Simulation statistics

MSE |R?value|R? value| R?value |Red Chi|Adjusted|Pearson’s [Retrieval
Sq R? r Error

o) (in %)

Training| Testing |Validation

A. 3B (BCsss, BCs3zz, BCygs4) + 0.0801 [0.94492|0.94529| 0.94532 |0.07197| 0.89238 | 0.94466 | 17.23
20 (ECsss, ECs32)

B. 3B (BCjsss, BCsz,, BCiggq) + 0.0941 {0.93483(0.93539| 0.93578 |0.08265| 0.87378 | 0.93476 | 19.1
Lo (EC3ss)

C. 3B (BCsss, BCs3z, BCiggq) + 0.0939 {0.93521]0.93453| 0.93579 |0.08258| 0.87405 | 0.9349 19.3
Lo (ECss2)

D. 2B (BCss2, BCygss) + 0.0978 |0.93246|0.93272| 0.93224 |0.0849 | 0.86889 | 0.93214 | 19.02

1(1 (EC532)

E. 3B (BCsss, BCss2, BCyoss) | 0.421 |0.66091| 0.6613 | 0.66408 | 0.184 | 0.43968 | 0.66309 | 39.2

Table 5: Summary of imaginary part of refractive index simulations results for various input combinations

of optical coefficients in the mean radii range between 10 nm to 500 nm.

Input combination Training statistics Simulation statistics

MSE |R?value|R? value| R? value |Red Chi|Adjusted|Pearson’s [Retrieval

2
Training| Testing |Validation S R r Error

o) (in %)

A. 3P (BCsss, BCssp, BCigss) | 3.03 [0.83435(0.83382| 0.83461 |2.04541|0.69925| 0.83621 | 31.3

20, (EC3ss, ECs3») E-04 £-04

B. 3B (BCass, BCss2, BCioss) +{ 3.95 [0.77703]0.77975| 0.77685 |2.35567|0.60334 | 0.77804 | 35.81
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la (EC355) E-04 E-04

C. 3B (BCsss, BCss2, BCioes) +{ 3.83 |0.78396| 0.7847 | 0.78544 |2.31733| 0.6159 | 0.78479 | 35.33

la (EC532) E-04 E-04
D. 2B (BCas, BCiose) + 454 |0.73885/0.74149| 0.7395 |2.41063|0.54927 | 0.74113 | 38.27
1o (ECss0) E-04 E-04

E. 3B (BCsss, BCss2, BCioss) | 3.94 |0.77835|0.77715| 0.77797 |2.34645|0.60718| 0.77922 | 35.73

E-04 E-04

635

Table 6: Summary of real part of refractive index simulations results for various input combinations of
optical coefficients in the mean radii range between 10 nm to 500 nm.

Input combination Training statistics Simulation statistics

MSE |R?value|R? value| R? value |Red Chi|Adjusted|Pearson’s [Retrieval

2
Training| Testing |Validation Sq R r Error

() (in %)

A. 3B (BCsss, BCs32, BCiogs) +{ 1.18 |0.89072|0.89246| 0.8912 |0.00914|0.79549| 0.8919 | 6.71

2(1 (EC3551 ECSSZ) E_02

B. 3B (BCasss, BCsap, BCiogs) +| 1.53 |0.85547| 0.8554 | 0.85505 [0.01081|0.73518| 0.85743 | 7.64

Lo (ECsss) E-02

C. 3B (BCsss, BCss2, BCioss) + 1.59 |0.84952|0.84712| 0.84909 | 0.1111 {0.72471| 0.8513 7.80

la (EC532) E-02
D. 2B (BCss,, BCyoss) + 1.77 |0.83043|0.83068| 0.8298 |0.01191| 0.6909 | 0.8312 8.25
lo (EC532) E-02

E. 3B (BCgss, BCss2, BCioss) | 2.82 | 0.7121 |0.71352| 0.71182 |0.01404|0.50875| 0.71327 | 10.41

E-02
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640 Table 7: Statistical results of fine and coarse mode particles in the range of 110 — 250 nm mean radii data

set of particle effective radius.

Data Input combination Simulation statistics
range Red Chi Sq| Adjusted |Pearson’s|Intercept| Slope
R? r
()
A. 3B (BCsss, BCsa2, BCiges)) 0.00659 | 0.57812 | 0.76034 | 0.023 | 1.035
+ 2a (ECsss, ECss3p)
B. 3B (BCgsss, BCss2, BCiggs)| 0.00903 | 0.51293 | 0.71619 | 0.0404 | 1.062
o+ la(EC
% % 0 (ECsss)
;C_) = [C. 3B (BCsss, BCs3, BCigss) 0.00923 | 0.49962 | 0.70684 | 0.045 | 1.045
i % + la (ECss2)
D. 2B (BCss2, BCigss) + 1af 0.00881 | 0.51827 | 0.71991 | 0.044 | 1.061
(ECs32)
£
3 E. 3B (BCsss, BCs32, BCioss) | 0.01321 | 0.32355 | 0.56882 | 0.168 | 0.866
N
C', A. 3B (BCsss, BCss2, BCyges)) 0.02174 | 0.84128 | 0.91721 | 0.056 | 0.913
—i
i + 2a (ECsss, ECs3p)
B. 3B (BCsss, BCssp, BCioss) 0.03172 | 0.77715 | 0.88156 | 0.052 | 0.894
2L ot lo (ECsss)
°
<
o 9 C. 3B (BCsss, BCsa2, BCiops) 0.03234 | 0.77107 | 0.8781 | 0.0585 | 0.887
§ % +la(EC532)
D. 2B (BCss, BCigss) + 1o 0.03462 | 0.75435 | 0.86854 | 0.0658 | 0.877
(ECs32)
E. 3B (BCsss, BCss2, BCigps) | 0.06679 | 0.32716 | 0.57198 | 0.3924 | 0.485
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Table 8: Statistical results of fine and coarse mode particles in the range of 260 — 500 nm mean radii data

645  set of particle effective radius.

Data Input combination Simulation statistics
range Red Chi Sq| Adjusted |Pearson’s|Intercept| Slope
2 R?
) r
A. 3B (BCsss, BCsa2, BCyges)) 0.00557 | 0.38139 | 0.61757 |-0.1212 | 1.353
+ 2a (ECsss, ECss3p)
B. 3B (BCgsss, BCss2, BCiggs)| 0.00283 | 0.54052 | 0.7352 |-0.1016| 1.33
o [ lo (ECsss)
8 g
g & [C. 3B (BCsss, BCsay, BCigss) 0.00716 | 0.34124 | 0.58416 | -0.1452 | 1.405
1
L% Z +1a(EC532)
D. 2B (BCss2, BCigss) + 1af 0.00341 | 0.40393 | 0.63556 | 0.0176 | 1.111
(ECs32)
=
= E. 3B (BCsss, BCs32, BCioss) | 0.08956 | 0.01675 | 0.12944 |0.44447| 0.901
Lo
c‘, A. 3B (BCsss, BCss2, BCyges)) 0.07707 | 0.88028 | 0.93823 | 0.1701 | 0.885
©
~ + 2a (ECsss, ECs3p)
B. 3B (BCsss, BCss2, BCioss) 0.08878 | 0.85924 | 0.92695 | 0.1974 | 0.866
2L o lo (ECsss)
S 3
@ E, C. 3pB (BCsss, BCs32, BCigss)| 0.08813 | 0.85993 | 0.92733 | 0.1997 | 0.864
§ %+1(1(EC532)
D. 2B (BCss, BCigss) + 1o 0.0914 | 0.85406 | 0.92415 | 0.2071 | 0.859
(ECs32)
E. 3B (BCsss, BCss2, BCiges) | 0.18466 | 0.40738 | 0.63827 | 0.8307 | 0.419
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Retrieval of Intensive Aerosol Microphysical Parameters
from Multiwavelength Raman /HSRL Lidar:
Feasibility Study with Artificial Neural Networks

Databank Artificial Neural Networks
Synthetic optical coefficient data — ;_JmEut Neurons I
computed with Mie-scattering algorithm 7
(See table 1) - |Hidden layer Neurons |

Qutput Neurons | (See figures 2 - 5)

ANN topology selection

Best network topology for lidar data analysis:
Feedforward Backpropagation Multilayer Perceptron .
Neural Networks (See Appendix section) Retrieval accuracy of parameters

1. Particle Effective Radius (reff) (See tables 3 - 4)

Y range accuracy
. . . . 110 - 250 nm +16 to= 35 %
Five basic data combinations
A. 3p+2a 260 - 500 nm £17 to+ 39 %
B. 3p+1a (355 nm) 2. Imaginary part of plex refractive index
C. 3p+1a (532 nm) (values between (0 - 0.1/) (See table 5)
D. 2 (532, 1064 nm)+1a (532 nm)
range accuracy
E. 3
(See table 2) 10 - 500 nm £31 to 38 %
3. Real part of complex refractive index
(values between (0 - 0.14) (See table 6)
A range accuracy
Investigated parameters 10 - 500 nm £7 to 10 %
1. Particle Effective Radius (r.) .
from 110 - 250 and 260 - 500 nm See table 7 - 8 for retrieval
P statistics of fine and coarse
2. Imag y part of pl fractive index G . X .
(values between (0 - 0.17), from 10 - 500 nm mode particle effective radius
3. Real part of complex refractive index
(values between (0 - 0.1i), from 10 - 500 nm H
i i i y .
reff reff Imaginary part of CRI Real part of CRI
I betw 0-01 values between (0 - 0.1
110 - 250 nm 260 - 500 nm {values between (0 - 01) ¢ (0-0.10
10 - 500 nm 10 - 500 nm
Angstrom : : stris . . "
erpanent g oo Angitrim Lidar ratio Angstrom  Lidarratio | { Angstrim  Lidar ratio
| at nm t exponen
A355/5320m A355/5320m 5:“2‘::'::"“ at 532 nm A1seieatom at 532 nm
-0.5to <0 <20 sr <20 sr <20 sr <20 sr
-0.5to <0 -05to<0 0.5to<0
0to<0.5 20 to <40 sr 20 to <40 sr 20 to <40 sr 20 to <40 sr
0to<0.5 Oto<1 Dto<1
0.5to <1 40 to <60 sr 40 to <60 sr 40 to <60 sr 40 to <60 sr
0.5 to <1 1to<2 1to<2
1to<1.5 60 to <80 sr 60 to <80 sr 60 to <80 sr 60 to <80 sr
1to<1.5 2to<3 2to<3
1.5to <2 80 to <100 sr 80 to <100 sr 80 to <100 sr 80 to <100 sr
3to<45 3to<45
2to <25 2100 sr 2100 sr 2100 sr 2100 sr
(See figure 6) (See figure 7) ¢ i (Seefigure 8) (See figure 9) { :(See figure 10) (See figure 11): {(See figure 12) (See figure 13)

See all figure's summary in figure 14

Figure 1: A flow chart on the overall steps of the feasibility study with ANN for the analysis of
650  multiwavelength Raman/HSRL lidar data.
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back propagation of weights

Wko = b (bias)

Fixed value, Xg

{if error

. Qutput
inputs — i
Transfer
i ) function
I *Activation
- " Hidd function
Synaptic weights " idden
including bias eurons
L |1 . |
nput layer Hidden layer Output layer

Schematic of a feedforward backpropagation multilayer perceptron neural network

Figure 2: Schematic representation of the basic feedforward backpropagation multilayer perceptron neural

network that we used in this study.
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values

ourpm[ 0.127 .. 0.8837 .. 4.07

Output Neuron

Effective Radius

Hidden layer
Transfer function

(Pure-linear)

Hidden layer
activation function
(Tan-sigmoid) i

Hidden Neurons

Network weights
and bias value

Input
values

0 ... 9.71E-006 0 ... 3.72E-005

0 ... 6.15E-005

12 .. 2 H 0..01 14 .. 25 10 ... 500

\0 - 9.38E-006

[ECat3ssnm| [ECatssznm| [BCat355nm [BCat532nm] [BCat1064nn] [Real part of RI| [Imaginary part of Ri|[ mode width |[ mean radii |

\ [

Figure 3: Schematic of our common ANN model for the retrieval of particle effective radius. Results and
discussions shown in this study are limited to input neurons of optical coefficients only. Results of complex
665  refractive indices, mode width, and mean radii input neurons are not shown in this study. Numeric values in

the red colored boxes show the minimum maximum value of input neurons and output neuron.
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Y Y
Performance function (MSE) = Synthetic data: Input data = lidar optical coefficients,
N aerosol mean radii, mode width, real and imaginary
Z X — X part of RI, effective radius, SSA at 355, 532,1064 nm
i=1] ANN true Output data = effective radius, Complex RI, SSA
N ; H
T Y Y
Network functions: Hidden layer Activation
mapmin-max, mapstd, and and trasfer functions:
If the (calculated removeconstantrows Tansig, Purelin
value - assigned T
; value) < 1+103 Y Y
i Training phase number of neurons
H H training data = 70% in a hidden layer=5
N ; i h y
H ° Yes testing data = 20% r
: Lowest (MSE) validation data = 10% :
Y ¥ Y
i | Better prediction: Effective radius, Neural network structures: Input layer +
i| Complex refractive index, SSA single hidden layer + output layer = 1-1-1
Y \
| Save model outputl i Feed forward Back- network training
i v '-----3| propagation neural > function = trainim
End of Model — »| network algorithm H

-

Figure 4: Work flow of the ANN for the analysis of the optical data. We investigated the cases of SSA with
670 the basic model optimized for particle effective radius, the results and discussions are not shown in this

study and will be provided in future research.
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Preparation of Data sets for Neural Networks
prmmmmmmmemema e [1] Synthetic Raman lidar datasets |-------- :
1 il 1
: ; H H H :
A A ¥ ¥ y A
Lidar extinction aerosol mean| | aerosol mode effective real and imaginary Single Scattering
and backscatter radii width radius part of Albedo (SSA)
coefficients T T T refractive index
i ) : : ! !
1 1 1 1 : :
¥ Y Y Y y Y
lZI Individual data points of these particle parameters are arranged
respectively and placed in row by row order

Fisher-Yates

shuffle algorithm
(random permutation)

Datasets for Neural Networks model
(Data structure unchanged)

Total dataset is divided
into two same parts

SUETOCEREREEE

Y
50% Data for 50% data- for
Training Simulation
(Blind test)

Figure 5: Flow chart depicts the preparation process of our datasets for the neural networks. Results and

discussions of SSA are excluded in this study and will be shown in a future contribution.
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680  Figure 6: Correlation plots of true vs simulated re for particle radius range from 110 — 250 nm and for

different extinction-related Angstrém exponents.
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Figure 7: Correlation plots of true vs simulated re for particle radius range from 260 — 500 nm and for

different extinction-related Angstrém exponents.
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Figure 8: Correlation plots of true vs simulated imaginary part for particle radius range from 10 — 500 nm
and for different extinction-related Angstrém exponents.
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Figure 9: Correlation plots of true vs simulated real part for particle radius range from 10 — 500 nm and for
different extinction-related Angstrém exponents.

38



Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-7, 2016
Manuscript under review for journal Atmos. Meas. Tech.

Published: 29 February 2016
(© Author(s) 2016. CC-BY 3.0 License.

695

Teff (ANN)

<20 sr

20 to <40 sr

40 to <60 sr

60 to <80 sr

Atmospheric
Measurement
Techniques

80 to <100 sr

Discussions

100 to >100 sr

Chi®=0.00495 R’=0.97088 Chi’=0.00457 R'=097167 Chi’=0.00742 R’=095271 Chi’=0.01089 R'=0.93764 Chi’=0.01208 R’=0.9358 Chi’=0.01801 R’=0.88869

Pearson's r = 0.98533

Pearson's r = 0.98573

Pearson's r = 0.97607

Pearson's r = 0.96832

Pearson's r = 0.96737

ragp(true value)

Chi’=0.01218 R’=0.92399 Chi’=

Topy (true value)

0.01037 R’=0.92511

Tty (true value)

Chi*=0.01355 R®=0.90075 Cl

00 05 10 15 20 25

oty ltrue value)

hi =

2. s s
Intarcapt =0 ::“luuln"l 2.5 Tntercapt = 003034, Sk 2 otercogt = 0.635%). Slope = 096203 28 Tatarcapt % 0.03688, Biopa = 095437 B Intarcapt = 0.0307, Sape = 0998,
LR = taree ! N 1083 N ’
20 20 i 20 i 20
15 i i
g I z 15 = - 15 nist _
H I H H H il H
ES i < Ed Z b H
< 1 il % 10 it < g, H
5 M 5" il 5 \l s
K J k W & 5 Al K
05 05 i [
00 0.0 0.0 R TR S 0.0
00 05 10 15 20 25 00 05 10 15 20 25 00 05 1.0 15 20 25

05 10 15 20 25
Taft (true value)

Fott (ANN)

Pearson’s r = 0.9427

TT b= 0 ha75 3ok sasarzy
LRt |

y/

00 05 10 15 20 25
Fagy (true valug)

001659 R'=0.89164 Chi’=0.01883 R’=0.89031 Chi’=00252 R’=0.83884

Pearson's r = 0.96124 Pearson's r = 0.96183 Pearson's r = 0.94908 Pearson's r = 0.94426 Pearson's r = 0.94356 Pearson's r = 0.91588
IR T T Ty b IR T e e bl | e ey s prm oy =y ey =1 [ e oy o Bl == ey mery iy
ez Na2ons et Nt Cpe e
20 . L 20 20 20 20 20 1 |
- ‘h’ ! ' = I i
z ‘M g8 S8 g ‘ B “W”
S | w H ., H < ‘1'”" B
i =10 i < 10 1.0 l
& % i 3 3 E il
- i - = |
05 0s M 0s 05 05
0. - 00 0.
00 05 10 18 20 25 00 a5 10 15 20 28 25

et (true value)

Fafy (true value)

05 10 15 20
Feff (true value)

05 10 15 20 28
Teff (true value)

00 05 10 s 20 28
Tty (true value)

00 0s 10 15 20 28
Fotf (true value)

Tefg (true value)

Chi’ =0.01355 R’ =0.90

Fo (true value)

o
Foff (true value)

00 05 10 1.5 20 25
reff (true value)

w0 os 1o 15 20 25
reff (true value)

Chi*=0.01251 R*=0.92111 Chi’=0.01148 R*=0.91711 Chi®=0.01491 R*=0.89184 Chi’=0.01792 R*=0.88553 Chi’=0.01997 R’ =0.88713 Chi’=0.02523 R’ =0.83747
Pearson's r = 0.95974 Pearson's r = 0.95766 Pearson's r = 0.94438 Pearson's r = 0.94103 Pearson's r = 0.94187 Pearson's r = 0.91513
Tacter= thaaTs one = Ao s i~y e ST aleapt= oo, o = o eteept= ThisSa Sope s ATRY Ll i e ey e 2 TV o
N=26840 Ne20135 N ta780 N= 10833 N=8oat Net

20 | 20 20 ! 20 20 20
3 Z 16 = 1 _ = 1
gws ; §” z 15 z 15 §15 WH c
< < < < ES < |
w10 w 10 pie 10 < 10 < 10 10 |
o 5 i 5 3 [3 5

~ H{l o K7 R 8
05 o5 i’H 05 08 05 05
A4
00 00 o 00 00 .
o 0 10 15 z0 28 0o 05 1o 18 20 25 00 Us 1o 15 20 25

00 05 1o 15 20 25
roff (true value)

995 Chi’=0.01831 R’ =0.86913 Chi®=0.02112 R"=0.84936 Chi’=0.02226 R’=0.86012 Chi’=0.02297 R’=0.87101 Chi’=0.02502 R’ =0.83681

Chi® = 0.02397 R®=0.829
Pearson's r = 0.9105

reff (true value)

Chi’ =0.05107 R*=0.61709

Pearson's r=0.78555

10 18 20
ref (true value)

Pearson's r =

.78068

75 1o 15 70
Foy (true value)

Pearson's r = 0.81088

1
reff (true value)

Pearson's r = 0.83956

Pearson's r = 0.95391 Pearson's r = 0.93227 Pearson's r = 0.92161 Pearson's r = 0.92743 Pearson's r = 0.93328 Pearson's r = 0.91477
B T vwrepin Casa7, Sove o575 Tnkercept=07531, Slope = 0 36160 [ o pre gy < B T rareesie o hopa= 1 47IoY & [T owEast=obarer, sk - odiiss nereepi= 011282, Shpe = 049251
aziai0 Y W 17 =103 Weoet N faasas
20 |“ 20 20 20 20 20 I|
Ihi
1 18 s =15 =15 =18 H
i g H z | £ z il I S
10 H T P < 10 Al f T “;m \ \‘
Sy e : : y i
05 ¥ 0s “‘“M l 05 08 W 08 08
00 0o " 00
00 05 10 15 20 25 00 05 10 15 20 25 00 08 25 00 2 0 s 7o 1s 0 28 00 10 20 25
refy (true value)

reﬂ (irue value)

Chi’ = 0.05708 R’=0.60946 Chi’=0.05699 R’=0.65752 Chi’=0.04703 R’=0.70487 Chi’=0.03837 R’ = 0.54421

Pearson’s r=0.73771

2 25
Tnircepi= 010436, Slops = 011476 (TesmeTy TR sy tecepta 017266, Slope 070078 Toerkept =0 36785, Slopa 2074911 ekirapt= 032616, Slops = OHTTS
N=20135 N 14780 N= 10833 =041 Nedese2
20 20 20 20. 20
Z 18 =15 ! =18 =15 18
H H A z z" ot A1 z" "
< < | < < < )
= 10 o A < EY S
S & 3 [ [3 |
K 8 ] s ® |
05, 05 # 05 05 |
0.0 004" 0.0 0.0
05 10 15 20 28 00 os 1o 45 20 28 00 o8 10 15 20 28 o0
Fegf (true value) in pm

reff (true value) in pm

Foff (true value) in pm

39

o5 1o 15 20 25
Fetf (true value) in pm

o5 10 45 20 2%
Tt (triie vallie) in pm

o5 1o 4 20 28
Tt (trise value) in pm

Figure 10: Correlation plots of true vs simulated effective radius for particle radius range from 110 — 250
nm for various ranges of lidar ratios at 532 nm.
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Figure 11: Correlation plots of true vs simulated effective radius for particle radius range from 260 — 500

700  nm for various ranges of lidar ratios at 532 nm.
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Figure 12: Correlation plots of true vs simulated imaginary part of refractive index for particle radius from
10 — 500 nm (imaginary values between 0 — 0.1) and for various ranges of lidar ratios at 532 nm.
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Figure 13: Correlation plots of true vs simulated real part of refractive index for particle radius from 10 —
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Figure 14: Pearson’s correlation coefficient, r value of all investigated parameters shown in this study.
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Appendix
Selection of the common FFBP- MLP neural network topology

In the first step of our work we focus on the most common artificial neural network, i.e. FFBPMLP.
We use the Levenberg Marquardt training algorithm (trainlm) which is widely accepted to solving complex
input-output problems of large datasets. However, other neural networks were also tested in the process of

selecting the best network topology.

The greater the number of hidden neurons the more training time it takes for a successful model run.
As we only use one output neuron in our network architecture, we avoided training with a higher number of
hidden neurons as this would only increase the training time without achieving any overall better
performance. In addition, too many neurons often cause the network to get over-trained or over-fitted. A
low number of hidden neurons (i.e. 5, in our model) maintains good generalization abilities of the trained
neural network and prevents overfitting of the output values once the network has been trained
(Wilamowski, 2011). A small number of hidden neurons often does not provide the best mean squared
error (MSE). However using a low number of neurons allows us to achieve better results when new data
patterns are presented to a trained model. A high number of hidden neurons provides better training results
but fails to simulate the same results when new data which were not used in the training phase, are
presented to the neural network (Wilamowski, 2003, 2011). In general, trial and error methods are very
helpful for deciding how many hidden neurons should be used for a successful multi-layer perceptron
(MLP) neural network model (Wilamowski, 2003).

A training-validation-testing data division of 60 -20 -20 (in %) was used for testing ANN #1 — #5 in
table 9. We found the best results for ANN#3 which uses five hidden neurons. The MSE values tend to
decrease as the number of hidden neurons increases. The simulation statistics suggest that there is no

overall better performance if we use six or seven neurons.

With regard to ANN #6 — #10 we used the data division 70% - 20% - 10%. We found the same
patterns with regard to MSE and the hidden neurons. Five hidden neurons were found to be the best choice
in both cases of data division, i.e., 60% - 20% - 20% and 70% - 20% - 10%. As we found satisfactory
performance in the case of using five hidden neurons we only used 5 hidden neurons in the network
topological runs ANN #11 — #15. We used other types of data division, but no better simulation output was
achieved. We achieved the best results in ANN #8 and hence the properties of ANN #8 were selected as a

common neural network model for our study.
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Table 10 shows the results of a single data division (70-20-10) in 110 — 250 nm mean radii range data.
In this table, we additionally tested the performance of three other network architectures and training
algorithms. In the 110 — 250 nm data set in table 9, at first we started with the best network design, i.e.
ANN #8 (see table 9). With regard to ANN #2 — #4 three other neural networks (cascade forward pattern
recognition and layer recurrent) were applied in which five hidden neurons were used. None of these

attempts showed better performance than what we obtained on the basis of ANN #1.

Afterwards with regard to ANN #1, we checked the effect of other hidden neurons (i.e. 3, 4, and 6) in
ANN# 5-7. We found that a layer of five hidden neurons performs better. Three other training algorithms,
i.e., the scaled conjugate gradient (trainscg), the resilient backpropagation (trainrp), and the variable
learning rate (traingdx) were tested in ANN #8 - #10. We did this test in order to check if these learning
algorithms can provide an optimum output for a moderately large data set, i.e. mean radii data between 110
nm and 250 nm. Among all tested combinations we found that ANN #1 provides the best output. Therefore,
this topology was finally selected for our basic ANN model for all data sets and investigated output

parameters.

Table 9: Summary of different networks evaluated to select the best network topology for our common

ANN model in the range of 10 — 100 nm mean radii data set of particle effective radius.

Tested Network Training Hidden Data Training statistics Simulation statistics
. . algorithm Division . L .
topologies architecture Neurons ) MSE Training | Validation Test Adjusted | Pearson’s | Reduced
0
(R?) (R?) R? r Chi? (x2)
(R%)

ANN # 1 Feedforward trainlm 3 Train 60 0.00343 0.93864 0.93831 0.93728 0.61932 0.78697 0.01743
. val 20
backpropagation test 20

ANN # 2 Feedforward trainlm 4 Train 60 0.00299 0.94646 0.9461 0.94582 0.59349 0.77038 0.06264
backpropagation val 20
propag test 20

ANN # 3 Feedforward trainlm 5 Train 60 | 0.00228 | 0.96046 0.96006 0.96034 | 0.64919 0.80572 0.06516
backpropagation val 20
propag test 20

ANN # 4 Feedforward trainlm 6 Train 60 0.00185 0.96724 0.96764 0.96649 0.54476 0.73808 0.06394
. val 20
backpropagation test 20

ANN #5 Feedforward trainlm 7 Train 60 | 0.00177 | 0.96852 0.96925 0.96848 | 0.50794 0.7127 0.00922
. val 20
backpropagation test 20

ANN # 6 Feedforward trainlm 3 Train 70 0.00344 0.93829 0.93865 0.93831 0.55859 0.74739 0.01789
. val 20
backpropagation test 10

ANN #7 Feedforward trainlm 4 Train 70 | 0.00266 | 0.95249 0.95264 0.95207 | 0.49873 0.70621 0.03157
. val 20
backpropagation test 10

ANN # 8 Feedforward trainlm 5 Train 70 | 0.00226 | 0.96089 0.9609 0.9602 0.70687 0.84076 0.04002
val 20
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backpropagation test 10
ANN #9 Feedforward trainlm 6 Train 70 0.00181 0.96784 0.9675 0.96847 0.55323 0.7438 0.02781
backpropagation val 20
test 10
ANN # 10 Feedforward trainlm 7 Train 70 0.00164 0.97103 0.97029 0.97087 0.37145 0.60946 0.17046
backpropagation val 20
propag test 10
ANN # 11 Feedforward trainlm 5 Train70 | 0.00206 | 0.96341 0.96212 0.96257 | 0.62452 0.79026 0.02765
backpropagation val 15
propag test 15
ANN # 12 Feedforward trainlm 5 Train 80 0.00208 0.96314 0.96206 0.96368 0.61825 0.78629 0.02801
backpropagation val 10
propag test 10
ANN # 13 Feedforward trainlm 5 Train90 | 0.00226 | 0.95984 0.96093 0.95963 | 0.67626 0.82235 0.05122
. val 10
backpropagation test 0
ANN # 14 Feedforward trainlm 5 Train 50 0.00204 0.96392 0.96359 0.96424 0.52052 0.72147 0.07078
. val 30
backpropagation test 20
ANN # 15 Feedforward trainlm 5 Train60 | 0.00210 | 0.96286 0.96306 0.96438 | 0.61816 0.78623 0.02657
backpropagation val 30
test 10

Table 10: Summary of different networks evaluated to select the best network topology for our common

ANN model in the range of 110 — 250 nm mean radii data set of particle effective radius.

765
Tested Network Training Hidden Data Training statistics Simulation statistics
. i algorithm Division . L .
topologies architecture Neurons ) MSE Training | Validation Test Adjusted | Pearson’s | Reduced
0
(R?) (R?) R? r Chi? (x2)
(RY)

ANN # 1 Feedforward trainim 5 Train70 | 0.0155 0.95603 0.95676 0.95508 0.91429 0.95618 0.01413
. val 20
backpropagation test 10

ANN # 2 Cascade forward trainlm 5 Train 70 0.0194 0.94438 0.94526 0.94589 0.8926 0.94477 0.01725
val 20
Network test 10

ANN #3 | Pattern recognition trainlm 5 Train70 | 0.0157 | 0.95513 0.95583 0.95506 | 0.66831 0.8175 1.92725
val 20
network test 10

ANN # 4 Layer recurrent trainlm 5 Train 70 0.0196 0.94394 0.94284 0.94409 0.35289 0.59405 0.12202
val 20
network test 10

ANN #5 Feedforward trainlm 3 Train 70 0.0213 0.93849 0.93934 0.93961 0.88162 0.93895 0.01881
. val 20
backpropagation test 10

ANN # 6 Feedforward trainlm 4 Train70 | 0.0199 | 0.94288 0.9428 0.94336 | 0.61398 0.94296 0.01772
. val 20
backpropagation test 10

ANN #7 Feedforward trainlm 6 Train 70 0.0194 0.9444 0.94498 0.94551 0.89227 0.9446 0.0173
. val 20
backpropagation test 10

ANN # 8 Feedforward trainscg 5 Train70 | 0.0272 | 0.92104 0.92048 0.92133 | 0.49699 0.70498 0.1435
. val 20
backpropagation test 10

ANN #9 Feedforward trainrp 5 Train 70 0.0265 0.92319 0.92407 0.92265 0.75014 0.86611 0.03687
. val 20
backpropagation test 10

ANN # 10 Feedforward trainlm 5 Train 70 | 0.0194 | 0.94438 0.94526 0.94589 0.8926 0.94477 0.01725
. val 20
backpropagation test 10
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